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Summary: Smoothing by spectral dispersion (SSD) with standard frequency 
modulation (FM), although most simple to implement, has the significant 
disadvantage that low spatial frequencies present in the spectrum of the target 
illumination are not smoothed as effectively as is possible with a more general 
smoothing method (such as the induced spatial incoherence (ISI) method). The 
reduced smoothing performance of standard FM-SSD can result in spectral 
power of the speckle noise at these low spatial frequencies as much as one order 
of magnitude larger than that achieved with a more general method. In fact, at 
small integration times FM-SSD has no smoothing effect at all for a broad band of 
low spatial frequencies. This effect may have important implications for both 
direct and indirect drive ICF. 

This disadvantage of standard FM-SSD can be overcome by using more general 
phase modulation. With this approach one can achieve optimal smoothing at 
low spatial frequencies and also maintain the near field beam quality, since one 
still utilizes pure phase modulation. The essential ingredient necessary in order 
to achieve optimal smoothing at low spatial frequency is the generation of many 
"color cycles" across the beam. That is, the temporal skew imposed by the SSD 
grating must be many times larger than the mean period of the phase 
modulation. If, however, one simply uses sinusoidal FM of many color cycles, 
coherence resonances appear in the spatial spectrum of the target illumination 
owing to the pure periodicity of the FM. By generating many color cycles and 
also "randomizing" the phase modulation one can eliminate these resonances and 
still obtain optimum smoothing at low spatial frequency. The spatial spectrum of 
the smoothed illumination of SSD using random phase modulation (RPM) is 
equivalent to that of an ISI method of equal divergence. Instead of RPM, a 
potentially simpler and more practical approach to eliminating these resonances 
is the use of additional FM to spoil the pure periodicity of a single FM. 
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The technique of SSD utilizing generalized phase modulation is depicted in Fig. 
1. The beam is modulated with some phase function <f)(t) and then dispersed by 
a grating before amplification. The effect of the dispersion is to time skew the 
phase function across the beam. I.e. the phase after dispersion is described by 
<j)(t - sx), where the time skew per unit distance s is proportional to the grating 
dispersion. For 2D SSD a second modulator and orthogonal grating are added. 
A random phase plate (RPP) is used to determine the spot profile on the target. 
The great advantage of the SSD method is that in and near the relay image planes 
of the grating the pure phase modulation imposed does not lead to amplitude 
modulation and thus high power amplification is made more efficient. 

E fa(Oexp[i0(/-,sx)] 

— > 

Ein(t)exp[i<p(t)] 

exp[i0(O] 

Target 

Amplifiers RPP F 
Figure 1: Schematic layout of 1D-SSD with generalized phase modulation. 

For a completely randomized smoothing method (e.g. ISI with a very large beam 
divergence), where the speckle patterns at successive coherence times are 
completely uncorrelated, one ideally finds that all spatial frequencies are 
smoothed at the same bandwidth limited rate. The rate is determined by the 
number of independent speckle patterns which are generated in an integration 
time t. Assuming Gaussian statistics, one can show that for a smoothing method 
with spectral intensity /(v), the effective smoothing rate is generally given by 

Avejf=\II(v)dtf/j\I(vfdv . 
For a spectrum of Gaussian shape and FWHM Av^,, one finds that 
Aveff = l-5Av^, the coherence time is ~ 1 / (1.5Av^,), and hence the number of 
speckle patterns generated in an integration time t is ~ 1.5Avj^t. Thus, in this 
case, the spectral intensity of the speckle noise at any spatial frequency will be 
reduced by this factor. However, for any realistic smoothing method the beam 
divergence is limited. Hence, the extent of the speckle motion is limited and 
therefore there will always be a low spatial frequency limit below which no 
smoothing occurs (this limit is present regardless of the smoothing method 
used). 

Smoothing by the random ISI method 

This behavior is illustrated in Fig. 2, where the spatial power spectra of the 
integrated intensity on target vs. normalized spatial frequency are shown at a 
series of integration times for a random smoothing method (ISI) with a beam 
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divergence of Gaussian FWHM SOX / D. The dashed curves show the ideal 
behavior of random smoothing of unlimited beam divergence, and are simply 
the initial static speckle spectrum divided by the number of coherence times (i.e. 
1.5Avr). One sees that at large spatial frequency the ideal smoothing limit is 
achieved. However, below a spatial frequency determined by the induced 
divergence there is little or no smoothing. 
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Fig. 2: Calculated spatial spectrum of speckle patterns with random smoothing 
(ISI) of divergence FWHM 50 XID for (top to bottom curves) the initial static 
speckle pattern and after an integration time equivalent to 3,10,30,100,300, and 
1000 coherence times. The dashed lines show the ideal smoothing result for the 
case of large beam divergence. 

In this calculation the speckle patterns at successive coherence times are assumed 
completely uncorellated, except that they are limited within a given beam 
divergence. In all the calculations presented here an RPP or amplifier phase 
aberrations are assumed to produce a far field spot larger than the wavelengths 
considered. The spatial frequency scale shown is normalized to the F# limited 
spatial frequency / 0 = DIXF, where D is the final near field aperture width, F 
is the final lens focal length, and X is the wavelength on target (see Fig. 1). For 
the NIF focusing geometry (D = 35 cm, F = 7 m) X I D=\ )irad, / 0 corresponds 
to a wavelength of 7 \im, and for a direct drive target of radius 1.6 mm / 0 

corresponds to an f-mode of 1500. These spectra have been integrated over 
azimuth in the spectral plane (fx,fy) so that they are only dependent on the 
magnitude of the spatial frequency (or ^-mode), and are normalized such that 

the integral over the normalized frequency yields the normalized variance i ( c ) 
which is unity for a static speckle pattern. 



2D SSD using standard FM 

The spatial spectra generated by 2D-SSD using standard FM are significantly 
different. For comparison, in Fig. 3 the spatial spectra produced by 2D-SSD 
using FM with a single color cycle in each dispersion direction (i.e. where the 
temporal skew of the grating is equal to the modulator period; dotted curves) are 
shown with the results of the ISI random smoothing of Fig. 2 (solid curves), 
where both smoothing methods are chosen to generate the same beam 
divergence FWHM (note that the angular spectrum of the FM-SSD beam has a 
rectangular shape peaked at the ends (characteristic of a FM spectrum) whereas 
the ISI random smoothing described here has a Gaussian angular spectrum). 
One sees that FM-SSD (unless otherwise specified SSD refers to 2D SSD) 
smoothes comparatively poorly at low spatial frequency. At each integration 
time the FM-SSD spectral intensity is seen to be slightly smaller than that of the 
ISI random smoothing at high spatial frequency, but crosses over near 0.25/ 0 . 
At spatial frequencies ~0.02 / 0 - 0.06 / 0 the FM-SSD spectral intensity is 5-10 
times larger than that produced by the random ISI method. 
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Fig. 3: (a) Comparison of calculated spatial spectra using smoothing by ISI of 
divergence FWHM 50 X ID (solid curves) with that of standard FM-2D SSD of 
equal divergence (dotted curves) for (top to bottom) the initial static speckle 
pattern (solid) and after an integration time equivalent to 10 and 100 coherence 
times. The dashed lines show the ideal random smoothing result for the case of 
large beam divergence. 

SSD with Random Phase Modulation 

As seen in Fig. 3, single color cycle FM-SSD, because of its coherence properties, 
has much lower smoothing rates at low spatial frequencies than the ISI method 
of equal beam divergence. One can show that the smoothing rate of SSD at low 
spatial frequency can be improved by increasing the number of color cycles 
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across the beam. The number of color cycles across the beam Ncc is defined as 
the number of FM periods (T m o d ) in the total time skew provided by the grating 
\ * skew) 

™cc ~ * skew ' •'mod = ^ skew ' ^mod ' w 
where v m o ( j is the modulation frequency. The smoothing rate dependence on 
Ncc is understood if one realizes that the low spatial frequencies on the target 
originate from closely separated points in the near field (points separated by Ax 
in the near field contribute to spatial frequency on the target given by 
/ = Ax / FX). As Ncc is increased, the relative coherence of closely separated 
near field points decreases, and thus one obtains a larger smoothing rate at low 
spatial frequency. However, by imposing multiple color cycles with pure 
sinusoidal phase modulation one creates multiple bands across the beam which 
are coherent with each other. The coherent interference between these bands 
leads to zero or reduced smoothing at the spatial frequencies corresponding to 
the band separations. By randomizing the phase modulation such that, on 
average, there are still many color cycles across the beam, rapid smoothing at low 
spatial frequency can be obtained without the presence of coherence resonances 
in the spatial spectrum. A more detailed analysis of multiple color cycles is given 
in the next section. 

Figure 4 shows the spatial spectra of 2D-SSD using random phase modulation 
(RPM), where the RPM is simulated by filtering the white noise spectrum of a 
random binary sequence with a Gaussian shaped filter. In this calculation the 
FWHM of the phase spectrum is taken to be 50 Ghz and the phase depth is 
chosen to have an RMS of 3.75 rad, which results in a total bandwidth of 185 Ghz 
for each direction of the 2D-SSD. The grating skew is taken to be 280 ps so that 
the number of color cycles is -14 (since the mean period of the phase modulation 
is - 1 /50 Ghz = 20 psec) and the beam has a Gaussian angular spread of FWHM 
50 A / D. The spatial spectra produced by SSD using RPM (solid curves) is 
compared in Fig. 4 with SSD using FM of a single color cycle (dotted curves), 
where the beam divergence FWHM of the two methods is equal. One sees that 
the RPM-SSD method generates essentially the same spatial spectra as that of the 
random ISI method of equal divergence (e.g., compare with Fig. 3), and that, over 
spatial frequencies 0.02 / 0 - 0.06 /Q, the spectral intensity produced by RPM-SSD 
is smaller than that of FM-SSD by a factor of - 5 -10. This band of low spatial 
frequencies ( i-modes of 30-100) is particularly important with regard to direct 
drive hydrodynamic stability. Also, as shown in more detail in Fig 4(b), at very 
short integration times FM-SSD does not smooth a broad range of low spatial 
frequencies of the static speckle spectrum at all, whereas the RPM-SSD method 
smoothes low spatial frequencies uniformly to the limit imposed by beam 
divergence. This feature may be particularly important to the suppression of 
laser-plasma instabilities, where the smoothing rate during the first few tens of 
ps is most critical. From this figure one can see that the low spatial frequency 

5 



limit where smoothing is first noticeable is decreasing linearly with integration 
time. It will be shown that smoothing is significant only for spatial frequencies 

f>f0/2xNccTct , (2) 
where Tct is the integration time given as the equivalent number of coherence 
times. 
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Figure 4: Comparison of calculated spatial spectra using 2D SSD with 
random phase modulation of -14 color cycles across the beam (solid curves) and 
single color cycle FM (dotted curves) of equal beam divergence for (top to 
bottom) the initial static speckle pattern (solid) and after an integration time 
equivalent to (a) 10 and 100, and (b) 2, 4, and 9 coherence times. The dashed 
curves show the ideal random smoothing result using large beam divergence. 

As noted above, the smoothing rate of SSD at low spatial frequencies is critically 
dependent on the number of color cycles across the beam. Since RPM can not be 
described by a single frequency modulation, the length of a color cycle must be 
given by the mean phase oscillation period or the phase correlation length across 
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the beam. One can show that the mean number of color cycles across the beam is 
given by the bandwidth of the phase multiplied by the temporal skew across the 
beam, Ncc = &vphase 

' Tskew • Fig. 5 compares the results of smoothing using RPM 
for three different values of the mean number of color cycles (2.7,6.8, and 14), 
and where the bandwidth and divergence are kept constant. One can see that as 
the number of color cycles is increased the smoothing obtained at low spatial 
frequency is more rapid. In the limit of a single color cycle, RPM gives results 
which are similar to that obtained with FM of a single color cycle. 
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Fig. 5: SSD with random phase modulation of 14 (solid curves), 6.8 (dash-dot 
curves) and 2.7 (dotted curves) color cycles, for (top to bottom) the initial static 
speckle pattern (solid) and after an integration rime equivalent to 10 and 100 
coherence times. The beam divergence in each calculation is 50A / D. The 
dashed curves show the ideal random smoothing result using large beam 
divergence. 

Smoothing rate dependence on color cycling 

To understand the smoothing rate dependence on the number of color cycles 
consider sinusoidal FM with Ncc color cycles across the beam. The near field can 
be written 

E(x) = exp{i(3sm(kxx - « m o d r ) } (3) 
where, kx = 2KNCC ID, ft)mocj = 2^v m ( K j is the angular modulation frequency, and 
the y dependence has been omitted for simplicity but is analogous. Now, points 
separated by Ax in the near field plane of the focusing lens contribute to spatial 
frequency on the target given by 

/ = Ax / FA. (4) 
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Thus, one can find the smoothing rate at a given spatial frequency / by 
calculating the interference between the field at points of the corresponding 
separation Ax. The intensity owing to interference of near field points separated 
by Ax is given by 

E{x)E*(x + Ax) = exp{iP[sin(kxx - (0modt) - sin(kx(x + Ax) - comodt)]} 
yp) = exp{/2/? sinCfcj.Ax / 2)cos(kx(x + Ax / 2) - comodt)} 

Low spatial frequencies on the target correspond to small Ax, so that one can 
approximate s in^Ax / 2) s kxAx / 2. Hence, Eq. (5) is simplified to 

E(x)E*(x + Ax) = exp{i(fikxAx)cos(kx(x + Ax 12) - 0)modt)} (6) 
The interference term is recognized as having the same form as FM with the 
effective depth given by Pejf(f) = fikxAx. The bandwidth of this interference 
term gives the effective rate in smoothing the spatial frequency of interest (a 
more precise analysis involves calculating the time average of Eq. (6) and 
summing over the relevant aperture positions, however the heuristic approach 
presented here gives an accurate estimate of the smoothing rate). Thus, the 
effective smoothing rate can be approximated by 

Aveff(f) ~ 2 % (/) • v m o d = 2/3v m o d • 2JTNCCAX ID = Avtot • 2nNcc Ax ID. (7) 
where the total bandwidth is Avtot = 2/?vm o cj. Therefore, smoothing at spatial 
frequency f= Ax I Fk will become significant when the integration time t is 
sufficient such that average over the effective bandwidth starts to wash out, or 
when Aveff{f) • t ~ 1. Hence, at integration time /, smoothing is significant for 
spatial frequencies 

f>{DlXF)l 2nNccAvtott = / 0 / 2KNccAvtott = / 0 / 2nNccTct , (8) 
where Tct = Avtott is the number of coherence times. This estimate is confirmed 
in Figs. 4 and 5. For example, in Fig. 4 with FM of a single color cycle, one has 
that at 2 coherence times the smoothing is significant only for / > /Q / 4 K . 

The behavior of 1D-SSD with multiple color cycles is shown in Fig. 6(a), where 
the spatial spectrum of smoothing after ~ 4 coherence times using FM with one 
color cycle is compared with that of FM using 4 color cycles. For clarity, these 
spectra have not been integrated azimuthally, but are integrated orthogonally to 
the dispersion direction and plotted versus the spatial frequency along the 
dispersion direction. One sees that the smoothing at low spatial frequency is 
more effective when using four color cycles as predicted by Eqs. (7) and (8). 
However, the effect of the coherence between the periodic color cycles is also 
readily apparent. From Eq. (5) one sees that these resonances occur when 
s\n(kxAx / 2) = 0, i.e. kxAx = 2mn or Ax = Dm I Ncc (where m is an integer). The 
coherent interference at these separations results in zero smoothing at the 
corresponding spatial frequencies given by / 0 • m I Ncc (i.e. for Ncc = 4, at spatial 
frequencies .25,3, and .75 /Q) . 
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Since this effect is a result of the particular periodic coherence of pure sinusoidal 
FM, the superposition of additional phase modulation may serve to wash out 
these resonances. In the calculation of Fig. 6 (b) 1D-SSD using FM of four color 
cycles is supplemented by the superposition of FM of a single color cycle (i.e. FM 
at 1/4 the frequency of the first modulator) and equal bandwidth (four times the 
modulation depth of the first modulator). It should be emphasized that this 
calculation is for 1D-SSD using two FM's (one modulation frequency four times 
the other) in series before dispersion. One sees that the resonances are strongly 
modified by the additional FM. Of course, in the limit of the superposition of 
many FM's one simply reproduces the effect of RPM. However, by proper choice 
of a small number of multiple FM's one may be able to obtain effective 
smoothing at low spatial frequency while minimizing the coherence resonances. 

0.01 0.10 1.00 
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Figure 6: (a) Spatial spectra of ID SSD with FM of a single color cycle (dotted 
curve) and four color cycles (lower solid curve) of equal bandwidth and 
divergence after an integration time equivalent to 4 coherence times, (b) Spatial 
spectra of ID SSD with FM of four color cycles (dotted curve, as in (a)), and then 
modified with the superposition of an additional FM (still 1D-SSD) of a single 
color cycle of equal bandwidth (lower solid curve). The upper solid curve in 
both plots is the static speckle spectrum. 
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Finally, concerning the practical implementation of RPM, one must insure that 
the phase modulation is sufficient to insure that the axial "coherent spike" is 
suppressed. This coherence effect (unrelated to that of the color cycles) is absent 
so long as the RPM has phase RMS <po greater than ~ it rad.2 The implications of 
this requirement become apparent if one first notes that the total bandwidth 
FWHM of the RPM light is given by 

A * W = A v ' p h a s e -00 / (9) 
where Avphase * s m e bandwidth FWHM of the phase. After dispersion, the 
angular divergence FWHM of the beam is then given by 

A6 = Tskew-Avtotara/D) 
= Ncc-<j>0-a/D) 

If we now assume A6 is limited by a maximum A6>m a x, and take <pG = it as the 
minimum phase depth, then one finds that A # m a x > Ncc -n-iXI D) or 

Ncc<A6msK/K-(X/D) . (11) 
Thus, e.g., in the NIF geometry X I D = \ /irad, and taking A 0 m a x ~ 50 /irad, 
implies that Ncc < 16, which, as shown in Figs. 4 and 5, is adequate to get optimal 
smoothing at low spatial frequencies. 

Conclusions 

It has been shown that SSD using FM of a single color cycle is ineffective 
(compared with ISI, for example) at smoothing of low spatial frequencies. Since 
the smoothing performance at low spatial frequencies may be of significance for 
both the direct and indirect drive approaches, it is important to examine methods 
which improve the smoothing rate at these low spatial frequencies. It has been 
shown that the smoothing rate at low spatial frequencies is proportional to the 
(mean) number of color cycles of the phase modulation across the beam. 
However, the use of a single sinusoidal FM of many color cycles leads to 
coherent resonances in the spatial spectrum. These resonances can be eliminated 
by either using RPM or perhaps with multiple FM's. The smoothing 
performance of SSD using RPM is equivalent to that obtained with an ISI-type 
method of an equal beam divergence and bandwidth. 
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