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Abstract 

We have demonstrated a technique for diagnosing the growth of -

subresolution-scale perturbations by the appearance of longer-wavelength, 

coupled modes once the growth has proceeded into the nonlinear regime. 

Comparison of the growth rate of this larger scale feature with numerical 

simulations can then be used to infer the growth rates of the initial 

perturbations. This experiment was conceived as an analog of large-scale 

computer simulations where the large eddy approximation is applied. There 

a subgrid-scale model is used to represent the effects of small scales on large-

scale motion, which is directly numerically simulated. 

Hydrodynamic instabilities have been studied extensively due to their 

presence in numerous physical systems. The Rayleigh-Taylor (RT) instability 

is particularly important to the process of inertial confinement fusion (ICF). 

In direct-drive schemes imprinting (and subsequent growth) of the initial 

laser intensity profile can cause implosion nonuniformities while in indirect-

drive a reasonably uniform x-ray drive is used to implode the capsule but 

surface imperfections can seed instability growth. Large growth of 
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perturbations on the outer surface of the capsule could cause the pusher to 

break up before the implosion has reached peak compression. Alternatively, 

perturbations which feed-through from the capsule surface to the pusher-fuel 

interface will be unstable and grow during deceleration and stagnation, 

degrading capsule performance. 

Another field replete with examples of hydrodynamic instabilities is 

astrophysics, where star models rely heavily on correctly accounting for the 

effects of turbulent mixing. Such a system spans many orders of magnitude 

in length scale which precludes direct numerical simulation. The number of 

grid points required to account for both large and small scale structures is -

prohibitive. One technique which is adopted to model such systems is the 

large eddy simulation (LES), where small structures are modeled 

theoretically with a subgrid-scale model and the largest scales are directly 

numerically simulated. 1 

We have conceived of an experiment which applies the same logic to 

the study of the evolution of subresolution-scale perturbations at an RT-

unstable interface. Here an initial perturbation consisting of two wavelengths 

superposed in phase, both smaller than the experimental resolution (~ 8 um 

at 12 times magnification), is imposed at an embedded interface where very 

short wavelengths (k ~ 10 urn) have previously been demonstrated to grow 

strongly. 2 The initial perturbation cannot be directly probed, but if the growth 

proceeds into the nonlinear regime the two initial modes will couple 

producing structures at the beat frequencies. The longer wavelength beat 

mode is well within the experimental resolution and its growth rate can be 

measured. By comparison with simulations, the growth rate of the two 

initial modes can then be inferred. 
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The experimental configuration is shown in Figure 1. A 750 urn 

diameter planar package is affixed across a hole in a 3 mm long by 1.6 mm 

diameter gold cylindrical hohlraum. Eight of the ten Nova beams at .351 um 

wavelength are used to generate a 4.5 ns shaped x-ray drive. The remaining 

two beams at .528 um are delayed with respect to the drive beams and focused 

onto an iron backlighter disk to generate 6.7 keV He-a x-rays to back-

illuminate the accelerating experimental package. To produce a smooth 700 

Jim diameter x-ray spot, random phase plates with 5 mm hexagonal elements 

are inserted into the backlighter beam lines. Gated x-ray images are obtained 

with a gated pinhole camera, the flexible x-ray imager (FXI).3 

The FXI records 16 images (4 images/strip, 4 striplines) at 12 times 

magnification of the accelerating foil in flight. The images on a single strip 

are separated by -70 ps and interstrip timing can be adjusted in 100 ps 

increments. Each image is converted from film density to ln(exposure) «= -

optical depth = -Jpicdz, where p is the density and K is the opacity. 

The planar experimental packages consisted of a 40 jim thick 

brominated plastic ablator (C5()H47Br3, p = 1.26 g/cm^) backed by a 15 um 

thick titanium payload (p = 1.26 g/cm^). The targets were manufactured by 

machining the desired perturbation shape into a copper mandrel which was 

then coated with Ti by vapor deposition. While the Ti foil was still 

supported by the mandrel, the back side was faced off to produce the correct 

thickness. When this process was complete, the Cu mandrel was chemically 

etched away. The CH(Br) layer was then pressed onto the rippled side of the 

Ti foil. For the experiment discussed here the perturbation consisted of X = 4 

(i.m and X = 5 Jim sinusoids with initial amplitude T| 0 = .3 Jim superposed in 

phase, as illustrated in Figure 2. 
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The hohlraum radiation drive has been characterized and Figure 3a 

shows the laser power profile and corresponding radiation temperature 

evolution. This radiation temperature profile has been used to calculate the 

trajectory of the back side of the experimental package with the 1-dimensional 

radiation-hydrodynamics code HYADES.4 Figure 3b shows this calculation as 

well as the predicted acceleration profile at the CH(Br)-Ti interface. 

First we consider the problem of a single mode perturbation at the 

embedded interface. In the linear regime, where the amplitude to 

wavelength scaling kn is small, the growth of the perturbations can be 

calculated by solving 

d\ /at2 = k; gWAftH (i) 

where k; is the wavenumber, g(t) is the interface acceleration and A(t) = 

(Pi - P2V(Pi + P2) is the Atwood number. When kn is no longer small 

(typically kt| > 0.1), the growth enters the nonlinear regime. This is 

characterized by the appearance of higher harmonics of the initial mode in 

Fourier space and the shape of the perturbation evolves from sinusoidal to 

the characteristic "bubble and spike" profile. Here the growth of the 

fundamental mode slows but the overall growth is not necessarily decreasing. 

Rather it is being distributed to the higher harmonics of the fundamental 

mode. 

If we now consider the case of interest here where two modes are 

initially present, once the growth enters the nonlinear regime the modes 

begin to couple , leading to the appearance of beat modes. A second-order 

perturbation expansion can be used to derive a relationship for the amplitude 

of the beat modes yielding 
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3 V , /at2=iq_ f g(t)A(t)r,H + 2A(t) V , K#n, ®? H +@n« /9t)(3n, /at)}. (2) 

Saturation of the growth of the initial modes is taken into account by 

expressing their amplitude as 

( l /n j ( t)) = (l/Ti i o) + ki (3) 

so that as T|i0 becomes large r|f (t) ~ 1/ k ;. This coupling causes a redistribution 

of the original mode spectrum to longer and shorter wavelengths and 

impacts the saturation of the individual modes. The initial perturbation 

wavelengths are below the experimental resolution of the FXI which has a 

value of the modulation transfer function (MTF) of 10"5 at X = 5 jxm 

compared to .38 at X = 20 um at 12 times magnification with 5 urn pinholes.5 

If the k. = 20 |im beat mode appears, this will signal that the growth of the 4 

and 5 |im wavelength initial modes has been driven into the nonlinear 

regime. Further, by comparison with simulations one can use the growth of 

the 20 am beat mode to infer the growth of the initial modes. 

Figure 4 shows a sample experimental image of the raw data taken at t 

= 5.5 ns after the start of the drive pulse. Each image (in ln(exposure)) is then 

Fourier analyzed and corrected for the instrument response. Figure 5a shows 

an averaged (over approximately one-third of the image) lineout from the 

data and Figure 5b shows the resulting Fourier transform. Here the 

transform is performed over 120 (im so mode 6 corresponds to a feature at 20 

jim wavelength. The result of this analysis is the amplitude of the k_ = 20 um 

beat mode as a function of time and is presented in Figure 6. Overlaid on 
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Figure 6 is a calculation of the amplitude of the beat mode, normalized to the 

data at 4.5 ns. 

In conclusion, we have demonstrated a novel technique for the 

diagnosis of subresolution-scale perturbations by measuring the growth of 

beat modes which arise when the growth of the initial modes has proceeded 

into the nonlinear regime and they have begun to couple. The amplitude of 

the longer wavelength beat mode has been used to infer the growth rate of 

the initial perturbations. This is an experimental analog of the technique of 

large eddy simulations wherein small scales are modeled theoretically by 

subgrid-scale models and large scale features are directly numerically 

simulated. 

The authors wish to acknowledge the expert support S. Alvarez, R. 

Mazuch, A. Nikitin, D. Hargrove and the technical staff at Nova. This work 

was performed under the auspices of the U. S. Department of Energy by the 

Lawrence Livermore National Laboratory under contract number W-7405- i 
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Figure Captions 

Figure 1: Experimental schematic. 

Figure 2: Plot of 4 and 5 urn wavelength sinusoids with initial amplitude 0.3 

urn along with their sum, the perturbation imposed at the embedded 

interface in these experiments. 

Figure 3: a. Model radiation temperature and laser power for these 

experiments, b. Acceleration profile at the embedded interface and the 

trajectory of the rear surface of the Ti payload as calculated with HYADES. 

Figure 4: Image of the "raw" data at t = 5.5 ns after the initiation of the laser 

drive. 

Figure 5: a. Averaged lineout from the data in ln(exposure). b. Fourier 

spectrum from the lineout where mode 6 corresponds to X = 20 urn. 

Figure 6: Amplitude of the X = 20 urn mode in ln(exposure). The dashed 

curves are calculations where the thickness of the CH(Br) ablator has been 

varied. 
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