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SYNTHÈSE :

Après avoir présenté dans les grandes lignes les méthodes de discrétisation en
temps et en espace utilisées dans le code de thermohydraulique N3S développé au
LNH, on décrit les facilités offertes par la version périphérique "Maillage Adaptatif1

qui est composée de deux parties distinctes : le calcul d'indicateurs d'erreur d'une part
et le développement d'un module de découpage d'éléments surfaciques et volumiques
qui a pour vocation d'être utilisé par les codes ASTER de mécanique du soude,
TRIFOU d'électromagnétisme développés également à la DER.

Les indicateurs d'erreur mis en oeuvre dans N3S sont décrits. Il s'agit d'un
indicateur de projection permettant de quantifier l'erreur en espace commise dans un
calcul d'écoulement que celui-ci soit laminaire ou turbulent ainsi que d'un indicateur
représentant le résidu sur chaque élément des équations de Navier-Stokes.

La méthode de découpage des triangles en quatre sous-triangles et des
tétraèdres en huit sous-tétraèdres est ensuite présentée avec ses contraintes et
avantages. Elle est illustrée d'exemples traduisant les performances du module
développé.

La dernière partie est consacrée au cas bidimensionnel de l'écoulement derrière
une marche descendante.
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EXECUTIVE SUMMARY :

After outlining the space and time discretization methods used in the N3S
thermal hydraulic code developed at EDF/NHL, we describe the possibilities of the
peripheral version, the Adaptative Mesh, which comprises two separate parts : the error
indicator computation and the development of a module subdividing elements usable
by the solid dynamics code ASTER and the electromagnetism code TRIFOU also
developed by R&DD.

The error indicators implemented in N3S are described. They consist of a
projection indicator quantifying the space error in laminar or turbulent flow
calculations and a Navier-Stokes residue indicator calculated on each element.

The method for subdivision of triangles into four sub-triangles and tetrahedra
into eight sub-tetrahedra is then presented with its advantages and drawbacks. It is
illustrated by examples showing the efficiency of the module.

The last part concerns the 2D case of flow behind a backward-facing step.
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1 Fluid dynamics code N3S
The main problems that the finite element code N3S deals with are thermohy-
draulic problems concerning flows with heat transfers in the various components
of nuclear power plants such as head adapter, reactor vessel, steam generator
pipes.

N3S has also been applied to various studies in flow configurations where the
fluid is either compressible or incompressible such as external aerodynamics (flow
around vehicles or in the urban environment). Specific applications required
complementary developments like turbomachinery, flow around cooling towers.

The code solves Navier-Stokes equations in 2D, 2D axisymmetric or 3D ge-
ometries for laminar or turbulent problems. The turbulence is solved using a k-c
model and the wall boundary conditions follow the Reichardt law.

1.1 Time discretization
The Navier-Stokes equations are time discretized using a fractional step method
[4]. The convection step consists of calculating the convected velocity field un + 1

which is given at the instant tn = nAi by

vn+l(x)=un(Xx(t
n))

where Xx(t
n) is the foot of the characteristic curve transported by un which at

the instant tn+1 is such that

Xx(t
n+1) = x.



1.2 Spatial discretization
The second step solves the Stokes problem and diffusion of the scalar variables
with appropriate boundary conditions. The solution of Stokes problem is based
on the XJzawa or Chorin [5] algorithm. Diffusion problems are solved using a
Preconditioned Conjugated Gradient method. Diffusion and Stokes problems
are discretized using the Taylor-Hood mixed finite element P2-P1 or isoP2-Pl
where the degrees of freedom for pressure are the vertices of the triangles in 2D
or tetrahedra in 3D and those for velocity and scalar (T, k, e) are the vertices
plus the middles of the edges.

2 Adaptive facilities
A-posteriori error indicators have been implemented in N3S for laminar [3] and
for turbulent flows. In the case of laminar flows there are two indicators the
projection indicator and the residue indicator. For turbulent flows only the
projection indicator is available. A 3D indicator is currently being developed.
During the adaptive process the time step value is automatically recalculated
on each mesh in order to control the CFL number. For steady cases the time
convergence is achieved on each mesh before the adaptation step however in the
case of transient problems, the number of time steps completed between two
adaptations has to be determined.

Several strategies have been implemented : firstly a uniform meshing refine-
ment where all elements are divided is useful to test the indicators. Secondly
refinement at predefined thresholds can be carried out. Another strategy is to
define a maximum number of adaptations for a final maximum number of el-
ements which must not be exceeded during successive refinements. Finally a
percentage of elements which are going to be refined can be defined.

The coupling between N3S and the refinement software is external. A UNIX
program controls the process.

3 Error indicators
3.1 Laminar flows
3.1.1 Projection indicator
This indicator was first introduced in elasticity [9] and then transposed to fluid
dynamics [7]. It was then implemented with appropriate adjustements at Elec-
tricité de France in N3S. It is based on the fact that the discrete constraint
tensor ov, = -p/,7 + 2fiy(uh) is discontinuous at the boundary of the element
because of the discrete deformation rate tensor 7(uh). The projection 7(1*/»)* of
this term on the velocity discretization space V = Ved(ipk) has been computed.
The projection problem can be written :
find 7(wft)* S V, such that

VT 6 V,, I 2(/i + HT)(7(fh) " T(t«*)*) : rdw = 0
JUK



In the laminar case assuming the viscosity is constant, the problem is equivalent
to a I2 projection of y{uh)- The pressure is continuous so its discontinuous
gradient is projected. Finally homogeneity considerations lead to the expression
of the indicator

IK = &,« +&*)i
where

.« = { jK 2(1* «*)* " 7(u*)) : (7(«k)* " (3-1)

(3.2)

3.1.2 Residue indicator for Navier-Stokes
Theoretical proof [2] has been provided for a residue indicator [8] in the case
of Poisson and Stokes problems. First local indicators are limited upward by
the exact local error and furthermore the associated global error estimator is
an upper limit of the exact global error. It is not easy to apply these results
in the case of laminar isothermal Navier-Stokes problem, considering the time
discretization method used. Indeed, the characteristic method generates time
and spatial error (even in steady cases). In order to take this spatial error into
account and to eradicate a part of the time discretization error, the following
indicator (here in the isoP2-Pl case) has been built :

IK =

At

(3.3)

,,n+l
wheTe fmh is the orthogonal projection of/. The quantity [v • £n ] represents the
jump of the normal derivative of velocity across the edge F of K. As mentioned
above û j + 1 is computed using the characteristic method and is not piecewise
polynomial on the triangulation.
Our conclusions according to many tests is that first the Navier-Stokes residue
indicator behaves as the theoretical error, and it is more regular than the pro-
jection indicator which may underestimate the error.

3.2 Turbulent flows
In order to take into account the turbulent character of the flow, the quantities
k, i and (AT &re introduced in the error indicator expression. The eddy viscosity
fir is a nonlinear expression of k and i. The coefficient has to be removed from
the above expressions and to be treated separatly as a variable itself. It would



also be projected. Each term has to be normalized to be sure they are together
comparable in dimension and in order of magnitude. So the following indicators
have been defined :

• For the velocity

• For C in (A,

_ {/jf

The whole error indicator for all the quantities is written

This time the error indicator is relative. The proceeded test is :

IK
refinement where — >a (3-4)

IKderefinement where —— < a * 0.8 (3.5)

where a is the predefined threshold. 4 is the number of quantities taken into
account in the calculation of the indicator. This division avoids obtaining relative
error greater than the unit. It is like the average value of all contributions.

4 Refinement module for 2D or 3D geometry
A refinement tool is developed and has been designed to be used in the environ-
ment of three major 3D finite element computer codes : N3S but solid mechanics
and electromagnetic fields also. This tool is divided into different parts : on the
one hand the interfaces and on the other hand algorithm program. This pro-
gram contains for instance only refinement facilities but derefinement will soon
be developed and will be useful for transient phenomena. The originality of the
algorithm is to process faces and edges and not tetrahedra directly. So it runs on
meshes containing tetrahedra, triangles and edges which is useful in mechanics or
electromagnetic fields. With the same ideas as [1] for 2D geometries tetrahedra
are broken down into eight sub-elements. Mesh conformity is obtained dividing
tetrahedra into two or into four parts.

In order to allocated the right boundary conditions to the new entities, nodes
and elements (tetrahedra, faces and edges) are sorted by families. The new nodes
belong to a family which is determined by the edge-family or the face on which
they are located. The solution is generated over the new mesh by interpolations
on the new nodes.

In both 2D and 3D cases, the algorithm is efficient. The CPU time which is



FIG. 1. CUTTING UP OF A TETRAHEDRON INTO EIGHT SUB-ELEMENTS

required to analyze the error indicators and to build a new mesh is lower than
the average CPU time of a time step.

For example, in a 16000 tetradra mesh, the N3S time step is 8 s. To reach
the new mesh (59600 tetrahedra), the core of the process lasts 1.3 s. With
interfaces, the whole CPU time is 2 s. However, care has to be taken with the
nature of exchange file between the adaptive software and the main code. With
a formatted file for the mesh, the I/O elapsed time is about 20 s, which is ten
times larger than the process itself !

5 Applications, a 2D example
The method is tested in the case of the backward-facing step [6].

• Width of the pipe W = 0.0762 m
• Height of the backward-facing step HT = 0.0381 m
• Length before the step XI = 0.190 m
• Length after the step 12 = 0.762 m
• Entrance velocity [/«, = 18.2 ms"1

• Entrance turbulent energy fc» = 6.6248 m?s~2

• Entrance turbulent dissipation «oo = 1205.7 m2s~3

• Reynolds number Re = 95250

wall
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F I G . 2. initial mesh

FlG. 3. mesh after one adaptation

FIG. 4. mesh after two adaptations

FIG. 5. mesh after three adaptations
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FIG. 6. comparison of the different velocity profiles

The adaptive method has been able to adjust the mesh refinement to the
complex flow structure : near the inlet but also in the recirculation area, whereas
the exit has been marginally affected by the refinement. The bubble length has
been improved during the adaptive processing. The error has been evenly spread
and reduced. This stands for a good behaviour of the error indicator. However,
the error level seems to be stabilized on the last mesh, as also indicated by
comparisons between experimental velocity profiles and numerical ones.



Table 1 The adaptive processing

Mesh

0
1
2
3

Number
of
elements

242
592

1265

2860

Time
step
value

0.5E-2

0.22E-3

0.11E-3

0.56E-4

Number
of time
steps

40
906

1795

3533

Relative
error
estimation

46
36
35
35

Relative
error on the
length bubble

40
29
25
21

6 Conclusion
An adaptive finite element method based on cutting of the elements has been
presented for k - ( model of turbulence and applied to the backward-facing step
case. A technique using a least-squared projection of the solution gradients
has been described to compute error estimates. The 3D adaptive process is
currently tested and the error indicators are going to be extended to turbulent
3D configurations.
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