6.2 - 20

LEVEL STRUCTURE OF DOUBLY ODD ¹⁵⁴Ho

S.J. Chae¹, J.C. Kim¹, C.-B. Moon³, T. Komatsubara⁴, J. Mukai⁴, J. Lu⁴, T. Hayakawa⁴, M. Matsuda⁴, T. Watanabe⁴, and K. Furuno⁴

1) Department of Physics, Seoul National University, Seoul 151-742, Republic of Korea

- 2) Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
 - 3) Department of Physics, Hosco University,
 - Chung-Nam 337-795, Republic of Korea

4) Institute of Physics.and Tandem Accelerator Center, University of Tsukuba, Ibaraki 305, Japan

¹⁵⁴Ho was studied via ¹⁴¹Pr(¹⁶O,3n) reaction at beam energy of 75 MeV. We found two new rotationally aligned bands made of neutron $h_{9/2}$ and $f_{7/2}$ orbitals coupled to a proton $h_{11/2}$ orbital. As with several new high-spin states, up to I=20, the ground state band with odd parity starts to show anomalous signature splitting at I=13 in this doubly odd ¹⁵⁴Ho. The observed rotational bands in ¹⁵⁴Ho are quite consistent with the onset of collectivity which appears in general at neutron number of 87 in neutron-deficient rare-earth nuclei.