6.4 - 20

Properties of Nuclei in the Lead Region

Gu Jin-nan, Zhang Chang-hua Institute of Modern Physics,Academia Sinica, Lanzhou,730000

The structure of the nuclei in the vicinity of ²⁰⁸Pb have become of great experimental and theoretical interest. Especially several new nuclides, such as ²⁰⁸Hg and ²⁰²Pt^[1], have recently been synthesized in China. ²⁰⁸Hg and ²⁰²Pt have longer measured half-lives, 42_{12}^{+23} min and 43.6h, than that of their lighter neighbours ²⁰⁶Hg(T_{1/2} \simeq 8.15 min) and ²⁰⁰Pt(T_{1/2} \simeq 12.5h) respectively. Klapdor et al. predicted the half-lives of these nuclei^[2].

The structure characteristics of nuclei, such as 208 Hg, are determined by interaction between proton holes and neutron particles. For this kind of nuclei the proton holes are distributed in 50-82 shell and neutron particles in 126-184 shell, between them separated by the 82-126 shell There are only 5 nuclides 208,209,210 Tl and 207,208 Hg. That provide us with chance to investigate the residual interaction of these nuclei, it may be special

In the framework of large-basis shell model, we have investigated the properties of these nuclides. The Hamiltonian is:

$$II = II_{\text{core}} + \sum_{j} \epsilon_{j} a_{j}^{\dagger} a_{j} + \frac{1}{4} \sum_{ijkl} V_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$$

The core is the doubly closed core ²⁰⁸Pb. ϵ_j is the single particle (or hole) energies with respect to the core, using the experimental values here. Schematic modified surface-delta interaction (MSDI) and realistic Kuo-Hering interaction were used to obtained the two-body matrix elements V_{ijkl} . We have calculated the low-lying states and electromagnetic transitions B(E2), B(M1) and B(GT) of these following nuclei:

- (1) neutron holes nuclei, such as ²⁰⁶Pb,
- (2) proton holes nuclei, such as ²⁰⁶Hg,
- (3) neutron particle nuclei, such as ²¹⁰Pb,
- (4) neutron particle and proton holes nuclei as stated above.

The theoretical results are in agreement with experimental data. It shows that the MSDI may be used nicely to describe the properties of 208 Tl. The initial results show that in order to explain the long half-life of 208 Hg, the ground state of 208 Hg and high excited states of 208 Tl should be determined precisely^[3].

References

- Zhang Li et al., Nucl. Phys. A553(1993) 489c. A.Shi et al., Z.Phys A Hadron and nucl. 16(1992)767
- [2] H.V.Klapdor et al., At. Data Nucl. Data Tables 31, (1984)81
- [3] Gu Jinnan, High Energy Phys. and Nucl. Phys., 18, supp., (1994)75,