K electron capture probabilties

S.N. Chitalapudi^{*}, M.V.5. Chandrasekhara Rao, G. Sree Krishna Murthy, V.D.M.L. Kalyani, N.V.S.V. Prasad, G. Satyanarayana and D.I. Sastry

*Inter University Consortium For Department of Atomic Energy Facilities, 3/LB-8, Bidtan Nagar, Calcutta 700 091, India

Department of Nuclear Laysics, andhra University, Visakhapatnam, 530 0003, India.

Electron capture probabilites (p_{μ}) are important for nuclear structure, cosmology, nuclear medicine, and geochemistry. We have measured $\textbf{p}_{\textbf{k}}$ values , hither to not available, in 18 nuclei. These include allowed and first forbidden beta transitions An x-gamma internal summing technique in a close geometry was employed . All these nuclei were produced by α induced reactions at the V ariable Energy Cyclotron, Calcutta. The thoretical formulae (Bambynek et.al)were used to determine the P_{μ} values. The values thus obtained are compared with the theoretical values (Beherens and Janeke). The results results lead to the following conclusions. 1. The P_b values are insensitive to the $Q_{E,C}$ values except when ${\tt Q}_{\rm F,\,C}$ is less than 200 KeV 2. The measured values of ${\tt p}_{\rm k}$, ingeneral agree well with the Theory (beheren and Janek). Our latest measurements of p_{μ} values for some nuclei are given in table 1.

Та	ь	1	e	1	
10		л.	⊆.		

Parent	reaction	Daughte	er transiti	lon	р _к
nucleus		E level KeV	. energy KeV	ex	th
97 _{Ru}	94 _{Mo} (α, n)	324.5	324.5	0.884	0.878
83 _{Rb}	⁸¹ Br(α,2n)	571.19	5/2 ⁻ -5/2 ⁻ 529.64 5/2 ⁻ -3/2 ⁻	±0.046 0.877 ±0.024	0.885

References:

Bambynek W. et. al., Rev. Mod. Phys. 49(1977)77Beherens H. and Janeke J., Numerical tables for β decay and ε , Vol 4., Landolt-Bornstein(Springer, Berlin, 1969) Prasad N.V. S.V. et al, J. Phys. G 20(1994)451