SEARCH FOR BARYON-NUMBER-VIOLATING NUCLEON DECAYS

R. Hazama^a, H. Ejiri^{a,b}, K. Fushimi^a and H. Ohsumi^a
^aDepartment of Physics, Osaka University, Toyonaka, Osaka 560, Japan
^bResearch Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567, Japan

Baryon-number-violating nucleon decays were studied by searching for X and γ -rays associated with radioactive residual nuclei produced by single- and multi-nucleon decays in ¹²⁷I. The large volume (0.77ton) NaI(Tl) detector array in the ELEGANTS V system¹⁾ was used for the study. New lower limits of $\tau(n) > 4.7 \times 10^{24} \text{yr}$ and $\tau(p) > 3.0 \times 10^{24} \text{yr}$ were obtained on the mode-independent mean-lives for the neutron and proton decays in ¹²⁷I, respectively. Lower limits of $\tau(nn) > 2.1 \times 10^{24} \text{yr}$, $\tau(nnn) > 1.8 \times 10^{23} \text{yr}$, and $\tau(nnnn) > 1.4 \times 10^{23} \text{yr}$ were deduced for the first time on the mode-independent mean-lives for dineutron, tri-neutron, and tetrr-neutron decays in ¹²⁷I, respectively^{2),3)}.

Table 1. Lower limits (τ_{min}) on nucleon life time and multi-nucleon life time. The values, with 90%C.L., are given in units of $10^{25} {\rm yr}$. a; obtained by measuring residual nuclei. These limits are deduced from the limit of $1.6\times10^{25} {\rm yr}$ by multiplying the proton and neutron ratio of $\frac{24}{52}$ and $\frac{28}{52}$, respectively. b; deduced from the ν_{μ} flux observed by liquid scintillation detectors and flush tubes. c; deduced from the neutrino flux observed by tracking calorimeter(iron); Fréjus experiment. d; obtained by measuring high energy γ -ray from the deexcitation of neutron-hole state; KAMIOKANDE experiment.

Decay target	Mode	Method	τ_{min}	Comment
			$(\times 10^{25} \mathrm{yr})$	
Earth	$n \rightarrow 3\nu_{\mu}$	indirect	50	b
	$n \to \nu_e \nu_e \bar{\nu}_e$	indirect	3	c
	$n \rightarrow \nu_{\mu} \nu_{\mu} \bar{\nu}_{\mu}$	indirect	12	c
16 O	$n \rightarrow x$ inclusive	direct	49	d
¹³⁰ Te	$p \rightarrow x$ inclusive	geochemical	0.74	a
	$n \rightarrow x$ inclusive	geochemical	0.86	a
127 _I	$p \rightarrow x$ inclusive	direct	0.30	present
•	$n \rightarrow x$ inclusive	direct	0.47	present
Earth	$\dot{n}n \rightarrow \nu_e \bar{\nu}_e$	indirect	1.2	c
•	$nn \rightarrow \nu_{\mu} \bar{\nu}_{\mu}$	indirect	0.6	c
127 _I	$nn \rightarrow x$ inclusive	direct	0.21	present
•	$nnn \rightarrow x$ inclusive	direct	0.018	present
	$nnn \rightarrow x$ inclusive	direct	0.014	present

References

- 1) H. Ejiri et al., Nucl. Instrum. Methods A302 (1991) 304.
- 2) H. Ejiri, Phys. Rev. C48 (1993) 1442.
- 3) R. Hazama et al., Phys. Rev. C49 (1994) 2407.