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MOLECULAR DYNAMICS STUDY OF SILVER

J.I. Akhter, K. Yaldram, Waqar Ahmad, K.M. Khan
NPD, PINSTECH

and Talat S. Rehman
Dept. of Physics, Kansas State University, U.S.A.

Abstract

We present results of molecular dynamics study using the
embedded atom potential to examine the equilibrium bulk
properties of Ag. We calculate the total energy and the lattice
parameters as a function of temperature. From these we determine
the specific^_heat and linear coefficient of thermal expansion.
The comparison with experimental results of these two quantities
is found to be excellent. We have also calculated the mean square
displacement of the atoms in the three directions. As expected
because of symmetry the displacements in the three directions are
comparable and increase with increasing temperature.



1. INTRODUCTION

Molecular Dynamics (M.D.) and Monte Carlo (M.C.) computer
simulation methods have become very important tools for the study
of equilibrium and transport properties of model condense matter
systems. The M.C. method has been used extensively at PINSTECH
for the study of different physical systems of interest. These
include catalytic surface reactions, single chain polymers, phase
separation in alloys, order-disorder phenomena, annealed and
quenched binary alloys etc. So far very little working experience
in M.D. exists either in PINSTECH or elsewhere in the country. In
the present work we have used the M.D. technique to study the
bulk properties of Ag, like the temperature dependence of the
lattice constant, internal energy, coefficient of thermal
expansion, specific heat and atomic displacements. The aim of the
study is to gain familiarity with the M.D. technique, rather than
to do any novel research. Ag was chosen because of the easy
access to experimental results with which ultimately we hope to
compare our results.

2. MOLECULAR DYNAMICS

In the M.D. method, one investigates the time evolution of
positions and velocities of atoms and molecules which constitute
the system. This is done by constructing a suitable
intermolecular potential model, and solving the equations of
motion of these particles with a suitable numerical algorithm.
The simulations are done on an insolated system so that the
number of particles and the total energy E is conserved as the
system moves along its trajectory in phase space. During the
simulation the temperature and pressure or temperature and volume
or volume and energy of the system can be kept constant. The
simulation gives a detailed information about the velocities and
positions of the particles of the system at different times. This
information can then be used to study the equilibrium as well as
non-equilibrium properties of the system.



The proper choice of a potential is extremely important and
depends upon the type of system under consideration. We have used
the Embedded Atom Method, which is based on density functional
ideas, for Ag. This method is discussed in detail in the section
that follows. In M.D. we always work with a limited number of
particles. This restrict ion is imposed due to the limitations of
the computer speed and memory. To partly overcome the effects
introduced by the finiteness of the system Periodic Boundary
Conditions are imposed. This is discussed in the subsequent
section. Another important aspect to be considered in M.D.
simulations is the solution of the equations of motion for each
particle to determine their positions and velocities at regular
intervals of time. The dynamical integration schemes in
particular the Nordsieck scheme is described in section 5. To
mimic the real system we had to make an appropriate choice of
different parameters. Section 6 discusses this and also gives a
comprehensive picture of the computational scheme. Finally we
present and discuss results obtained for bulk Ag.

3. EMBEDDED ATOM METHOD (EAM)

Historically the problems of atomic interactions have been
addressed with various pair-potential models like Lennard-Jones
potential, Morse potential, etc. With these potentials the
energetics of an arbitrary arrangement of atoms can be calculated
efficiently. However there are some significant problems
associated with the application of pair potential specially when
N-body interactions are considered which limits its use. Some of
these limitations are listed below.

i) When the local environment is substantially different from
the uniform bulk, pair-potential results are not accurate.
This is because the pair potentials are defined for a
perfect crystal. Any change in environment of an atom is
not accounted for in the potential. This includes such
problems like surfaces, grain boundaries, voids, fractures,
etc. [1].



ii) While determining the elastic properties of metals, the
total energy requires the use of a volume dependent energy
term, to balance the so called Cauchy pressure. This volume
dependent term, on the other hand, restricts the use of
pair potential to situations where volume is definable.
Such ambiguities arise in calculations involving surfaces
because the exact termination of the volume on atomic scale
at the surface is ambigious. In such cases results could be
invalid [3].

iii) In pair potential, vacancy formation energy is always found
to be equal U> the cohesive energy but experimentally il is
about one-third of cohesive energy as given in the
experimental data table by M.W. Finnis and J.E. Sinclair
[2].

iv) Whereas the pair potentials have been used successfully to
treat inert impurities such as helium in metals, the method
is not applicable to chemically active impurities.
Particularly the energy of hydrogen atom in a transition
metal cluster cannot be represented by pair interaction
whereas the energy of helium atom can be so represented
[3].

To overcome these difficulties, Daw and Baskes [4]
develpped a new method known as Embedded Atom Method (EAM). This
method has been applied successfully to such problems as phonons,
structure of liquid metals, defects, dislocation propagation,
alloys, impurities, interdiffusion in alloys, fracture, surface
structures, segregation, order-disorder transition, hydrogen
interaction with metals, etc. [5]. Moreover the computational
requirements of EAM are not significantly more than that required
for pair potential calculations. So EAM provides a powerful
technique for atomistic calculation of metallic systems.



3.1 Theory

This method is based on density-functional theory as
derived by Stott and Zaremba [6] in quasiatom approach and
Norskov and Lang [7] in effective-medium approach. In these
approaches energy required to place an impurity atom in a lattice
is taken solely as a function of the electron density at that
particular site. Each atomic species therefore has a unique
energy function which is in turn a function of just the electron
density. So an impurity is assumed to experience a locally
uniform, or slightly non-uniform, environment [8]. In its
simplest form, the energy of quasiatom is given by

E - E (p (r))
quas i^h "

where p (r) is the electron density of host without impurity at
r, the site where an impurity is to be placed and E is the
qua.siatnm energy of an impurily with atomic number Z.

Based on this quasiatom scheme, EAM is developed where all
atoms are viewed as being embedded in host consisting of all
other atoms. The embedding energy is density dependent where the
density is always definable and so the problem of defining the
volume is circumvented. This makes it possible to treat
chemically active as well as inert impurities and alloying
additions in one unified theory that can handle crystal surfaces
and cracks.

Since each atom can be viewed as an impurity in the host of
other atoms, following form of the total energy can be taken
based on quasiatom concept

where F. is the embedding energy, p is the density of host at
position r without atom i and the total energy is sum of the
individual contributions.



To include the core-core repulsion, the above equation is
assumed to include a short-range pairwise potential term. Thus
the resulting energy for N-atom system is

E
tot

- I F , K) + i I •, <V <3»
i . j

where 4>.. is the short range core-core pair repulsion between
atoms i and j separated by distance r .

Since the host electron density p is very small as
h,i

compared with the atomic charge density of atom i, by making the
simplification that this background electron density is constant,
it can reasonably be approximated by the linear superposition of
contribution from the individual atoms, i.e.

where p* is contribution to the density by atom j as a function
of distance from its center.

Although EAM is used very efficiently for alloy studies,
but for simplification and to minimize the number of functions
involved in calculations, the case of monatomic metal is
considered. Then the eq. (3.1) and (3.2) when applied to perfect
crystal containing N atoms, can be simplified to

E = F(p) + \ V S <f> (r ) (3.3)
4. / m m

m

and p = ) S p' (r ) (3.4)

Here E is the energy per atom i.e E=E /N, r is the distance of
mth neighbor with respect to given atom and S is the number of

m

atoms in mth shell. If the perfect crystal structure is



maintained then all neighbor distances are multiple of the
nearest neighbour distance, i.e.

r = P r
m m l

(3.5)

where the factor P depends on the type of the crystal structure
e.g. for fee crystal, P = JrrT\ Then the embedding energy is only

m

a function of nearest neighbor distance, so equation (3.3) can be
written as

F(/>(r )) = E(r ) - \ V S 6 (r )
1 1 z. / in m

(3.6)

In early EAM calculations, the embedding function was
determined by a complex fitting procedure. Foils [1] introduced a
straight forward scheme which is used here.

Rose et al [6] has shown that, for a broad range of
materials, the energy as a function of nearest neighbor distance
(or any length parameter in the la", ice) is well approximated by
the relation.

E (r ) = - E. 1 -r a
ri

r
le

1
-a

e

r
1

T
le

1

- (3.7)

with
a —

9B Q
e e

1/2

(3.8)

where B is the bulk modulus, Q is the atomic volume, E is the
cohesive energy and — is the deviation from equilibrium. The
subscript 'e' indicates evaluation at equilibrium.

However, combining eq. (3.6) and (3.7), F(p(r)) becomes
F(r ) as there is no 'p' on R.H.S.



so

F(r.) = - -i -t - i V ) (3.9)

m

i.e. embedding energy becomes a function of distance only but the
potential should be density dependent.

In order to obtain analytic function F(/?), p ( r ) is
expected to be simple enough to give r as an analytic function
of p.

By taking the atomic charge densities from Hartree-Fock
calculations in Atomic Nuclear Data Tables, it is found that
pit) could be well approximated by an exponential decay when r
is not far away from equilibrium value r [10]. So it is assumed
that

-fi
(3.10)

where p and fi can be determined from fitting the calculated
electron density

Combining eq. (3.4) and (3.10)

= P e

- 1
l e (3.11)

It is clear from this equation that p cannot have the same
form as /?* when the interaction beyond the first nearest neighbor
is considered. So for generality, atomic charge densities are
replaced with a parameterized function.



P*(T) =

=o

Je
r

(3.12)

With this assumption p\r) has the same form as in eq.(3.4), so
Combining equation (3.5), (3.11) and (3.12)

1 - 0

le P 1 = p e
m r e

At •

Similarly two body potential <£(r) can take the form as in
eq.(3.7) i.e.

(3.13)

_

1+s r
T l e

1
-Y

e

r
r

l e

1
•

Using eq.(3.5), (3.9), (3.10) and (3.13)

F(p) = - E . | l - g i n
a/fi

S e m

m

This analytic embedding function is easy to use in computer
simulation. In principle it can be used for any crystal
structure. There are only five parameters to be determined p ,
<t> , /?, d and y. Since only the ratios of electron density occurs,
so p cancels from the model, fi can be obtained from fitting



atomic charge densities and other three parameters can be
determined from fitting the unrelaxed vacancy formation energy
and the elastic constants.

4. PERIODIC BOUNDARY CONDITIONS

In computer simulation, in general one is interested in the
computation of a property in the thermodynamic limit. The
thermodynamic limit is that in which the number of particles goes
to infinity. However, computer simulations allow system sizes
which are small compared to the thermodynamic limit, so that
there are possible finite-size effects. In order to reduce the
finite-size effects periodic boundary conditions are used.

Let the system under study consist of N particles. We
restrict ourselves to properties of the bulk at a specific
density p. In order to retain a constant density we must
introduce a volume i.e the M.D cell. If the system is in thermal
equilibrium then the shape of the volume is not relevant for
liquid and gas states [11]. However, for system in a crystalline
state the shape does make a difference. We take a cubic volume
for computational simplicity. Let L be the linear size of the M.D
cell with its volume L3. The introduction of the box creates six
surfaces. Particles hitting these surface walls would be
reflected back into the interior of the cell or be lost in void.
Especially for system with a small number of particles (specific
to M.D simulation where usually 102- 104 particles are
considered), important contribution to any property would come
from the surface. We impose periodic boundary conditions to
reduce these surface effects. The basic cell (cubic box) is
repeated identically an infinite number of times throughout space
to form an infinite lattice. For computer simulation it is
assumed that if a particle moves in the basic cell, its periodic
image in each of the neighbouring cells moves exactly in the same
way. As a particle crosses surface of the basic cell, one of its
image enters through the opposite side. There are no walls at the
boundary of the basic cell and no surface particles. This cell

10



simply forms a convenient reference for measuring the coordinates
of the N particles. The assumption made in this is that the small
volume is embedded in a bulk.

If we consider the origin to lie at the centre of the cube
then all coordinates lie in the range -«- L to +~- L. As the
simulation proceeds, these molecules move about the infinite
periodic system. When the molecule leaves the box by crossing one
of the boundaries attention is switched to the image molecule
entering the box by simply adding L to or subtracting L from the
appropriate coordinate. For bulk simulation boundary conditions
are applied along X, Y, and Z directions. However, for surface
simulation boundary conditions are imposed in only two
directions, the third direction is kept free.

4.1 Minimum Image Convention

M.D programs involve the calculation of the potential
energy (P.E) of particular configuration and the forces acting on
all particles. We know that in a basic cell there are N
particles. In order to calculate force on particle 1 (or
contribution to the P.E involving particle 1), we must include
interactions between particle 1 and every other particle j in the
simulation cell. There are N - 1 such particles in the cell. We
must also, in principle, include all interactions between
particle 1 and images lying in the neighbouring cells. This will
be, of course, infinite number of terms and impossible to
calculate in practice. We restrict this summation by considering
particle 1 to be at the center of a region which has the same
size and shape as the basic simulation cell. Particle 1 interacts
with all the particles whose center lie within this region, that
is the closest periodic images of the other N - 1 particles. This
technique, which is natural consequence of the periodic boundary
condition is called minimum image convention [12].

The minimum image convention may be coded in the same way
as the periodic boundary adjustment.

11



4.2 Potential Truncation

Despite introducing minimum image convention, the
calculation of the P.E due to interactions involves ~ N(N - 1)
terms. This may be a very substantial calculation for a system of
1000 particles. To overcome this, further approximation is used
which is called potential truncation. The potential is set to
zero for r ^ r , where r is the cutoff distance. For r > r the

c c c

potential is small and can be ignored. The cutoff distance must
be less than L/2 for consistency with the minimum image
convention.

5. DYNAMICAL METHOD INTEGRATION SCHEMES

Dyn;imic;il method computer experiments arc used to simulate
the movement of individual atoms in an assembly of N atoms on the
basis of Newtonian mechanics. If the initial position and
velocity vectors for each atom in the assembly are given, the
dynamical history of the assembly is generated by numerically
integrating the 3N simultaneous equations of motion for the
coordinate components of N atoms in the assembly. In this
numerical integration process, the 3N velocity components for the
N atoms are also determined. Hence, the dynamical method
generates a phase space point trajectory for N atom assembly as a
function of time.

A number of numerical integration schemes are available to
solve the differential equations. If molecular positions,
velocities and other dynamic information at a time t is known,
then the positions, velocities and accelerations are obtained at
a later time t + J t , to a sufficient degree of accuracy, through
these algorithms. Differential equations are solved on a step by
step basis where time step At depends on the method of solution.
However the time step is significantly smaller than the time
taken for a molecule to travel its own length. The general scheme
of a stepwise MD simulation, based on a predictor corrector
algorithm may be summarized as follows:-

12



(a) Predict the positions, velocities, accelerations
etc., at a time t+^dt, using current values of these
quantities.

(b) Evaluate the forces, and hence accelerations a. = f./m,
from the new positions.

(c) Correct the predicted positions, velocities,
accelerations, etc., using the new accelerations.

(d) Repeate the process till the predicted and corrected
quantities are within specified limits of each dt.

(e) Calculate any variables of interest, such as energy,
order parameter, ready for the accumulation of time
averages, before returning to (a) for the next step.

A successful simulation algorithm might have the following
desirable qualities.

i) It should be fast and require little memory.
ii) It should permit the use of long time step At.

iii) It should satisfy the known conservation laws of
energy and momentum, and be time reversible. •

iv) It should be simple in form and easy to program.

Four different numerical integration schemes are available
to solve the differential equations and they are

I. Nordsieck Methods [13]
II. Central Difference [14]
III. Eular - Cauchy [15]
IV. Simple predictor - corrector [16]

The Nordsieck method is self starting and capable of
utilizing a variable integration time step without loss of either
stability or accuracy. Nordsieck method is used in our
calculation and its details are given below.

13



5.1 Nordsieck method of Newton's equations

Nordsieck (1962) [13] developed a scheme to integrate
ordinary differential equations. Let x(t) be the atom coordinate
and let the first five scaled time derivatives of x be

" " d x At

d2x (At)2

dt2

u = d^x (At)3

3 d t 3 - 3 1 ~

TT __ d4x (At)*
« ' dT" ~TV~

U _ d3x (^lt)3

The predicted values of x(t) and Un at time ( t+J t ) are
given by

\ (At)* a5x {At)'
^7 ^ T + ^T ~5T

etc.
i.e.
x(t+At) = x(t) 4- U] + U2 + U3 + U4 + U5 (5.1)
U^t+J t ) = Ut(t) + 2U2(t) 4- 3U3(t) 4- 4U4(t) 4- 5Us(t) (5.2)
U2(t4-Jt) = U2(t) 4- 3U3(t) 4- 6U4(t) 4- 10U5(t) (5.3)
U3(t+Jt) = U3(t) 4- 4U4(t) 4- 10U3(t) (5.4)
U4(t+Jt) = U4(t) + 5U5(t) (5.5)
U5(t+At) = U3(t) (5.6)

14



The predicted value of x(t+Al) is then used to compute the
force F(t+At) and the displacement function

The corrected values for x and U are then given by

+ CQ</> (CQ = 3/16)

U^t+At) = U^t+Zlt) + C ^ (Cj = 251/360)

= U2(t+Jt)

+ C3</> (C3 = 11/18)

+ C4$ (C4 = 1/6)

+ Cs<(> (C5 = 1/60)

This is the fifth order method and the values of constants
C , C , - - - C are valid for this order only. Stability of the
numerical solution can be checked by monitoring the total energy
which does not drift during the solution.

6. COMPUTATIONAL TECHNIQUE

It is important to chose a configuration that can relax
rapidly to the structure and velocity distribution appropriate to
the solid (liquid) under investigation. In our case the
simulations were started from a perfect FCC lattice, containing
256 atoms. Periodic Boundary Conditions were used in all three
directions. The initial velocities were chosen randomly from a
Gaussian distribution, with magnitudes conforming to the required
temperature corrected so that there is no overall momentum.
Nordsiecks algorith with a time step 10"15s was used to solve
Newtons equations of motion for all the atoms in the M.D. cell.

15



Left to itself the system evolves in such a way as to conserve
energy (NVE Molecular Dynamics). It is however desirable to be
able to fix the temperature (NVT) or some other quantity like
Pressure and temperature (NPT). This can be done by an
appropriate rescaling of some variable. For the NVT simulation
the velocities are rescaled at each time step so as to keep the
temperature constant, through the use of the equipartition
theorem i.e.

Y Vi
where k is the Boltzman constant, and N is the number Qf atoms.
If the required temperature is T, then the velocities are
rescaled by a factor (T /T).

o

To generate on isobaric-isothermal ensemble (NPT) the quantity
to be rescaled is the coordinates of the atoms.

The constant pressure simulation (NPT) of Evans and Morriss
[17] was used on bulk silver to calculate the lattice parameter
at a given temperature. The input lattice parameter for any
temperature is taken from a previous run which is performed at a
slightly lower temperature. One can make a rough guess of the
input lattice parameter by adding to this a small correction.

For further calculations the M.D. cell is generated from
the lattice parameter calculated above. The system is first
equilibrated to a desired temperature for 10 ps under the
condition of constant volume and temperature (NVT). To obtain the
internal energy at a given temperature a small simulation run is
performed at constant energy (NVE) till the total energy (Kinetic
+ Potential) settles down to a constant value.

The third quantity of interest that we have measured from
the NVE simulations is the mean square vibrational amplitudes of
the atoms. For this we use the following equation

16



_.(t) - < r (t-a) >1 >

where a represents the direction (x, y or z) and r. is the
instantaneous position of atom i along a. We perform a run for
about 80 ps at constant energy and volume (NVE). After ignoring
the initial 10 ps we retain configurations after every 0.02 ps.
After 20 ps we calculate the mean square displacement. Using the
configurations thus generated we can continue the run to
calculate the mean square displacements after every 20 ps. We
prefer this piecemeal process to one continous run as we can
check our values at regular intervals and also as a buffer
against computer failure.

7. RESULTS AND DISCUSSION

In Fig.l we have plotted the internal energy as a function
of temperature. We have fitted the data to a third order
polynomial

E(T) = -2.85 + 0.32 fa] - 0.0021 j ^ ] * + 0.042 fa]' (7.1)

E is in eV and Tm=1234K.

By taking the derivative of equation (7.1) with respect to
temperature, we obtain the heat capacities at constant pressure
C . This has been plotted in Fig.2. The agreement with the
experimental results [18] is quite good.

The lattice parameter (in A) as a function of temperature
is plotted in Fig.3. Again we have fitted a third order
polynomial to these points

= 4.09 + 0.104 fa] - 0.02 fa]* + 0.047 fa]* (7.2)

17



From this polynomial one can obtain the linear coefficient
of thermal expansion —pf»v —TTT— • This is plotted as a function
of temperature in Fig.4. The dots show the experimental values
[19,20,21,22]. Again the agreement of our simulation results with
experiment is found to be reasonably good. The experimental
results obtained from different sources show quite a scatter in
the values at the same temperature. This difference in the values
could arise due to various factors, the main one being the purity
of the sample. The introduction of impurities can change the
value of a from sample to sample. In MD simulations it must be
noted that one works with pure samples.

Finally in Table 1 we have shown the mean square
displacements for the three directions. These are found to be the
same (with in statistical errors) for the three directions, a
result which was expected because of the symmetry of the bulk
sample. With temperature the mean square displacements show the
expected increase in amplitudes. Fig.5 shows these displacements
plotted as a function of temperature.

8. CONCLUSIONS

This was a first attempt at PINSTECH to run MD programme
for study of different metals and alloys. Silver was chosen for
easy comparison of our results with the experimental ones as well
as with the results of earlier attempts with MD. The results we
obtained on internal energy, lattice parameters, specific heat,
expansion coefficient and mean square displacements compare
favourably well with other experimental and simulation results.
This is very encouraging since we now plan to use this technique
for investigating some surface phenomena like melting, roughening
and interlayer relaxations on Ag(lll) surfaces. We also plan to
study static properties like energy of single and divacancy
formations, defects etc.

18
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Table 1: Mean square displacements (0.1 A2) of bulk Ag as a
function of temperature (°K).

Temperature

300
600

900

1100

<U2>
X

0.791
1.733
3.341
4.273

<U2>
y

0.757
1.753
3.111
4.361

<U2>
z

0.723
1.724
3.144
4.523

<U2>

0.757
1.737
3.199
4.386

±
±
±
±

0.034
0.016
0.14
0.137
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Figure Captions

Fig.l: Internal energy per atom as a function of temperature
for Ag from MD simulations. The data h£s been fitted to
a third order polynomial curve.

Fig.2: Specific heat per atom at constant pressure plotted
against temperature. The experimental data [18] of C
is shown as solid circles.

Fig.3: Lattice parameter as a function of temperature for Ag.
The data has been fitted to a third order polynomial
curve.

Fig.4: Linear coefficients of thermal expansion a plotted
against temperature T. The experimental data
[19,20,21,22] of a is shown as solid circles.

Fig.5: Mean square displacements of Ag as a function of
temperature.
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