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ABSTRACT

In this thesis, the developments of two different low-cost scanners for positron
emission tomography (PET), based on 3D acquisition, are presented. 3D
reconstruction methods for these systems were also developed. The first
scanner consists of two rotating scintillation cameras, and produces
quantitative images, which have shown to be clinically useful. The second one
is a system with two opposed sets of detectors, based on the limited angle
tomography principle, dedicated for mammographic studies. The development
of low-cost PET scanners can increase the clinical impact of PET, which is an
expensive modality, only available at a few centres world-wide and mainly used
as a research tool.

The conventional way to image a 3D volume in PET, by acquisition of data in
a set of parallel slices, which are reconstructed as independent planes, makes
an inefficient use of the available photon fluence. With 3D acquisition, also
photons which traverse more than one transaxial slice are detected. In this
case, fully 3D reconstruction is needed. The main problems in 3D
reconstruction for PET are the size of the data sets, the computation time and
how to theoretically incorporate all the data.

A 3D reconstruction method was developed that utilizes all the available data.
The size of the data-sets is considerably reduced, using the single-slice
rebinning approximation. The 3D reconstruction is divided into ID axial
deconvolution and 2D transaxial reconstruction, which makes it relatively fast.
This method was developed for the rotating scanner, but was also implemented
for multi-ring scanners with and without inter-plane septa. An iterative 3D
reconstruction method was developed for the limited angle scanner, based on
the new concept of "mobile pixels", which reduces the finite pixel errors and
leads to an improved signal to noise ratio.
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AIM OF STUDY

The aims of the present study can be summarized as follows:

• Development of a PET scanner based on two rotating scintillation cameras
using 3D data acquisition and reconstruction, including correction methods for
obtaining quantitative images.

• Development of a 3D reconstruction method for PET capable of utilizing all
available data. The single-slice rebinning approximation was used in order to
reduces the size of the projection data-sets. The 3D reconstruction problem
was divided into ID axial deconvolution and 2D transaxial reconstruction,
making it relatively fast.

• Implementation of this 3D reconstruction method for a multi-ring scanner
with the interplane septa removed in order to get a higher sensitivity, and for
a 2D multi-ring scanner, with the aim of obtaining an unproved axial resolution.

• Development of a simple scanner dedicated for positron emission
mammography with two opposed sets of detectors, based on the limited angle
tomography principle, and of an iterative 3D reconstruction method for this
scanner, based on the new concept of "mobile pixels", which reduces the finite
pixel errors and leads to an improved signal to noise ratio.
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1. INTRODUCTION

Positron emission tomography is a non-invasive technique for imaging the
biodistribution of radionuclide-labelled molecules in vivo. Using tracer
amounts of a radio-labelled molecule, quantitative physiological and
biochemical information can be obtained from PET images.

The radionuclides used in PET are neutron-deficient as compared to then-
stable isotopes. They decay by transformation of a nuclear proton into a
neutron through emission of a positron and a neutrino. The positron interacts
with an atomic electron, and both particles annihilate with emission of two y-
photons, which can be utilized for PET measurements.

The most commonly used radionuclides are nC, 13N, 15O and 18F. They are
produced by a beam of accelerated ions, resulting in carrier-free preparations
with high specific activity. Since they represent biologically important
elements, they can be used for labelling biomolecules without changing their
biological properties, and thereby offer a particularly attractive method for the
regional study of biochemical activity.

Many of the nuclides used have short half-lifes (nC - 20 min, 13N - 10 min, 15O
- 2 min, 18F - 110 min), which means that more information is obtained for a
given absorbed dose of radiation to the patient. It also gives the possibility to
make repeated studies on the same patient without interference between
different measurements. However, fast and simple chemical routines are
needed.

PET can be applied to many areas of medicine. It is especially useful for
neurological and psychiatric disorders, heart disease and cancer. The
interpretation of PET images often requires physiological modelling. The
biological and physiological parameters possible to measure with PET include
blood flow, fatty acid and glucose utilisation, oxygen metabolism, protein
synthesis and receptor density. This allows the study of diseases such as
epilepsy, stroke, brain tumours and dementia. Also the mechanisms behind
normal brain processes, such as language processing, speech and vision, as well
as brain development can be studied. The heart applications are myocardial
perfusion and myocardial viability. In oncology, PET studies are valuable for
determining the extent of tumours prior to surgery, differentiating radiation
necrosis from viable tumour, assessing the degree of malignancy of lesions, and



their response to therapy.

PET is an expensive modality. It generally requires an on-site cyclotron for
production of radionuclides, an imaging device (scanner), in-house labelling of
molecules and a team of experts to handle the different steps. Until now PET
has mainly been used as a research tool, but the interest for clinical PET is
increasing. There are a number of ways to increase to clinical impact of PET:
Generator-produced positron-emitters (e.g. 62Zn/62Cu, ^Ge/^Ga, ^Sr/^Rb),
regional distribution centres for 18F, automated synthesis units, low-cost low-
energy accelerators, and low-cost PET scanners. The development of a low-
cost clinical PET facility has been described by Ohlsson (1996).
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2. PET SCANNERS

2.1 Annihilation coincidence detection

The radionuclides used in PET decay by emission of a p+-particle, a positron,
which is the anti-particle of the electron. After travelling a short distance and
being slowed down almost to the thermal energy level, the positron interacts
with an atomic electron, and the two particles are annihilated. Their mass-
energy is converted to two 511 keV y-photons, emitted in opposite directions.
The fundamental principle of PET is to use the annihilation photons to get an
image of the activity distribution by tomographic measurements (see e.g. Ott
et al., 1988).

Due to the law of conservation of momentum, the relative angle of the
annihilation photons in the electron-positron centre of mass system is exactly
180°. However, due to the small remaining kinetic energy, in the laboratory
system there will be a slight deviation from 180° by approximately 0.5°. This
effect together with the range of the positron before annihilation (about 1 mm,
depending on the radionuclide) sets a physical limit to the spatial resolution
obtainable with PET.

PET scanners are composed of at least two detectors and based on the
annihilation coincidence detection (ACD) principle. This means that, if two
photons simultaneously trigger two different detectors, an annihilation is
assumed to have occurred somewhere along the line joining the two detection
points, and the coincidence event is registered. In this case, "simultaneously"
means within a time window, 10-60 ns wide.

PET scanners can be divided into two groups; those based on a small number
of large area position sensitive detectors, and those based on a large number
of small individual detectors (ring scanners); In the following sections a review
will be made of some of the PET scanners that have been developed within
these two groups over the years.

2.2 Area detector scanners

A PET scanner can be constructed with two opposed large area detectors
connected in coincidence mode (figure 2.1a). A 2D coordinate from each
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Figure 2.1: PET scanners, a) planar detectors, b)hexagonal geometry, c) detector ring.

detector is obtained for each coincidence detection event. With such a detector
system, coincidence lines in a number of different angles will be registered,
resulting in tomographic measurements. Two different types of area detectors
have been used for PET scanners; scintillation cameras and multi-wire
proportional chambers (MWPC).

The scintillation camera, developed by Anger (1967), is a position sensitive
scintillation detector. A large, thin NaI(Tl)-crystal is coupled to a number of
photo-multiplier (PM) tubes. The relative signals from the different PM-tubes
are used to produce position coordinates. Anger (1967) suggested using two
scintillation cameras for ACD measurements, using the "focal-plane" method
to produce longitudinal images parallel to the detector planes. This procedure
is equivalent to backprojection (see below). Muehllehner et al. (1976 and
1977) developed a positron camera based on two scintillation cameras with
2.54 cm thick crystals, which could be used in both stationary and rotational
mode. In stationary mode, tomographic data is only obtained in a limited
angular interval, which results in a lower resolution in the direction
perpendicular to the detector planes. This type of measurement is called
limited angle tomography. By rotating the detectors, a complete tomographic
data set is obtained, and transaxial images can be reconstructed.

A positron camera was later developed based on six scintillation camera-type
detectors in a hexagonal arrangement, as shown in figure 2,1b (Muehllehner
and Karp, 1986, Muehllehner et al., 1988). This scanner gave a full
tomographic data set without rotation, except for some missing data in the
gaps between the detectors. Rotating dual headed scintillation cameras have
for some time now been used for single photon emission computed
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tomography (SPECT) studies. Recently, two such commercial systems have
been modified for ACD measurements (Nellemann et al., 1996, Miyaoka et al.,
1996). However, the crystal-thickness used is only 1 cm, which is optimal for
SPECT with photon energies around 150 keV, but gives a low efficiency for
511 keV annihilation photons. In paper I, a PET scanner which was developed
in Lund, based on two rotating scintillation cameras, is presented. A
preliminary description of this system was previously made (Sandell et al.,
1992).

Another type of large area detector, which has been used in PET, is the multi-
wire proportional chamber (Bateman et al., 1980, Jeavons et al., 1983). These
detectors have the advantage of a good spatial resolution and a low cost, but
also the disadvantage of a low intrinsic efficiency. PET scanners based on
MWPCs have been shown to be clinically useful (Flower et al., 1984,
Townsend et al., 1987, Cherry et al., 1989). However, a significantly higher
sensitivity would be desirable. A new positron camera is presently being
developed based on hybrid BaF2-MWPC detectors, which combines the high
sensitivity of the BaF2 scintillation crystal and the high resolution of the MWPC
(Visvikis et al., 1995).

2.3 Ring detector scanners

Another approach for the design of a PET scanner is to use a large number of
small individual detectors surrounding the patient. This line of development
started when Phelps et al. (1975) constructed a scanner based on 24 Nal(Tl)
detectors arranged in a hexagonal array. Each detector was connected in
coincidence with one opposing detector. The detectors in the three different
angular views were placed at different radial positions, so that a 360° rotation
gave tomographic data with adequate radial and angular sampling density.
Phelps et al. (1978) developed a new hexagonal scanner with 66 Nal(Tl)
detectors. Each detector was now in coincidence with 11 opposing detectors.
Adequate sampling was obtained by linear translation and rotation over 60°.

A PET scanner with a ring geometry (figure 2.1c) was built by Bohm et al.
(1978) with 95 Nal(Tl) detectors, each one connected in coincidence with 40
others on the opposite side of the ring. A new technique called "wobbling"
was introduced, to get an improved radial sampling. The detector system
moved so that its centre described a small circle with a diameter eaual to the
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Figure 2.2: Axial ring scanners geometries, a) 4 rings with septa, b) 16 rings with septa, 2D
mode, c) 16 rings without septa, 3D mode. TTie axial dimension has been exaggerated.

detector spacing. A multi-ring PET scanner was developed by Litton et al.
(1984), consisting of 4 rings with 96 detectors each. The scintillation material
bismuth germanate oxide (BGO) was used instead of Nal(Tl) due to its higher
intrinsic efficiency for 511 keV photons. Each detector was in coincidence
with 36 opposing detectors in the same ring and 36 in adjacent rings. With this
arrangement 7 transaxial planes can be imaged at once. The data acquired
from coincidences between detectors in the same ring represents 4 "direct
planes". Coincidences between adjacent rings represent 3 "cross-planes",
which are treated as transaxial planes parallel to and midway between the direct
planes (see figure 2.2a). Between the detector rings, lead shields called "septa"
were placed to reduce the number of unwanted scattered and random events
(see below). Wobbling was still used to improve the radial sampling density.
In paper IV we present an implementation of 3D reconstruction for this
scanner.

Over the years, the trend in the development of multi-ring scanners has been
to use smaller and smaller detectors, in order to improve the spatial resolution.
However, with individual crystal-to-PM-tube coupling, the size and cost of the
PM-tubes represents a limiting factor. This has lead to the development of
block-detectors, consisting of a block of BGO, which is cut-into e.g. 8x8
elements and viewed by 4 PM-tubes. Anger-logic is used for identification of
the individual block elements, which in practice function as individual
detectors. A system with 16 rings using block detectors was described by
Spinks et al. (1992). In order to obtain sufficient sensitivity in each plane, 3
and 4 ring combinations were used to form direct and cross-planes,

-14-



respectively, as shown in figure 2.2b. With this scanner, wobbling was still
available, but with newer scanners, with even smaller detectors, it is no longer
necessary.

With improved spacial resolution it is important to also have an increased
sensitivity. This can be obtained by removing the inter-plane septa and utilizing
all possible ring combinations, as shown in figure 2.2c. The sensitivity will
increase partly due to more coincidence lines, partly due to less shielding from
the septa. However, there will be a variation in sensitivity within the field of
view (FOV). Monte Carlo simulations were made by Dahlbom et al. (1989)
to study the advantages and disadvantages of using 3D acquisition with a
multi-ring scanner. Although the sensitivity increases significantly, the number
of scattered and random coincidences also increases. The count rate capability
of the system will remain the same, however, and the maximum count rate will
be reached for a lower amount of activity in the FOV. 3D data acquisition
requires 3D image reconstruction. In paper II, a 3D reconstruction method is
presented, which was developed for a rotating PET scanner. In paper III, an
implementation of this method for a multi-ring scanner is presented.

Individual detectors can also be used in other-than-ring configurations.
Townsend et al. (1993) developed a rotating PET scanner based on opposed
arrays of block detectors covering only a third part of the circumference
around the patient. The principle is the same as for the rotating scanners with
planar detectors described above. In paper V, a PET scanner is described,
which consists of two opposed arrays of individual detectors and is based on
the limited angle tomography principle.

2.4 Data corrections

There are a number of corrections which must be applied to the data obtained
from a PET scanner before the tomographic reconstruction is made. The
effects that must be taken into account are detector efficiency variations,
electronic dead-time, random coincidences, photon scattering and photon
attenuation. Some of these corrections may alternatively be performed during
or after the reconstruction process. In papers I and V, the implementation of
these corrections for two different PET scanners is presented.

In a scanner composed of many individual detectors, the intrinsic efficiency for
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Figure 2.3: Background events, a) random coincidence, b) scattered photon.

each detector will not be the same. Also for large area detectors, the efficiency
may vary over the detector plane. To correct for this effect, the acquired data
is normalized using a measurement with a uniform plane or ring source. For
high count rates, the response of the system will no longer be a linear function
of the incoming photon fluence rate due to electronic dead-time. Using a
model of the count rate performance of the system, based on the singles and
coincidence rates, a correction can be made.

There is no natural background in PET measurements due to the coincidence
requirement. However, there are two effects that creates background events
during a PET scan: random coincidences and Compton scattering in the object.
Since the coincidence detection technique is based on a finite time window of
10-60 ns, there is always a chance that two photons originating from different
annihilations may cause a coincidence event, as shown in figure 2.3a. The
number of these "random" or "accidental" coincidences can be calculated using
equation (2.1).

R - n, (2.1)

where % is the count rate of random coincidences between detectors 1 and 2,
nj and n2 are the single count rates in each detector, and-2x is the time window
(the maximum time difference between the two registrations is T).

It is also possible to measure the random count rate using a delayed
coincidence window, which means that one signal is delayed so that no true
coincidences can be detected. Casey and Hoffman (1986) presented a method
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for reducing the noise in random coincidence or normalization measurements,
utilizing the correlation between the different coincidence lines.

The annihilation photons may interact with atomic electrons in the patient
either by the photo-electric absorption or by Compton (incoherent) scattering.
In the latter process (see figure 2.3b), the photon changes direction and looses
some of its energy. If detected, the two photons will still be in coincidence.
The photon energies before (hv) and after (hv1) scattering by a polar angle 0
are related by the following equation:

hv' -
m c2

o

(2.2)

where rr^c2 is the rest mass of the electron (511 keV). The energy resolution
of the detectors used in PET is not sufficiently high to allow efficient
discrimination of scattered photons, although Nal(Tl) is better than BGO in
this sense.

Scatter correction method have been developed for both 2D and 3D PET.
Bergstrom et al. (1983) showed that the point scatter distribution in the ID
projections from a 2D PET scanner can be described by a monoexponential
function. They developed a correction method in which the scattered
component was calculated by convolution of the measured data with a position
dependent kernel and subsequently subtracted. Bailey & Meikle (1994) used
a 2D monoexponential function for 3D scatter correction. Lercher and
Wienhard (1994) described the scatter distribution in the 2D projections from
a 3D PET scanner by a 2D Gaussian function. Cherry et al. (1993) developed
a 3D correction method for a PET scanner with retractable septa, based on a
comparison between data acquired in 2D mode with septa in place and in 3D
mode with septa retracted. Ott et al. (1995) developed a method for scatter
correction in 3D backprojected data in object space.

Attenuation correction is essential for an accurate reconstruction (Huang et al.,
1979). Some of the annihilation photons emitted inside-the patient will never
reach the detectors due to photo-electric absorption or Compton scattering in
the patient. For each photon there is a certain probability of this happening.
For a large number of photons, the fraction passing through an object of
thickness d is given by the attenuation factor e^d, where u is the linear
attenuation coefficient. The total path length for the two annihilation photons
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through an object along a certain coincidence line is equal to the object
thickness along that line. If the attenuation properties of the object are
uniformly distributed and the contour of the object is known, the attenuation
factors for each coincidence line can be calculated. Alternatively, the
attenuation factors can be measured with an external source. The latter
method is more accurate, but requires an extra measurement, which takes time
and adds noise to the final image.

Bergstrom et al. (1982) developed a method for determination of the head
contour in PET scans of the brain, based on the activity distribution in the
projections. Huang et al. (1981) developed a hybrid method based on a short
transmission scan, segmentation of the body into regions with different
attenuation coefficients, and calculation of the attenuation factors. A
transmission scan is preferably made before administration of the
radiopharmaceutical to the patient. However, this may not be convenient for
studies that require a long uptake period. In this case, the transmission scan
can be made after administration if corrections are made for the emitted
photons (Carson et al., 1988).

2.5 Monte Carlo simulations

Some of the results presented in papers II-IV were obtained by Monte Carlo
(MC) simulation. This technique is based on the use of random numbers to
simulate events with a known probability distribution. In most cases, only
simple geometric simulations were made to test the 3D reconstruction
methods. However, for MC simulations of basic spread functions (BSF) used
in the reconstructions, photon interactions were also simulated.

For geometric simulations, a phantom was first defined, consisting of different
regions with uniform activity distributions with different concentrations. The
problems were usually rotationally invariant, and the simulations were then
made for one parallel projection at a time. A random annihilation position was
generated in the phantom. A direction of emission was simulated-by generating
a random polar angle. Two photons, emitted in opposite directions, were
traced. The detector efficiencies were assumed to be 100%. If both photons
hit a detector, a coincidence event was recorded.

For BSF simulations, Compton and photo-electric interactions in the lead septa
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(if present) and in the scintillation crystals were simulated. When a photon
entered a material, a random distance, d, travelled before interaction was
generated from the relation R=(l-e~Md), where R is a random number in the
interval [0,1). An interaction type was randomly selected based on the relative
probabilities. If a Compton interaction had occurred, a random scattering
angle, 0, was generated using Kahn's method, based on the Klein-Nishina
cross-section (see e.g. Zerby, 1963). The energy of the scattered photon was
then given by equation (2.2). When a photon had deposited all or part of its
energy in a detector, the energy resolution of the scanner was simulated by
randomly selecting an energy from a Gaussian distribution centred at the
energy deposited. If this was above the predefined energy discriminator level,
a detection had occurred.
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3. ANALYTICAL 2D RECONSTRUCTION

In tomographic measurements, line integrals in different directions of a 2D or
3D function are obtained. By line integral is meant the integral of the function-
values along a straight line. The fundamental problem of tomographic
reconstruction is to recover the function from its line integrals. In the case of
emission computed tomography (PET and SPECT), the function to be
recovered is the distribution of a radioactive tracer inside a patient. In the case
of transmission computed tomography (TCT or CT), it is the x-ray attenuation
property of the material (the "electron-density"), and in magnetic resonance
imaging (MRI) it is the proton-density (to make a simplification).
Tomographic methods can also be used in areas other than medical diagnosis,
e.g. electron microscopy, industrial testing, geology and astronomy.

There are several ways to approach the reconstruction problem. The
algorithms used can generally be sorted into two categories: analytical and
algebraic methods. There are many good reviews on 2D analytical image
reconstruction, see e.g. Herman (1980), Lewitt (1983), Kak & Slaney (1988).
Here the basic theory for analytical reconstruction methods will be presented.

3.1 The 2D Radon transform

Different geometries can be used in tomographic measurements. In PET the
parallel beam geometry is normally used. In the following we will use the two
Cartesian coordinate systems (x,y) and (r,s), which are related by rotation by
an angle 4> (see figure 3.1a). This relation can be formulated as follows:

{x-r-cos<j>-s*sin<t> ^ I r-x-cos4> + ysin(j> .<, ...

y-r-sin<(> +s*cos(J> \s - -x'sin(|> + ycos<J> ^ " '
A parallel projection, p, of a two-dimensional function, f, is a ID functions
consisting of a set of parallel line integrals as illustrated in figure 3.1b. This can
be described by the following equation:

po ( r )" / f^x'y) ds ' (3.2)

- I ir(r-cos<t>-s*sin0, r*sin<t>+s-cos<t>) ds

where <j> is the projection angle.
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Figure 3.1: a) Coordinate systems, b) Parallel projection.

The collection of parallel projections for all possible angles, <{>, is call the Radon
transform of the function f, also known as the X-ray transform. The analytical
approach to image reconstruction is to obtain an inversion formula for the
continuous Radon transform, which then is discretized, since in practice data
are only measured for a finite number of samples in a finite number of angles.
Radon defined the transform and also formulated an inversion formula already
in 1917 [Radon, 1917 and 1986], long before computed tomography became
practically feasible.

3.2 Backprojection

The Radon transform is obtained by forward projection of a 2D function. The
reverse operation to forward projection is called backprojection, and is defined
in equation (3.3).

n n- f (3.3)

Backprojection is not the inverse of the Radon transform. The result obtained,
g, is just a blurred version of the original function, f.
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3.3 The Fourier transform

The Fourier transform (FT) is a way to express a function as an infinite sum of
sine- and cosine-terms with different frequencies. Through the Fourier
transform, a function in the spatial domain becomes a function in the frequency
domain. The opposite is true for the inverse Fourier transform. There is an
extensive literature on the FT and its applications, see e.g. Brigham (1974).

The FT has a fundamental roll in the derivation of analytical reconstruction
methods, also known as transform methods. This is due to a its relations to the
Radon transform, through the projection theorem. Another important
properties of the FT is its relations to the convolution operator, through the
convolution theorem.

The ID FT of a function, f, and it's inverse are defined as follows:
00

F(u) .f{f(x)} - f f(x) e-i2nxadx (3.4a)

fix) . / " M F I U ) } - /F(u) ei2nxadu ( 3 ' 4 b )

-ao

In two or more dimensions, the definitions are analogous using vector
representation:

F(u) - &{f ix) } - f f(x) e±2nx'ndx (3.5)

F(u,v) - r2{f(x,y)} - ff fixfy) e12nlxatyv) dxdy-

\
f f(x,y) e-±2nxadx e-i2nyvdy

This means that the 2D FT can be calculated by ID FT in the x-direction for
each value of y, followed by ID FT in the y-direction foteach value of u. The
inverse 2D FT is given by:

00

f(x,y) - ^ { F l u j v ) } - ff F(u,v) e
 12n<"•**> dudv (3.6)
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3.4 The convolution theorem

Convolution between two functions, f and h, yield a new function, g, defined
as follows:

g(x) - {f<*h)(x) - jf(s)h(x-s) ds (3.7)

where ® denotes the convolution operator. Taking the FT of both sides gives:

G(u) -JT{g(x)} - | g ( x ) e - 1 2 l " u d x - (3.8)

-i2nxa(s) h{x-s) e-i2nxadsdx

Changing the order of integration we obtain:

G(u) - f f(s) fh(x-s) e-12nxadxds (3.9)

Substituting t for (x-s) in the inner integral gives:
m «D

G(u) - f f(s) f h(t) e-i2nlstt)a dtds- (3.10)

f(s)
a*

fh(t) -1 2 n t u d t . -12nsu ds-

OB

- f f (s) H(u) ei2asuds-

m

- H(u) f f(s) e-i2aaads-H(u) F(u)
-m

This result is the convolution theorem, which in words states that convolution
in the spatial domain is equivalent to multiplication in the frequency domain.
This means that the relatively complex operation of convolution of two
functions can be performed by taking the FT of both functions,-multiplying in
frequency space, and taking the inverse FT of the result. The frequency
convolution theorem states that convolution in the frequency domain is
equivalent to multiplication in the spatial domain, and can be shown in a similar
manner.
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3.5 Filtering

Convolution is often used in signal processing for applications such as
smoothing, edge-enhancement or restoration. The data to be processed is
convolved with a suitable function called kernel. When performed by
multiplication in the frequency domain, this operation is called filtering, and the
FT of the kernel is called filter. Filters for different applications can be
designed directly in the frequency domain. Low pass filters are used for
smoothing and high pass filters for edge enhancement. One example of a often
used low pass filter is the Hamming filter, described in the following equation:

H(u) - A* (1-A) cos(nu/uc) (3.11)

where A is a constant, usually set to 0.5, and uc is the cut-off frequency, above
which the filter value is set to zero.

3.6 Deconvolution

An imaging system can be characterized by its point response function (PRF),
also called point spread function, which is the response to a point source or 6-
function input. The FT of the PRF is called the modulation transfer function
(MTF). If the PRF is independent of position, the response, g, to an arbitrary
input, f, can be described by the equation:

g - f»h*n (3.12)

where h is the PRF, and n is a noise term. In the frequency domain, this
equation becomes:

G - FH+N (3.13)

where upper case letters denotes the FT of the functions denoted by the
corresponding lower case letters. If we want to restore the-original input
function, a first attempt could be to multiply G by the inverse filter 1/H. This
is called deconvolution and is risky because the MTF usually tapers off and
approaches zero at high frequencies, which means that little information is
recovered at these frequencies, but the noise will get highly amplified. An
alternative is to use a combination of the inverse filter and a low pass filter.

-25-



One example of this is the Wiener filter. A simplified Wiener filter is described
by the following equation.

- 2
Hiu)

 ( 3

where y is a constant determining the trade off between inverse and low pass
filtering.

3.7 The 2D projection theorem

The most important property of the Radon transform is its relation to the
Fourier transform through the projection theorem, also called the central
section theorem or the Fourier slice theorem. This is the basis for all analytical
reconstruction methods. In words the theorem can be expressed as follows:
The ID FT of the parallel projection, p^r), at an angle 4) of a function f(x,y)
is equal to data along a line through the 2D FT of f(x,y), F(u,v), passing
through the origin with an angle (J) to the u-axis. The theorem is illustrated in
figure 3.2 and can be derived as follows:

mm

ff(x,y) ds (3.15)

- fff (r-cos((>-s-sin<t>, r*sin4>+s-cos<|>) ds e ' 1 2 n r p dr

- ff f (r-cos<t>-fl*sin4>,r*sin<|>+s*cos<|>) e'i2nip drds
-ao

Substituting x and y for r and s we obtain:

•» / » - \ l i I 4? I v *r\ - » - i2n( j f cos$»ys in$ )p J W J , .

- F(u,v) I .
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Figure 3.2: The projection theorem.

The projection theorem shows that it is theoretically possible to reconstruct an
image from its projections. Taking the FT of a large number of parallel
projection over the interval [0,7t) a polar map of the function is obtained in
frequency space (see fig. 3.3). A 2D inverse FT will then give the original
function. The most common reconstruction algorithm, based on this principle,
is described in the next section.

3.8 Filtered Backprojection

The derivation of the filtered backprojection algorithm (FBP) starts from the
definition of the inverse 2D Fourier transform:

f(x,y) - ff F(u,v) ei2n[xmyv) dudv (3.17)

Changing to polar coordinates results in: _
2n -

• T ( x , y ) - i I r ( p r ( p ) 6 ' K T -TK ^ ' p apcfq) ^ j . l o j
0 0

where Fp is the polar representation of the function F. Since data is collected
for angles in the interval [O,TT:), the integration limits are changed. Also, the

- 2 7 -



Figure 33: Mapping of frequency space,

variable r from equation (3.2) is introduced:
n «

f ( x * y ) - [ \ F ( P f 4 > ) l p l e

0 —

dpd<|> (3.19)

Utilizing the projection theorem, the following equation is obtain:

f(x,y) -

where P^(p) is the FT of the projection

d<J>
(3.20)

This equation is the basis for the filtered backprojection algorithm: The parallel
projections are first individually filtered with the "ramp filter", I pi, and then
backprojected, to form the reconstructed image. The high frequency part of
the data is often dominated by noise, and the ramp filter is therefore usually
combined with a low pass filter. The filtering step can also be performed by
convolution in the spatial domain. This algorithm is called "convolution and
backprojection" (CBP).

3.9 Discrete implementation

In a practical situation we cannot work with continuous data. A continuous
function has to be sampled and truncated so that we get a finite number of data
values. The ID discrete Fourier transform (DFT) and its inverse are defined
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in equation (3.21a-b) for a function with N samples. The definitions for two
or more dimensions are analogous.

F(n) - *Z f (k) e-
12aka/lf , n - 0 , . . .N-l (3.21a)

Jfc-0

ir-i
f(k) - — S F(n) e

i2nka/K , k-0r...N-l (3.21b)
N n-0

If the N data samples, f(k), represent one period of a periodic discrete function,
it can be shown (Brigham, 1974) that the continuous FT of this function gives
as result a periodic discrete function where one period is represented by the N
values, F(n), given by equation (3.21a).

The convolution theorem is valid also for discrete functions, which are treated
as periodic functions. This means that interference can be obtained between
different periods when performing a convolution between two discrete
functions by multiplication in the frequency domain. This can be avoided by
zero padding, which means that a function with N values is extended with N
zeros, and the FT is calculated for 2N values. An interference free convolution
is obtained by zero padding the two functions and in the end discarding the N
last values of the result. Another effect of zero padding is a finer sampling in
frequency space.

Equation (3.21) is never used directly for calculating the DFT. It is much more
efficient to use the fast Fourier transform (FFT) algorithm, resulting in a
computation time reduced by a factor 2NAog^>l, where N is the number of data
points (Brigham, 1974).

FBP and CBP are mathematically equivalent methods. It has been shown
(Lewitt, 1979) that the convolution step in CBP can be speeded up significantly
with an insignificant amount of error by using reduced precision multiplications
or by approximating the convolution kernel with a piecewise constant function.

3.10 The sampling theorem

The sampling interval is an important parameter for discrete functions. For
band-limited functions, the optimal sampling interval can be determined from
the Nyqvist sampling theorem (see e.g. Brigham, 1974). A function is band-
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limited if it has no components for frequencies larger than a certain value, uc.
The sampling theorem states that a continuous band-limited function is
uniquely determined by its sampled values if a sampling interval, Ax, is used
such that Ax<(l/2uc). All discrete functions have a periodic FT, and if
Ax>l/(2uc), there will be interference between different periods in the
frequency domain. This effect is called aliasing, and can be reduced by using
a low-pass filter. The frequency 1/(2Ax) is the highest frequency component
in a discrete function, and is known as the Nyqvist frequency.

The activity distributions studied in PET are always limited in space, which
means that they cannot be band-limited. However, all PET scanners have a
finite resolution, which means that the data is filtered with a low-pass filter
before sampling. Huang et al. (1980) concluded that the sampling interval used
should be < W/3, where W is the full width half maximum (FWHM) of the
system PRF.

When the radial sampling interval has been set, a suitable angular sampling
interval should be chosen. If the number of radial samples is N r , equal radial
and tangential sampling intervals are obtained at the highest frequencies by
using a number of angular samples, N+=(7i/2)Nr

3.11 Alternative reconstruction methods

An alternative to FBP reconstruction is to start with the backprojection
operation, and then filter the backprojected image with a 2D ramp filter. We
can call this method "backprojection and filtering" (BPF), also known as the
"p-filtered layergram" method. Zero padding must be used in the filtering step.
The 2D ramp filter can of course be combined with a low pass filter.

Another alternative analytical reconstruction method, which constitutes the
most obvious utilisation of the projection theorem, is the direct Fourier
inversion (DFI). This method consists of taking the FT of all projections,
resulting in a polar mapping of the image in frequency space, interpolating to
a Cartesian grid representation, and finally obtaining the reconstructed image
by 2D inverse FT. The one step that causes difficulties in a practical
implementation of this method is the interpolation in frequency space. This is
due to the fact that the samples are closely spaced near the origin but more
sparsely at higher frequencies. An improved interpolation can be obtained, at
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the cost of a longer computation time, if the projections are zero-padded before
the FT to obtain a finer frequency sampling. Another way to improve the
interpolation with negligible extra computation time is to shift the frequency
samples radially by half a sampling interval for every other projection angle
(Lewitt, 1983). This can be accomplished by introducing a phase-shift in the
data before the FT.

The interpolation step can be reduced the from a 2D problem to a ID problem
if the frequency samples are collected along concentric squares in stead of
concentric circles, which can be done by appropriately selecting different
sampling intervals for different projection angles. This is the linogram method
(see e.g. Jacobson, 1996).
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4. ITERATIVE RECONSTRUCTION

While analytical reconstruction methods are based on an inversion formula for
continuous functions, algebraic methods begin with a discrete model of the
problem, and attempts to solve a system of linear equations. Most algebraic
reconstruction methods are iterative. These methods have the advantage that
a priori knowledge about the image can be incorporated into the model (e.g.
non-negative activity concentration). Also the effects of attenuation, scatter
and randoms can be incorporated. They are basically slower than analytical
methods, but can be speeded up with different techniques. Algebraic methods
are not limited by theoretical requirements of a complete set of projections.

General reviews on algebraic reconstruction techniques can be found in e.g.
Colsher (1977), Herman (1980) and Kak & Slaney (1988). The theory that
will be presented here is valid for both 2D and 3D iterative reconstruction.

4.1 The discrete model

An discrete image can be represented by a set of picture-elements (pixels) as
shown in figure 4.1, each one containing a uniform activity distribution. In 3D,
the term volume element (voxel) is used. The measured projection values can
be regarded as linear combinations of the pixel values, called ray-sums. This
leads to a set of linear equations, which can be expressed as follows, with N
pixel values, fj, and M projection values, pj:

i fjwlj=pi, i = l , . . . M (4.1)

where ŵ  represents the contribution from the j:th pixel to the i:th ray-sum. In
the past, the solution of this equation system by ordinary matrix inversion
techniques was not possible due to large sizes of M and N, and the presence
of noise in the measured data. Instead different iterative methods were
developed, which are basically trial-and-error procedures, starting from an
initial image, that is updated in each iteration. These methods can be based on
either additive or multiplicative techniques, with either row-action or
simultaneous updating schemes. Today the matrix inversion approach could
possibly be an alternative. Although the calculation of the inverse takes a very
long time, this only has to be done once.
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Figure 4.1: TTie discrete image and projection model.

4.2 Algebraic reconstruction technique

Algebraic reconstruction technique (ART) is an iterative reconstruction method
that was developed by Gordon et al. (1970), based on a method for solving
linear equation systems proposed by Kaczmarz (1937). The solution can be
regarded as a point in an N-dimensional space. Each equation in (4.1) would
then represent different hyperplanes (one for each value of i). If a unique
solution exits, it will be the intersection point of all the hyperplanes.
Kaczmarz's iterative process for finding this point starts with an initial guess,
f °, that is projected on the first hyperplane, giving a new point, f \ which is
then projected on the second hyperplane, et cetera. This process converges to
the unique solution, and can be described as follows:

<7< = (4.2)

w±\
(4.3)

where k is the iteration number, i=mod(k,M) is the remainder after division of
k with M, and
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^ ^ ^ (4.4)

In practice the ART method works as follows: The initial guess is an image
with a uniform distribution (e.g. zero in all pixels). The ray-sum corresponding
to one projection line is calculated according to equation (4.2). A correction
term is obtained as the difference between the measured projection value and
the calculated ray-sum. The correction term is backprojected, and each pixel
along the projection line is corrected according to equation (4.3). This
procedure is then repeated for the next projection line. A smoother image can
be obtained at the cost of a slower convergence by multiplying the correction
terms by a relaxation factor <1. An increased convergence speed can be
achieved by processing the different projection angles, not in a cyclic order, but
with a larger difference between consecutive angles.

Equation (4.3) is the additive ART algorithm. An alternative is to use
multiplicative correction factors in stead of additive correction terms.
Multiplicative ART can be described as follows:

f*1 = f* ^- w , j = l , . . .N (4.5)

43 Simultaneous iterative reconstruction

ART is a row action method, which means that the image is updated once for
each projection line. A different approach is to consider all the projections
simultaneously in each iteration. Landweber (1951) proposed a simultaneous
additive iterative algorithm that can be described as follows:

i f

ff1 = ff + £ (P j -g / ) v^ , j = 1 , . . .AT (4.6)

This means that in each iteration, each pixel value is corrected by a weighted
mean of the correction terms for all projection angles. This gives a slower
convergence, but often a better result. The initial estimate of the image can be
zero. A modified Landweber method was implemented for image
reconstruction (Pan & Yagle, 1991). In paper V, a 3D reconstruction method
is described, based on a simultaneous additive iterative algorithm.
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4.4 Maximum likelihood - Expectation maximization

The most popular iterative reconstruction method used in PET is the
expectation maximization algorithm for maximum likelihood estimation (ML-
EM) proposed by Shepp and Vardi (1982). This method was developed, based
on a Poison model for the emission of photons. It attempts to find the solution
which has the highest probability of generating the observed projection data;
the maximum likelihood estimate. If w^ is the probability for an emission in
pixel j to be detected in coincidence line i, the expected projection value for a
given image, f, is given by:

* i = ifi"n ' i « l * . . . M (4-7)

The likelihood, L(f), that the image f has generated the projection values p is
given by:

L(f) = n e ^ - i - (48)
i-i Pj I

To find the maximum value, we calculate the derivatives of the logarithm of
L(f) with respect to each image element fj:

^ if if D

j = l,...N (4.9)-JLlnL(f) = fw + £ ^w , j = l , . . . N
ofj i.i J i-i q±

 J

The maximum likelihood solution is obtained when this expression is zero for
all values ofj. Shepp and Vardi (1982) showed that an EM algorithm, in which
the expectation step is given by equation (4.7) and the maximization step by
equation (4.10), converges to the maximum likelihood solution.

(4.10)

ML-EM is a simultaneous multiplicative iterative algorithm. The iteration is
normally initiated with a uniform distribution f °>0. From equation (4.10)
follows two important properties of this algorithm, namely that fjk+1>0 (non-
negativity) and that £^=1 fjk+1 =£¥=1 Pi (constant sum of counts). The
popularity of the ML-EM algorithm is due to the high signal to noise ratio
(SNR) in the reconstructed images. This reconstruction method was used for
the scanner presented in paper I.
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4.5 Accelerated EM

The slow convergence rate of the ML-EM algorithm is a major disadvantage.
A number of methods have been proposed for accelerating the convergence.
One way is to raise the correction factors to a power >1. This would require
a renormalization of the image after each iteration. An alternative method was
proposed by Lewitt and Muehllehner (1986). It consists of rewriting equation
(4.10) in additive form, and applying an overrelaxation factor X>\ to the
correction terms:

•F * • ! — -F k 4-\k-F k
If

w i-i ak

where lambda is adjusted at each iteration, so that the non-negativity is
preserved. This method also preserves the constant sum of counts property.

A more sophisticated accelerated EM algorithm was suggested by Tanaka
(1987), which includes high pass filtering of the correction factors in order to
obtain a more uniform frequency response. A modification is also included that
gives a more uniform correction over the image plane.

Another method, which has received a great deal of attention lately, is the
ordered subsets EM algorithm (OS-EM) (Hudson & Larkin, 1994). With this
method, only a subset of the measured projections are used in each iteration.
The convergence can be accelerated by an order of magnitude (a factor equal
to the number of subsets). However, it has not been shown that this algorithm
converges to the maximum likelihood solution. In practice, OS-EM is
somewhere between ML-EM and multiplicative ART.

4.6 A stopping rule

The main advantage of the ML-EM algorithm is that it produces images with
a high SNR as compared to FBP, especially in regions ofjow activity.
However, it has been noticed that after a certain number of iterations, the
image quality starts to deteriorate rather than improve. This can be explained
as follows: The algorithm tries to find image values, fj, so that each expected
projection value qj, is close to the corresponding measured projection value,
Pi. In the first part of iteration process, the image quality improves, as the
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expectation values get closer to the measured values. However, with a Poison
distribution, it's statistically unlikely that all measured projection values would
be close to their respective expectation values. Therefore the image quality
starts to deteriorate after a certain number of iterations, when to many of the
q,-value are close to the corresponding prvalues. Veklerov and Llacer (1987)
proposed using a x2-test after each iteration to test the hypothesis that the M
prvalues are jointly statistically valid realizations of Poison-distributed random
variables with mean values ̂ . This method can be used to determine when to
stop the iteration process.

4.7 Basis functions

In iterative reconstruction methods, the image is modelled as a linear
combination of a number of shifted copies of a basis function (pixels or voxels).
An important factor for the behaviour of these methods is how well the model
chosen describes the real object. Of special importance is how the factors Wjj
are selected. These factors represents the contribution from each pixel to each
ray-sum, and can in principle be precalculated and stored in a file before the
reconstruction. This would be a very large file, but that is less of a problem
today than it has been in the past. An alternative is to calculate the values as
they are needed during the reconstruction. The most simple way to do this is
to set Wjj=l or 0 depending on the distance between the centre of pixel j and
projection line i. The results obtained with this method are usually quite poor.
Better results are obtained with values that decreases linearly with increasing
distance. In a practice, these two methods can be regarded as nearest
neighbour and linear interpolation, respectively. Both methods assume that the
image is composed of circularly symmetric pixels or spherically symmetric
voxels. Superior results can be obtained with more sophisticated basis
functions, such as the modified Kaiser-Bessel functions suggested by Lewitt
(1992b).

A way to avoid the errors due to finite pixels was proposed by Buonocore et
al. (1981) by introducing the "natural pixels"-model. Each, natural pixel
consists of the area in the image corresponding to one projection strip. A
discrete image is then represented by M natural pixel values, qj. This in fact
means that the image is constructed by backprojection of the qj-values. The
relation between the M natural pixel values, qj, and the M measured projection
values, pi? is given by equation (4.12).
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Figure 4.2: The natural pixels model.

Hljqj = p (4.12)

where Ĥ  is the area of intersection between natural pixels i and j , as shown in
figure (4.2). Equation (4.12) can be solved by an iterative process (Buonocore
et al., 1981) or by singular value decomposition (SVD) (Gullberg & Zeng,
1994), which is a method that can be used for matrix inversion (see e.g. Press
et al., 1986).

In paper V, an iterative 3D reconstruction method based on the new concept
of "mobile pixels" is presented. This method has a certain similarity to the
natural pixel approach, in that it is intended to reduce the finite pixel errors.
Each plane in a 3D volume is represented by M overlapping pixels, one for
every projection line, placed on a very fine grid. The location of the pixels vary
from plane to pane following the projection lines, thereby the term "mobile".

NEXT PAGE(S)
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5.3D RECONSTRUCTION

A number of 3D reconstruction methods have been developed for PET over
the past two decades. Most of them are extensions to 3D of the 2D methods
described above for the parallel beam geometry. A review of reconstruction
methods for the cone-beam geometry has been made by Jacobsson (1996). A
description of the general principles of these 3D methods will be given here,
without too many mathematical details.

5.1 Data formats

The acquisition data from PET scanners can be stored in different formats.
The simplest one is the list format, which means that, for each detected
coincidence, the coordinates of the detection points of the two annihilation
photons are saved in a long list. After the acquisition, the data can be
transformed to some other format before image reconstruction. The advantage
is that no extra computation is needed during the data acquisition. What could
be a disadvantage is the size of the data files, which will be dependent on the
number of detected events. This method has mostly been used for PET
scanners based on position sensitive planar detectors. A coincidence event can
be represented by a 2D planar coordinate for each detector and an angular
coordinate for the rotation angle of the scanner, (r^t

For 2D ring-scanners, the acquisition data is saved in sinogram format. A
sinogram is a 2D matrix with one dimension for the projection angle (<£) and
one for the radial position of the coincidence line (r). There is one sinogram
for each plane. When a coincidence event is detected, the matrix-entry
corresponding to the angular and radial position of the coincidence line is
incremented by 1. Figure 5.1 shows an example of a sinogram corresponding
to two point sources. A 2D sinogram set can be represented by the 3D array
p(r,<t>,z), where z the axial position of the plane.

In 3D acquisition with multi-ring scanners, the sinogram formatjhas also been
used, with one sinogram for each ring combination. E.g. a 16 ring scanner
produces 256 sinograms in 3D mode. For intra-ring coincidences we get
normal 2D sinograms. However, the sinograms for coincidences between
different rings will be inconsistent in the sense that the data in different
projection angles does not represent the same plane through the activity
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0

X.
Figure 5.1: Sinogram for two point sources.

distribution. A 3D sinogram set is represented by the 4D array p(r,<J),z,,z2),
where zx and Z2 are the axial positions of the two detector rings involved.

The latest generation of multi-ring scanners use 2D projection format. The
data is sorted into 2D parallel projections for different azimuthal and polar
angles. A 2D projection data set is represented by the 4D array p(r,t,<|),0),
where r and t are Cartesian coordinates on the projection plane, 4> is the
azimuthal angle, and 6 is the polar angle.

It may be advantageous to convert projection data from one format to another
depending on the reconstruction method that will be used. This is called
rebinning. E.g. 3D sinogram data may be converted to 2D projection format.
List mode data can be converted to sinograms or 2D projections before
reconstruction. An alternative is to perform a 3D event-by-event
backprojection into a 3D image matrix. For each detected event, all voxels
along the coincidence line are incremented by an amount proportional to the
line length through the voxel. This method can be used if the number of
collected events is not sufficient to get adequate statistical accuracy in all
projection bins. A fast algorithm for 3D backprojection has been presented by
Siddon (1985).

5.2 The 3D projection theorem

The projection theorem in 3D is analogous to the 2D case. It states that the
2D FT of a 2D projection of a 3D function is equal to a slice through the origin
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Figure 5.2: Acceptance angles for different points in the FOV.

of the 3D FT of the function. A strict proof can be developed in a way similar
to the 2D case, but a more intuitive one is obtained as follows: A 3D function
can be regarded as a set of parallel planes with any orientation. The 2D
projection theorem is valid for each plane. ID FT in the third direction gives
the relationship stated above.

5.3 Limited angle tomography, 3D BPF

3D reconstruction was first used in PET for scanners based on two stationary
planar detectors (see figure 2.1a). With this geometry, data is only acquired
in a restricted angular interval around the object. This kind of measurement is
therefore called limited angle tomography. A 3D reconstruction method based
on Fourier techniques was developed by Chu and Tarn (1977).

In the following we will use a 3D Cartesian coordinate system, with the 3D
coordinate r=(x,y,z). The y-axis is perpendicular to the detector planes. The
angle between a coincidence line and the y-axis is denoted 0. For different
positions in the field-of-view (FOV), the angular range within which
coincidences can be detected ("acceptance angle") varies, as illustrated in figure
5.2.

The first step in the reconstruction is a 3D event-by-event backprojection. If
f is the true distribution, the image, g, obtained after the backprojection can be
described by equation (5.1).
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g(r) - ff(x')h(r,r') dx' (5.1)

where h(r,r') is the point response function (PRF), giving the relative
contribution from a point source at position r1 to the backprojected image at
position r. The response function varies with the position in the field-of-view
(FOV), due to the varying acceptance angle. Equation (5.1) is a Fredholm
equation of the first kind and has no general solution. However, if we know
the extent of the object, we can define a restricted acceptance angle, \\J, equal
to the smallest acceptance angle at some point within the object. For each
point in the object, there is cone-shaped region in which coincidences with
0<i|; can be detected. This region is called the universal cone. If we
backproject only those events which fall within the universal cone, the response
function will be position-independent, and equation (5.1) becomes a
convolution equation:

g(r) « ff(r')h(r-r') dx' (5.2)

Taking the FT of both sides, equation (5.2) becomes (due to the convolution
theorem):

- F(p) JJ(p) (5-3)

where G, F and H are 3D FTs of g, f and h, respectively, and p is a 3D
frequency coordinate, p=(u,v,w). An estimate, P, of F can then be obtained as:

F(p) - R(p)G(p) (5.4)

where R(p) is a restoration filter, which in principle could be the inverse filter
H'^p), but in practice it is necessary to combine it with a low pass filter, due
to the noise domination at high frequencies. Chu and Tarn (1977) proposed
the following filter (compare with equation (4.14)):

. g(P)
H2(P) *Y(2n)4 |p | 4 <5'5)

where y is a Lagrange multiplier which depends on the noise level. The
optimum value of y can be determined by an iterative process. Schorr and
Townsend (1981) derived analytical expressions for H1. The practical
implementation of 3D BPF was studied by Webb et al. (1984).
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Figure S3: Point response function in a) the spatial domain, b) the frequency domain.

5.4 Missing data

The use of a restricted acceptance angle, i|/, in the backprojection is equivalent
to using only data in parallel projections in directions 0<i|/. According to the
projection theorem, this means that frequency space is mapped only in the
region outside a cone with an angle TI/2-I|J to the v-axis, as illustrated in figure
5.3. A consequence of this is that H(p)=O inside the "missing cone", and the
values of F(p) in this region cannot be recovered using equation (5.4).

Tarn et al. (1979) proposed a method for recovering the missing frequency
components, utilizing a priori information about the extent of the object. The
method was based on the fact that a function that is limited in the spatial
domain cannot be limited in the frequency domain (compare with band-limited
ID functions). While iterating back and forth between the two domains, the
function was reset to the known values in different regions. In practice,
however, the missing data can never be fully recovered. To quote Harrison
Barrett (San Francisco, October 1995): "Limited angle tomography is...
limited!"

5.5 Iterative limited angle reconstruction

A major disadvantage of the reconstruction method described above is that a
large part of the data has to be rejected due to the restricted acceptance angle,
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Figure 5.4: 3D coordinate systems.

and that the FOV must be limited; the larger the FOV, the smaller the
acceptance angle, and the larger the amount of data that has to be rejected.

In paper V we present a small PET scanner for mammographic studies, which
is based on the limited angle tomography principle. In order to use all the
available data and to have a FOV as large as possible, we developed a
reconstruction method based on a simultaneous additive iterative algorithm.
The method utilizes a new concept called "mobile pixels", which reduces the
rate of increase of the noise level during the iteration process due to finite pixel
errors.

5.6 Rotating scanners, 3D BPF

The obvious way to obtain the missing data with a dual-headed PET scanner
is to rotate the scanner. In the following, the coordinate systems shown in
figure 5.4 will be used. The (x,y,z)-system is a stationary Cartesian coordinate
system, with the z-axis on the rotation axis of the scanner. The (r,s,t)-system,
where the s-axis indicates the direction of projection, is obtained by rotating
the (x,y,z)-system an angle cf> about the z-axis, giving the intermediate (r,s',z)-
system, which is then rotated an angle 0 about the r-axis. The relationship
between the two system is given by:

r - x*cos<t> • ysin<J>
s - (-x#sin<|>+ ycos<t>) cos© + z # s in0
t - (x-sincj) -ycosfy) s i n 0 + z*cos0

(5.6)
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If the scanner is rotated so that the azimuth angle <j> spans over 180°, the entire
frequency space will be mapped. All the necessary data for a correct
tomographic reconstruction will certainly be obtained, since a subset of the
data (0=0) consists of complete 2D data sets for different transaxial planes.
Still using the restricted acceptance angle I|J in the backprojection, the PRF, h,
will now have it's support in a region outside the cone with an angle TI/2-I|/ to
the z-axis. Colsher (1980) derived an analytical expression for the 3D FT, H,
of h. The reconstructed image can then be obtained by filtering the
backprojected image with the inverse filter H \

An alternative to reconstruction by 3D backprojection and filtering (BPF) is 3D
filtered backprojection (FBP), which can be used if the projection data is saved
in 2D projection format. Each 2D projection is filtered with a 2D filter, and the
image is obtained by 3D backprojection. According to the projection theorem,
the 2D filters to be used are slices through the 3D filter, H"1. Colsher (1980)
also presented analytical expressions for these 2D filters, which depends of the
polar angle, 0, but are independent of the azimuth angle, ({).

Correct images can be obtained with the Colsher-filter, but the restricted
acceptance angle is still used, and a large fraction of the collected data rejected.
Clack et al. (1984) showed that, for rotating scanners, the angular constraint
can be removed in the direction of the rotation, 4>, and consequently also the
limit for the transaxial FOV. This can be explained as follows: Even if the
coincidence line for a detected event falls outside the universal cone at the
actual scanner position, it may well be inside the cone for another scanner
position. After removing the ^-constraint, the support of the response
function, h, will be the same. However, the sensitivity varies for different
coincidence lines depending on the time during which it can be seen by the
rotating detectors. This geometric sensitivity, gs, decreases linearly with the
perpendicular distance, Irl, from the coincidence line to the axis of rotation, z.
Clack et al. (1984) proposed 2 methods for taking this sensitivity variation into
account in 3D BPF reconstruction. The first and most obvious method is to
apply a weight inversely proportional to gs(r) to each event during
backprojection. The second method suggested, which includes some
approximation, is to apply a position dependent scale factor to the
reconstructed image after deconvolution. The geometric sensitivity, gs, is the
same function as the one that was used in paper I to correct the projections
from a rotating scanner before reconstruction.
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The angular constraint has now be removed in <f> but not in 6, so still some data
has to be rejected and the axial FOV limited. Defrise et al. (1988) suggested
a method to increase the FOV and the amount of data utilized by dividing the
image into different subregions. A large region, Dlf covering the entire object
is first reconstructed by 3D BPF, using a small acceptance angle, i|/,. A low
statistics estimate of the image is then obtained. This image is convolved with
the response function corresponding to an acceptance angle i|/2>*|>i- A new
backprojection is made with acceptance angle i|/2 into a region, D2, smaller than
D,, and the old data in D2 is replaced. The whole image can then be
deconvolved with inverse filter corresponding to the acceptance angle i|/2, after
appropriate normalisation. This procedure can then be repeated with an even
smaller region, in order to incorporate more data. The implementation of this
method was studied by Suckling et al. (1992).

5.7 Multi-ring scanners, 3D FBP

Different reconstruction approaches have been suggested for multi-ring
scanners operated in 3D mode. The one most used is the "reprojection
algorithm", which is a 3D filtered backprojection (FBP) algorithm that utilizes
all detected events. The use of 3D FBP was suggested by Pelc and Chesler
(1979). The acquired data is sorted in 2D parallel projections. The
reconstruction is done by 2D filtering and 3D backprojection. The only
problem is that the measured oblique 2D projections (I0I>O) are truncated and
do not cover the entire FOV. Just as in the case of 3D BPF, 3D FBP cannot
be applied directly without restricting the 6-acceptance angle and the axial field
of view. This problem can be solved with the reprojection algorithm (Kinahan
& Rogers, 1989). First a 2D reconstruction is made of each transaxial plane
using only a 2D subset of the data (6=0), giving a low statistics estimate of the
image. Forward projection (reprojection) of this image is then used for
calculation of the missing data in the truncated projections. Finally 3D FBP
can be applied, including all the data. This method was implemented for multi-
ring scanners by Townsend et al. (1989 and 1991), Defrise et al. (1990) and
Cherry etal. (1992a).

Contrary to the case of 2D FBP, there is no unique filter function for 3D FBP,
giving mathematically correct reconstruction. This is due to the
overdetermined character of the problem, as explained by Defrise et al.
(1995a). One method for obtaining the filter function is to calculate the FT of
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the point response function for backprojection (Colsher, 1980).

Cherry et al. (1992b) developed a method for using 3D FBP in connection with
whole body scanning without the need of 2D reconstruction and 3D
reprojection to obtain the missing data. They used a "quasi-continuous" axial
scanning, which consisted of moving the patient couch, and acquiring data at
a large number of closely spaced axial positions. This way, complete 2D
projections are obtained for a large part of the axial FOV, which can be
reconstructed directly by 3D FBP. The missing data is thus obtained from
subsequent axial positions. This approach is analogous to the method
described above to eliminate the azimuthal angular constraint for rotating dual
headed PET systems.

A completely different approach to 3D FBP was used by Ra et al. (1982).
They developed a method based on the observation that 2D FBP can be used
to reconstruct any oblique plane through the object with a normal that has an
angle to the z-axis < the maximum oblique acceptance angle of the scanner.
The image values at each point can then be obtained as a mean value of all the
reconstructed oblique planes passing through that point. A direct
implementation of this method would be very inefficient, due to the large
number of planes involved. But the basic principle was used for development
of a 2D filter for 3D FBP.

5.8 1D/3D reconstruction methods

Feldkamp et al. (1984) developed a simple but approximate 3D FBP method
for cone-beam tomography. Each cone-beam projection is treated as a number
of tilted fan-beams, which are independently filtered with a transaxial ID filter
(ramp-filter). The image is then obtained by 3D backprojection of each filtered
tilted fan-beam. The reconstruction is exact in the central transaxial plane, but
becomes more and more approximate with increasing distance from this plane.
Although this method was developed for cone-beam tomography, the basic
principle of 1D/3D filtering/backprojection can also be_applied to the parallel
beam projection geometry used in PET. This results in a fast reconstruction,
but the filtering approximation leads to some cross-talk between the different
transaxial planes.

Tanaka et al. (1992) developed a more sophisticated reconstruction method
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based on the lD/3D-principle, which eliminates the axial cross-talk. The
oblique projections (I0I>O) are filtered with a high-pass filter, so that they only
contribute to the high frequency components of the image. The low frequency
components are reconstructed using the transaxial projection data (0=0), and
the final frequency response is normalized.

Another method based on the 1D/3D principle was developed by Defrise et al.
(1992). A ID filter is still used for the oblique projections, but for the
transaxial projections a 2D filter is used. The modulation transfer function
(MTF=FT{PRF}) for the backprojected filtered oblique projections was
analysed, and a 2D filter for the transaxial projections was developed, which
corrects for the approximation errors introduced. For each transaxial plane to
be reconstructed, different 2D filters must be used to filter the 2D transaxial
projections.

5.9 Alternative 3D reconstruction methods

A few other methods for 3D image reconstruction in PET will be mentioned
here briefly. Daube-Witherspoon and Muehllehner (1986) developed an
iterative 3D reconstruction method based on the ML-EM algorithm. The
method starts with a 3D backprojection of the measured data, in order to
reduce the number of data values. At each iteration, the comparison between
measured and calculated values is done in image space. Kinahan et al. (1988)
developed a method for 3D CBP as an alternative to 3D FBP, using 2D
convolution instead of 2D filtering before the 3D backprojection. Stearns et
aL (1990) developed a 3D direct Fourier inversion method. The missing data
is obtained from the frequency domain. This is a fast method since 3D
backprojection is not needed. Stazyk and Rogers (1992) developed a method
for inversion of the 3D Radon transform, which consists of plane-integrals
rather than line-integrals, using a fast backprojection technique. Wu et al.
(1995) developed a fast reconstruction method based on direct Fourier
inversion of the 3D Radon transform.

5.10 Rebinning algorithms

The methods described above can all be used to reconstruct data from 3D PET
scanners, but there are certain disadvantages. 3D FBP is based on 2D parallel
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Figure 5.5: Single slice rebinning.

projections in different azimuthal and polar angles. These 4D projection data
sets require large storage space on the computer, and a high number of
detected events, in order to get sufficient statistical accuracy in all the
projection bins. With 3D BPF, the amount of data is reduced by
backprojection into a 3D image matrix. However, the corrections for randoms,
scatter and attenuation are more difficult to perform in object space than in
projection space, which limits the quantitative accuracy of these methods.

An alternative approach to the reconstruction problem in 3D PET is to rebin
the 4D projection data to a 3D format with one 2D sinogram for each
transaxial plane. This way the corrections can still be made in projection space
with reduced data sets and increased statistical accuracy. Basically, the 3D
reconstruction problem is divided into a ID axial rebinning problem and 2D
transaxial reconstruction. Several methods based on rebinning algorithms have
been developed.

The most simple of these methods is the single slice rebinning (SSRB)
algorithm proposed by Daube-Witherspoon and Muehllehner (1987). Each
oblique coincidence line is included in the sinogram corresponding to the
transaxial plane midway between the two detection points, as shown in figure
5.5. 2D reconstruction is then used for each plane. This method has several
good qualities: Its easy to implement, the rebinning can be performed in real
time during the data acquisition, and the reconstruction is fast. The
approximations used are 0=0 and z=(z1+z2)/2. For annihilations occurring
centrally between the two detectors (s=0), the axial position (z) chosen will be
correct but, with increasing distance from the centre, the mispositioning errors
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increase. This method is basically 2D reconstruction of 3D data. Due to its
simplicity it has been found to be useful in some situations (Sossi et al., 1994).

In paper II, a 3D reconstruction method based on SSRB is presented, which
is also used in papers III and IV. Before the final 2D reconstruction, an axial
deconvolution is made to correct for the mispositioning errors of SSRB. To
calculate the axial spread functions (ASF) to be deconvolved, we have to know
the activity distribution. This can be obtained by 2D reconstruction of a 2D
data subset, giving a low-statistics estimate.

The axial deconvolution is done for each radial and angular positions in the
sinograms. Frequency space deconvolution cannot be used because the ASFs
are not position independent. Instead we have used iterative methods. In
paper II we used a multiplicative simultaneous method, but in papers III and
IV we opted for an additive method. We have also tested using SVD
(Erlandsson and Strand, 1996), which can give similar results but is somewhat
more time consuming. The axial deconvolution can be done for all data or
alternatively only for the data with oblique angles (I0I>O), which is later added
to the transaxial data (Erlandsson et al., 1994). This approach has the
advantage of small data sets, and real time rebinning. The reconstruction
algorithm can be summarized as follows: Preliminary 2D reconstruction, 3D
forward projection, ID axial deconvolution and final 2D reconstruction.

Multi-slice rebinning (MSRB) is a method developed by Lewitt et al. (1992a,
1994). With this rebinning technique, the sinograms for all transaxial planes
between the two axial detection points are incremented by an amount inversely
proportional to the number of planes. This operation can be called "axial
backprojection". It results in more axial blurring than SSRB, but in this case
the response function is fairly independent of the source distribution, and
correction can be made by axial filtering without the need of a preliminary
reconstruction.

The axial filtering can be made either before or after 2D reconstruction of
transaxial planes. The point response function depends on the_axial position,
so frequency space filtering cannot be used. Lewitt et al. first used an iterative
method (1992a), but then opted for SVD (1994). Since the response functions
are known in advance, the decomposition step of SVD is only performed once.
The noise can be controlled by combining SVD with a "low-pass filter", with
an amplitude that decreases for decreasing singular values, or a Wiener filter
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(Shao, 1995). One disadvantage with MSRB is that a special processor is
needed for real time rebinning. This reconstruction method can be described
as ID axial filtered backprojection and 2D transaxial reconstruction.

Defiise (1995b) developed a rebinning method called Fourier rebinning (FRB),
based on the frequency distance principle (FDP) introduced by Edholm et al.
(1986). FDP is an approximate method which can be used to separate data in
a 2D sinogram depending on the position, s, along the projection line. The 2D
FT of the sinogram, p(r,cj)), gives a function P(p,k). FDP states that, for each
projection angle cj>, an image point mainly contributes to a Fourier coefficient,
P(p,k), such that s= -k/p. This means that data along a straight line passing
through the origin of the P-graph all correspond to the same s-value.

The FRB method is based on acquisition of 3D sinograms, p(r,(|),z1,z2), with
one 2D sinogram for each detector ring combination (z1?z2). After 2D FT of
these sinograms, the Fourier coefficients, P(p,k,z1,z2), are sorted into a matrix,
P(p,k,z), using FDP to obtain the axial position, z, according to:

z . ,JL_2 __£tane (5.7)
2 p v J

where 6 is the oblique angle of the 3D sinogram. After normalization, inverse
2D FT will give a set of 2D sinograms, p(r,<f),z), and 2D reconstruction can be
used.

A disadvantage with FRB is that a full 4D data set is required. Also, FDP is
not completely reliable. E.g. if the activity distribution has rotational
symmetry, the sinograms will be constant in the (^-direction. Since FT of a
constant is a delta-function, the 2D FT of the sinogram will be zero for all
points (p,k) except those with k=0. In this case FRB is reduced to SSRB.
However, this situation is not very likely to occur in practice.

NEXT PAGE(S)
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6. Conclusions and future prospects

PET is an expensive modality, only available at a few centres world-wide and
mainly used as a research tool. The use of PET in clinical practice has been
increasing during the past few years (Wagner, 1991), and will continue to do
so in the future, partly due to developments of low-cost PET scanners. In this
thesis, the developments of two such systems were presented. In order to fully
utilize these systems, 3D data acquisition was used and 3D reconstruction
methods were developed.

A rotating scanner was built with two scintillation camera heads (paper I), and
quantitative images were obtained after correction for electronic dead-time,
physical decay of the radionuclide, position non-linearities, intrinsic and
geometric efficiency variations, random coincidences, attenuation and scatter.
This scanner has shown to be clinically useful for tumour studies (Brun et al.,
1996), and similar systems will be used in the future for clinical PET
(Nellemann et al., 1996, Miyaoka et al., 1996, Visvikis et al., 1995).

There will also be simple PET scanners dedicated for particular examination,
e.g. mammography (Thompson et al., 1995, Freifelder & Karp, 1996). In
paper V, a positron emission mammography scanner with two opposed sets of
detectors, based on the limited angle tomography principle, was presented,
including corrections for sensitivity variations, randoms and attenuation.

A number of different methods for 3D image reconstruction for PET have been
developed over the years, both for large area detector scanners and for multi-
ring scanners without inter-plane septa. The method that has become most
popular is the reprojection algorithm for 3D FBP (Kinahan & Rogers, 1989).
Defrise et al. (1994) compared different 3D methods. They found that the
reprojection algorithm gave the highest SNR, and also that no dramatic
improvement in computation speed was obtained with direct Fourier
reconstruction (Stearns et al., 1990) or with the FAVOR algorithm (Defrise et
al., 1992). One way to increase the reconstruction speed could be to use
methods based on plane-integrals and inversion of the 3D Radon transform
(Stazyk and Rogers, 1992, Wu et al., 1995). Another way is to use rebinning
methods. SSRB (Daube-Witherspoon and Muehllehner, 1987) has the
advantage of reducing the data sets from 4D to 3D, and a direct 2D
reconstruction is fast but results in a degraded spatial resolution and possible
artifacts. It has, however, shown to be useful in particular situations (Sossi et
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al., 1994). The adverse effects of SSRB can be removed using the SSAD
method (papers H-III), which includes preliminary 2D reconstruction, forward
projection and axial deconvolution before the final 2D reconstruction. This is
a method which also can be applied to data from a 2D scanner (paper IV).
MSRB (Lewitt et al., 1992a, 1994) is a similar 3D reconstruction method that
has the advantage of more uniform axial spread functions and does not require
preliminary reconstruction and reprojection before axial filtering. However, it
is more complicated to performed this type of rebinning in real time during the
data acquisition. The Fourier rebinning method (Defrise, 1995) has some good
qualities, but requires a complete 4D data set.

Iterative reconstruction algorithms have several advantages over analytic
methods. Physical effects, such as attenuation, scatter, randoms and detector
efficiency, can be incorporated into the model, as well as a priori knowledge
about the activity distribution. Furthermore, there are no theoretical
requirements of a complete projection data set or an invariant PRF, and the
images obtained often have a higher SNR, especially in areas of low activity
concentration. The major disadvantage is usually longer computation times.
With the developments on the computer front, iterative reconstruction becomes
more feasible, even in 3D. Johnson et al. (1995) implemented the ML-EM
algorithm for 3D PET. Kinahan et al. (1995) compared the 3D reprojection
FBP algorithm with iterative 3D ART and ML-EM reconstruction. They
concluded that ART can produce superior results with a similar computation
time as the reprojection algorithm. They also noted that, although each
iteration requires a considerably longer computation time in 3D than in 2D, far
fewer iterations are needed. In paper V, iterative reconstruction was used for
a limited angle scanner. In this case the computation time was not a problem
due to the small size of the data sets. An iterative 3D reconstruction algorithm
could be developed for data sets obtained by SSRB, using the axial spread
functions from SSAD. In the future, the role of algebraic reconstruction
methods will be increasing, although analytical methods will continue to be
used for a long time.
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7. ABBREVIATIONS

nD = n-Dimensional (n= 1,2,3,4)
ART = Algebraic Reconstruction Technique
BPF = BackProjection and Filtering
CBP = Convolution and BackProjection
FBP = Filtered BackProjection
FOV = Field Of View
FT = Fourier Transform
MC = Monte Carlo
ML-EM = Maximum Likelihood - Expectation Maximization
MSRB = Multi-Slice ReBinning
MTF = Modulation Transfer Function
PET = Positron Emission Tomography
PRF = Point Response Function
SNR = Signal to Noise Ratio
SSAD = Single Slice rebinning with Axial Deconvolution
SSRB = Single Slice ReBinning
SVD = Singular Value Decomposition

- 5 7 -



8. ACKNOWLEDGMENTS

I want to thank...

© my supervisor Sven-Erik Strand, who has been my cicerone through all these

years.
© my colleagues in the PET group Anders Sandell and Tomas Ohlsson.
Without their work, mine would not have been possible.
© Michael Ljungberg for helping me with innumerable computer problems.
© Freddy Stahlberg, for introducing me to the fascinating field of tomographic
image reconstruction.
© John Palmer for reviewing this thesis.
© all those at the Radiation Physics Department and the University Hospital in
Lund who have helped me in one way or another.

I also want to acknowledge the generous financial support from...

O The Mrs Bertha Kamprad Foundation.
O The Gunnar, Arvid and Elisabeth Nilsson Foundation.
O The Royal Physiographic Society in Lund.
O The Swedish Cancer Foundation.
O The Lund University Mathematical and Natural Science Faculty.
O The Lund University Medical Faculty.
O The Lund University Hospital Funds.
O The Swedish Society for Radiation Physics.
O The Swedish Society for Medical Radiology.

-58 -



9. REFERENCES

Anger HO, "Radioisotope cameras", In Hine GJ (editor), Instrumentation in nuclear
medicine, Academic press, New York, 485-552,1967.

Bailey DL, Meikle SR, "A convolution-subtraction scatter correction method for 3D
PET", Phys Mea Biol, 39:411-424, 1994.

Bateman JE, Connoly JF, Stephenson R, Flesher AC, "The development of the
Rutherford laboratory MWPC positron camera", Nucl Instr Meth, 176:83-88, 1980.

Bergstrom M, Litton J, Eriksson L, Bohm C, Blomqvist G, "Determination of object
contour from projections for attenuation correction in cranial positron emission
tomography", J Comp Assist Tomogr, 6:365-372, 1982.

Bergstrom M, Eriksson L, Bohm C, Blomqvist G, Litton J, "Corrections for scattered
radiation in a ring detector positron camera by integral transformation of the projection",
J Comp Assist Tomogr, 7:42-50, 1983.

Bohm C, Eriksson L, Bergstrom M, Litton J, Sundman R, Singh M, "A computer
assisted ringdetector positron camera system for reconstruction tomography of the
brain", IEEE Trans Nucl Sci, 25:624-637, 1978.

Brigham EO, "The Fast Fourier transform", Prentice-Hall Inc, Englewood Cliffs, NJ,
1974.

Brun E, Ohlsson T, Erlandsson K, Kjellen E, Sandell A, Tennvall J, Wennerberg J,
Strand S-E, "Early prediction of treatment in head and neck cancer with 2-18FDG PET",
Submitted to J Nucl Med, 1996.

Buonocore MH, Brody WR, Macovski A, "A natural pixel decomposition for two-
dimensional image reconstruction", IEEE Trans Biomed Eng, 28:69-78, 1981.

Carson RE, Daube-Witherspoon ME, Green MV, "A method for postinjection PET
transmission measurements with a rotating source", J Nucl Med, 29:1558-1567, 1988.

Casey ME, Hoffman EJ, "Quantitation in positron emission computed tomography: A
technique to reduce noise in accidental coincidence measurements and coincidence
efficiency calibration", J Comput Assist Tomogr, 10:845-850, 1986.

Cherry SR, Marsden PK, Ott RJ, Flower MA, Webb S, Babich JW, "Image
quantification with a large area multiwire proportional chamber positron camera (MUP-

- 5 9 -



PET)", Eur J Nucl Med, 15:694-700, 1989.

Cherry SR, Dahlbom M, Hoffman EJ, "Evaluation of a 3D reconstruction algorithm for
multi-slice PET scanners", Phys Med Biol, 37:779-790, 1992a.

Cherry SR, Dahlbom M, Hoffman EJ, "High sensitivity, total body PET scanning using
3D data aquisrtion and reconstruction", IEEE Trans Nucl Sci, 39:1088-1092,1992b.

Cherry SR, Meikle SR, Hoffman EJ, "Correction and caracterization of scattered events
in three-dimensional PET using scanners with retractable septa", J Nucl Med, 34:671-
678, 1993.

Chu G, Tarn K-C, "Three-dimensional imaging in the positron camera using Fourier
techniques", Phys Med Biol, 22:245-265,1977.

Clack R, Townsend D, Jeavons A, "Increased sensitivity and field of view for a rotating
positron camera", Phys Med Biol, 29:1421-1431, 1984.

Colsher JG, "Iterative three-dimensional reconstruction from tomographic projections",
Comput Graph Im Process, 6:513-537,1977.

Colsher JG, "Fully three-dimensional positron emission tomography", Phys Med Biol,
25:103-115,1980.

Dahlbom M, Eriksson L, Rosenqvist G, Bohm C, "A study of the possibility of using
multi-slice PET systems for 3D imaging", IEEE Trans Nucl Sci, 36:1066-1071,1989.

Daube-Witherspoon ME, Muehllehner G, "An iterative image space reconstruction
algorithm suitable for volume ECT", IEEE Trans Med Im, 5:61-66, 1986.

Daube-Witherspoon ME, Muehllehner G, "Treatment of axial data in three-dimensional
PET", J Nucl Med, 28:1717-1724,1987.

Defrise M, Kuijk S, Deconinck F, "A new three-dimensional reconstruction method for
positron cameras using plane detectors", Phys Med Biol, 33:43-51, 1988.

Defrise M, Townsend DW, Geissbuhler A, "Implementation of three-dimensional image
resonstruction for multi-ring positron tomographs", Phys Med Biol, 35:1361-1372,
1990.

Defrise M, Townsend DW, Clack R, "FaVoR: A fast reconstruction algorithm for
volume imaging in PET", Conference Record, 1991 IEEE Nuclear Science Symposium
and Medical Imaging Conference, Santa Fe, 1919-1923,1992.

- 6 0 -



Defrise M, Geissbuhler A, Townsend DW, "A performance study of 3D reconstruction
algorithms for positron emission tomography", Phys Med Biol, 39:305-320, 1994.

Defrise M, Clack R, Townsend DW, "Image reconstruction from truncated, two-
dimensional, parallel projections", Inv Probl, 11:287-313, 1995a.

Defrise M, "A factorization method for the 3D x-ray transform", Inv Probl, 11: 983-994,
1995b.

Edholm PR, Lewitt RM, Lindholm B, "Novel properties of the Fourier decomposition
of the sinogram", SPIE Proc. Int. Wkshp. Physics Eng. Computerized Multidimensional
Image Processing, 671:8-18, 1986.

Erlandsson K, Esser PD, Strand S-E, van Heertum RL, "3D reconstruction for a multi-
ring PET scanner", Conference Record of the 1993 IEEE Nuclear Science Symposium
and Medical Imaging Conference, San Francisco, 1562-1566,1994.

Erlandsson K, Strand S-E, "Improved axial resolution in 2D PET with 3D
reconstruction", Conference Record of the 1995 IEEE Nuclear Science Symposium and
Medical Imaging Conference, San Francisco, 1267-1271,1996.

Feldkamp LA, Davis LC, Kress JW, "Practical cone-beam algorithm", J Opt Soc Am,
1:612-619,1984.

Flower MA, Ott RJ, Webb S, Leach MO, Marsden P, Khan O, McCready VR, Bateman
JE, Flesher AC, Sharma HL, Smith AG, "A clinical eveluation of a prototype positron
camera for longitudinal emission tomography", Brit J Radiol, 57:1103-1117, 1984.

Freifelder R, Karp JS, "A dedicated PET scanner for breast cancer", Conference Record
of the 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference, San
Francisco, 1358-1362, 1996.

Gordon R, Bender R, Herman GT, "Algebraic reconstruction techniques (ART) for
three-dimensional electron microscopy and x-ray photography", J Theor Biol, 29:471-
481, 1970.

Gullberg GT, Zeng GL, "A reconstruction algorithm using singular value_decomposition
of a discrete representation of the exponential Radon transform using natural pixels",
IEEE Trans Nucl Sci, 41:2812-2819, 1994.

Herman GT, "Image reconstruction from projections. The fundamentals of computerized
tomography", Academic Press, New York, 1980.

- 6 1 -



Huang S-C, Hoffman EJ, Phelps ME, Kuhl DE, "Quantitation in positron emission
computed tomography: 2. Effects of inaccurate attenuation correction", J Comput Assist
Tomogr, 3:804-814, 1979.

Huang S-C, Hoffman EJ, Phelps ME, Kuhl DE, "Quantitation in positron emission
computed tomography: 3. Effects of sampling", J Comput Assist Tomogr, 4:819-826,
1980.

Huang S-C, Carson RE, Phelps ME, Hoffman EJ, Schelbert HR, Kuhl DE, "A boundary
method for attenuation correction in positron computed tomography", J Nucl Med,
22:627-637, 1981.

Hudson HM, Larkin RS, "Accelerated image reconstruction using ordered subsets of
projection data", IEEE Trans Med Im, 13:601-609, 1994.

Jacobson C, "Fourier methods in 3D-reconstruction from cone-beam data", Linkoping
Studies in Science and Technology, Dissertations No. 427, Linkoping University,
Sweden, 1996.

Jeavons A, Hood K, Herlin G, Parkman C, Townsend D, Magnanini R, Frey P, Donath
A, "The high-density avalanche chamber for positron emission tomography", IEEE
Trans Nucl Sci, 30:640-645,1983.

Johnson CA, Yan Y, Carson RE, Martino RL, Daube-Witherspoon ME, "A system for
3D reconstruction of retracted-septa PET data using the EM algorithm", IEEE Trans
Nucl Sci, 42:1223-1227, 1995.

Kaczmarz S, "Angenaherte auflosung von systemen linearer gleichungen", Bull Acad Pol
Sci Lett A, 6-8A:355-357,1937.

Kak AC, Slaney M, "Principles of computerized tomographic imaging", IEEE Press,
New York, 1988.

Kinahan PE, Rogers JG, Harrop R, Johnson RR, "Three-dimensional image
reconstruction in object space", IEEE Trans Nucl Sci, 35:635-638, 1988.

Kinahan PE, Rogers JG, "Analytic 3D image reconstruction using all detected events",
IEEE Trans Nucl Sci, 36:964-968,1989.

Kinahan PE, Matej S, Karp JS, Herman GT, Lewitt RM, "A comparison of transform
and iterative reconstruction techniques for a volume-imaging PET scanner with a large
axial acceptence angle", IEEE Trans. Nucl. Sci., vol. 42, pp. 2281-2287, 1995.

- 6 2 -



Landweber L, "An iterative formula for Fredholm integral equations of the first kind",
Amer J Math, 73:615-624, 1951.

Lercher MJ, Wienhard K, "Scatter correction in 3-D PET", IEEE Trans Med Im, 13:649-
657, 1994.

Lewitt RM, "Ultra-fast convolution approximations for computerized tomography",
IEEE Trans. Nucl. Sci., 26:2678-2681,1979.

Lewitt RM, "Reconstruction algorithms: Transform methods", Proceedings of the IEEE,
71:390-408, 1983.

Lewitt RM, Muehllehner G, "Accelerated iterative reconstruction for positron emission
tomography based on the EM algorithm for maximum likelihood estimation", IEEE
Trans Med Im, 5:16-22,1986.

Lewitt RM, Muehllehner G, Karp JS, "3D image reconstruction for PET by multislice
rebinning and axial filtering", Conference Record of the 1991 IEEE Nuclear Science
Symposium and Medical Imaging Conference, Santa Fe, 2054-2061,1992a.

Lewitt RM, "Alternatives to voxels for representation in iterative reconstruction
algorithms", Phys Med Biol, 37:705-716, 1992b.

Lewitt RM, Muehllehner G, Karp JS, "Three-dimensional image reconstruction for PET
by multi-slice rebinning and axial image filtering", Phys Med Biol, 39:321-339,1994.

Litton J, Bergstrom M, Eriksson L, Bohm C, Blomqvist G, Kesselberg M, "Performance
study of the PC-384 positron camera system for emission tomography of the brain", J
Comput Assist Tomogr, 8:74-87, 1984.

Miyaoka RS, Lewellen TK, Kim JS, Kaplan MS, Kohlmyer SK, Costa W, Jansen F,
"Performance of a dual headed SPECT system modified for coincidence detection",
Conference record of the 1995 IEEE Nuclear Science Symposium and Medical Imaging
Conference, San Francisco, 1348-1352,1996.

Muehllehner G, Buchin MP, Dudek JH, "Performance parameters of a positron imaging
camera", IEEE Trans Nucl Sci, 23:528-537, 1976.

Muehllehner G, Atkins F, Harper PV, "Positron camera with longitudinal and transverse
tomographic capabilities", in Medical Radionuclide Imaging, Vienna, IAEA-SM-210/84,
1:291-307, 1977.

Muehllehner G, Karp JS, "A positron camera using position-sensitive detectors: PENN-

- 6 3 -



PET", J Nucl Med, 27:90-98, 1986.

Muehllehner G, Karp JS, Mankoff DA, Beerbohm D, Ordonez CE, "Design and
performance of a new positron tomograph", IEEE Trans Nucl Sci, 35:670-674, 1988.

Nellemann P, Hines H, Braymer W, Muehllehner G, Geagan M, "Performance
caracteristics of a dual headed SPECT scanner with PET capability", Conference record
of the 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference, San
Francisco, 1751-1755, 1996.

Ohlsson T, "A clinical positron emission tomography facility: Development and results",
PhD Thesis, Lund University, Sweden, 1996.

Ott RJ, Rower MA, Babich JW, Marsden PK, "The physics of radioisotope imaging",
in Webb S (Editor), The physics of medical imaging, IOP Publishing, Bristol, 1988.

Ott RJ, Veugen R, Flower MA, Visvikis D, Wells K, "3D scatter characteristics for large
area PET cameras", Proceedings of the 1995 International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Aix les Bains,
France, 121-125, 1995.

Pan T-S, Yagle AE, "Numerical study of multigrid implementations of some iterative
image reconstruction algorithms", IEEE Trans Med Im, 10:572-588,1991.

Pelc NJ, Chesler DA, "Utilization of cross-plane rays for three-dimensional
reconstruction by filtered back-projection", J Comput Assist Tomogr, 3:385-395,1979.

Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM, "Application of annihilation
coincidence detection to transaxial reconstruction tomography", J Nucl Med, 16:210-
224, 1975.

Phelps ME, Hoffman EJ, Huang SC, Kuhl DE, "ECAT: A new computerized
tomographic imaging system for positron-emitting radiopharmaceuticals", J Nucl Med,
19:635-647, 1978.

Press WH, Flannery BP, Teukolsky SA, Vetterling WT, "Numerical recipes. The art of
scientific computing", Cambridge University Press, Cambridge, 1986.

Ra JB, Lim CB, Cho ZH, "A true three-dimensional reconstruction algorithm for the
spherical positron emission tomograph", Phys Med Biol, 27:37-50, 1982.

Radon J, "Uber die bestimmung von funktionen durch ihre integralwerte langs gewisser
mannigfaltigkeiten", Berichte Sachsische Akademie der Wissenschaften, Math-Phys Kl,

- 6 4 -



69:262-267, 1917.

Radon J, "On the determination of functions from their integral values along certain
manifolds", (Translation by PC Parks from the original German text), IEEE Trans Med
Im, 5:170-176, 1986.

Sandell A, Ohlsson T, Erlandsson K, Hellborg R, Strand S-E, "A PET system based on
2-18FDG production with a low energy electrostatic proton accelerator and a dual headed
PET camera", Acta Oncologica, 31:771-776, 1992.

Schorr B, Townsend D, "Filters for three-dimensional limited-angle tomography", Phys
Med Biol, 26:305-312, 1981.

Shao L, Lewitt RM, Karp JS, Muehllehner G, "Combination of Wiener filtering and
singular value decomposition for volume imaging PET", IEEE Trans Nucl Sci, 42:1228-
1234, 1995.

Shepp LA, Vardi Y, "Maximum likelihood reconstruction for emission tomography",
IEEE Trans Med Im, 1:113-121, 1982.

Siddon RL, "Fast calculation of the exact radiological path for a three-dimensional CT
array", Med Phys, 12:252-255,1985.

Sossi V, Stazyk MW, Kinahan PE, Ruth TJ, "The performance of the single-slice
rebinning technique for imaging human striatum as evaluated by phantom studies", Phys
Med Biol, 39:369-380, 1994.

Spinks TJ, Jones T, Bailey DL, Townsend DW, Grootoonk S, Bloomfield PM, Gilardi
M-C, Casey ME, Sipe B, Reed J, "Physical performance of a positron tomograph for
brain imaging with retractable septa", Phys Med Biol, 37:1637-1655,1992.

Stazyk MW, Rogers JG, "Analytic image reconstruction in PVI using the 3D Radon
transform", IEEE Trans Nucl Sci, 39:1153-1160, 1992.

Stearns CW, Chessler DA, Brownell GL, "Accelerated image reconstruction for a
cylindrical positron tomograph using Fourier domain methods", IEEE Trans Nucl Sci,
37:773-777, 1990.

Suckling J, Ott RJ, Deehan B J, "Quantitative analysis of a reconstruction method for
fully three-dimensional PET", Phys Med Biol, 37:751-766,1992.

Tarn K-C, Perez-Mendez V, Macdonald B, "3-D object reconstruction in emission and
transmission tomography with limited angular input", IEEE Trans Nucl Sci, 26:2797-

- 6 5 -



2805, 1979.

Tanaka E, "A fast reconstruction algorithm for stationary positron emission tomography
based on a modified EM algorithm", IEEE Trans Med Im, 6:98-105,1987.

Tanaka E, Mori S, Shimizu K, Yosikawa E, Yamashita T, Murayama H, "Moving slice
septa and pseudo three-dimensional reconstruction for multi-ring PET", Phys Med Biol,
37:661-672, 1992.

Thompson CJ, Murthy K, Picard Y, Weinberg IN, Mako R, "Positron emission
mammography (PEM): A promising technique for detecting breast cancer", IEEE Trans
Nucl Sci, 42:1012-1017, 1995.

Townsend D, Frey P, Jeavons A, Reich G, Tochon-Danguy HJ, Donath A, Christin A,
Schaller G, "High Density Avalanche Chamber (HIDAC) Positron Camera", J Nucl
Med, 28:1554-1562, 1987.

Townsend DW, Spinks TJ, Jones T, Geissbuhler A, Defrise M, Gilardi M-C, Heather
J, "Three-dimensional reconstruction of PET data from a multi-ring camera", IEEE
Trans Nucl Sci, 36:1056-1065, 1989.

Townsend DW, Geissbuhler A, Defrise M, Hoffman EJ, Spinks TJ, Bailey DL, Gilardi
M-C, Jones T, "Fully three-dimensional reconstruction for a PET camera with
retractable septa", IEEE Trans Med Im, 10:505-512,1991.

Townsend DW, Wensveen M, Byars LG, et al, "A rotating PET scanner using BGO
block detectors: Design, performance and applications", J Nucl Med, 34:1367-1376,
1993.

Veklerov E, Llacer J, "Stopping rule for the MLE algorithm based on statistical
hypothesis testing", IEEE Trans Med Im, 6:313-319,1987.

Visvikis D, Wells K, Ott R, et al, "PETRRA: Preliminary experimental results from the
first full size detector and dead time simulation of the count rate performance of a unique
whole body PET camera", IEEE Trans Nucl Sci, 42:1031-1037, 1995.

Wagner HN jr, "Clinical PET: Its time has come", J Nucl Med, 32:561-564,1991.

Webb S, Ott RJ, Bateman JE, Flesher AC, Flower MA, Leach MO, Marsden P, Khan
O, McCready VR, "Tumour localization in oncology using positron emitting
radiopharmaceuticals and a multiwire proportional chamber positron camera;
Techniques for 3D deconvolution", Nucl Instr Meth, 221:233-241, 1984.

- 6 6 -



Wu C, Ordonez CE, Chen C-T, "FIPI: Fast 3-D PET reconstruction by Fourier inversion
of rebinned plane integrals", Proceedings of the 1995 International Meeting on Fully
Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Aix-les-
Bains, 241-245, 1995.

Zerby CD, "A Monte Carlo calculation of the response of gamma-ray scintillation
counters", in Methods in computational physics, Academic Press, New York, 1:89-134,
1963.

- 6 7 -


