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I. INTRODUCTION

It is usually accepted that properties of electronic molecules are determined
exclusively by Coulombic forces acting between nuclei and electrons and the
strong interaction between nuclear constituents plays a negligible role. Surely,
with respect to the nuclear channels, electronic molecule is indeed observed as
a very stable object but it is evident nevertheless that any molecular level (cor-
responding to the Coulomb interactions only) looks in fact as an eigenvalue
embedded into continuous spectrum of a sub-Hamiltonian of the molecule de-
scribing its nuclear constituents. If there are no special reasons, this means
that a coupling between the molecular and nuclear channels turn the molecular
levels into resonances* (see, e. g., Refs. [1] - [5] and references cited therein).
Of course, the coupling is extremely small due to a wide Coulombic repul-
sive barrier between nuclei and short-range character of nuclear interaction.
Therefore, widths of such resonances giving a probability of a fusion of the nu-
clear constituents of the molecule, are extremely small, too. However, we will
show the situation turns out to be rather different in the case where nuclear
subsystem of a molecule has a sufficiently narrow near-threshold (more pre-
cisely, pre-threshold) resonance. A number of concrete examples concerning
the nuclear systems forming near-threshold resonance states may be extracted
e. g., from the data presented in Ref. [6]. Among them are even such intrigue
systems as pp1 6O and p170 [7], [8] i. e. the nuclear constituents of the usual
water molecule H2O or hydroxyl ions OH~ based on the more rare isotope 17O.
Possibility of influence of near-threshold nuclear resonances on the molecular
properties was recently indicated in Ref. [9] where an estimation of overlap
integrals between ansatz molecular and resonance nuclear wave functions was
made for the molecules LiD and H2O. There exists also a well-known exam-
ple [10] of muon catalyzed fusion of deuteron and triton in the dtp molecule
where a near-threshold nuclear resonance plays a decisive role.

Although we have in mind, first of all, the molecular systems (which can in-
clude instead of electrons another light negative-charged particles like muons)
we deal in the paper with more general Hamiltonians. The only thing we
use is a possibility of a separation in them of weakly coupled ("molecular")
channels giving initial eigenvalues ("molecular"energies) embedded into con-
tinuous spectrum of respective rest ("nuclear") Hamiltonians. So that these
eigenvalues turn automatically into "molecular" resonances when a coupling
between the separated "molecular" and rest "nuclear" channels is switched
on.

For all the models concerned we prove the following statement.
If the "nuclear" channel itself has a narrow resonance with a real part

*By resonance we understand a complex value of energy (in an unphysical sheet)
where analytic continuation of the resolvent kernel (or its matrix element hetween
suitable states [5]) has a pole. Such poles turn out usually to be poles of the
scattering matrix continued, too.



being nearly the same as the initial "molecular" energy then the width (i. e.
the imaginary part) of the resulting "molecular" resonance turns out to be
inversely proportional to the "nuclear" width [and increases in this regime till
its value acquires an order of the (decreasing) "nuclear" one]. In other words,
the more narrow is the "nuclear" resonance, the more wide is the "molecular"
one. Consequently, a large increase of the decay rate of the "molecular" state
may be observed in the case concerned, in a contrast to the cases where such
near-lying "nuclear" resonances with small widths are absent.

We deliberately consider in the paper certain abstract Hamiltonians since,
on the one hand, this consideration exposes more clearly a mechanism of the
effect of interplay between the resonance widths. On the other hand, our
consideration shows that such an enhancement of decay of a resonance state
due to a presence of another closed resonance makes a sense of an universal
law working in a wide class of quantum-mechanical systems. The same effect
has to take place also in various problems of classical condensed matter, optics
and electronics etc., in all the cases description of which may be reduced to
spectral problems for model three-channel or two-channel operators like (1)
and (22) or more general Hamiltonians of the form (33).

We start, in Section II, with an explicitly solvable matrix model (1) which
demonstrates as clearly as possible a mechanism and the effect of interplay be-
tween the resonance widths. The model corresponds to a system of arbitrary
nature allowing to separate a main channel with continuous spectrum and two
additional weakly coupled one-dimensional channels giving, in absence of cou-
pling, two discrete spectrum eigenvalues embedded into continuous spectrum
of the main channel. In the case of a molecule, the latter are considered as
trial energies for the nuclear and molecular resonances.

If the molecular state may be considered usually as weakly coupled with
nuclear channels and, therefore, its separation into a molecular resonance
channel like channel 2 in the Hamiltonian (1) may be done comparatively
easy, such a separation of the nuclear resonance channel like channel 1 in this
Hamiltonian, may turn out to be difficult. This is why we specially consider
in Section III another model Hamiltonian (22) with explicit separation of the
"molecular" resonance channel only.

Section IV is devoted to consideration of a model including realistic sub-
Hamiltonians for nuclear subsystems of TV-atomic molecules with N >2. In
this case, a separation of the molecular resonance channel is realized in frame-
work of an approach motivated by the Faddeev method [11], [12].

In Section V we consider a time evolution of the molecular state in a
presence again of the narrow nuclear pre-threshold resonance. There is shown
in this section that in a wide time interval, decay of the molecular state does
have a standard exponential character [13]. The decay is obliged first of all
to the open nuclear channels and its rate is ruled just by the inverse width of
the nuclear resonance.



II. HAMILTONIAN WITH EXPLICIT SEPARATION OF BOTH
RESONANCE CHANNELS

First, we introduce a three-channel Hilbert space H = Ho © Hi 0 H2,
the sum of a "main" Hilbert space Ho (channel 0) and two one-dimensional
spaces H\ — H2 = C (channels 1 and 2, respectively). Elements of the space

fUo\H are represented as "vectors" u — I \i\ I with Uo £ Ho and tti, 1*2, complex
\ u2 /

numbers, «i, U2 € C . Inner product (•, •) in H is naturally defined via inner
product (•, •) in Wo as (w, v) ~ (u0, v0) + Uit>i -f- u2v2.

We deal with Hamiltonian h acting in H as a 3 x 3 (operator) matrix,

h= {-Mi) M bu (l)

with /io, a self-adjoint operator in the main Hilbert space HQ and Aj,A2, the
real numbers. The vectors 601 and 602 of the space Ho realize a coupling of the
channels 1 and 2 corresponding to the initial eigenvalues \\ and A2 with the
main channel Ho. The complex number 612 describes an immediate coupling
between the channels 1 and 2.

If the coupling between the channels in h is absent, 601 — ̂ 02 — 0 and
612 = 0, spectrum of the Hamiltonian h consists of the operator ho spectrum
and two additional discrete spectrum eigenvalues Ai and A2 (which are inter-
preted as trial values respectively, for nuclear resonance and molecule energy).
We suppose that the Hamiltonian ho has a continuous spectrum denoted by
<jc(ho)y and the eigenvalues Ai and A2 are embedded into this spectrum. It
is assumed also that Ai,Aa are not threshold points of the spectrum crc(ho)
and in a wide vicinity of Ai, A? this spectrum is absolutely continuous. If the
coupling between the channels becomes non-trivial, the eigenvalues Xi and A2
may go out on unphysical sheet(s) of the energy plane turning into resonances.
The latter are considered as poles of analytic continuation on unphysical en-
ergy sheets of the resolvent kernel r(z) — (h — z)~l or its matrix elements
taken between suitable states.

We suppose here that the resolvent rQ(z) = (ho — z)~l does not have such
poles in a sufficiently wide neighborhood X> of the points Ai and A2 in unphys-
ical sheet(s) and the matrix elements fljk(z) = (ro(z)6oi> 60*), h k — 1,2, allow
analytical continuation in z at least on this neighborhood T> and

= inf I Im(ro(z)6oj, boj)\ > 0, Cv = max sup \{ro(z)bojMk)\ < 00

where boj =-boj/\\boj\\, j = 1,2, and the values of c%' and Cx> for given IQJ and
&ojk, depend only on V. So that for given (and fixed) "structure functions" boj
one has the following estimates:

< C^imH2 and |ftfc(*)| < Cp||fcy||||M (2)



where C$ = sup | Im (ro{z)lojXj)l <% < C^] < Cv.

Let us consider the spectral problem hu = zu,

(h0 — z)u0 + 6oi"i -f 602W2 = 0
( & ) + (Ai- j : ) t i i + bl2u2 = 0 (3)

= 0

for the Hamiltonian h. Expressing the component u0 = —ro(z)boiiii —
ro(z)bo2U2 from the first equation (3) and substituting it into the rest equa-
tions, one comes immediately to an equivalent scalar system including the
components iti and u2 only,

- z - PK{Z)]UX + [612 - 01

\ [bn - P2i{z)]ux + {\2~z- (322{z)]u2 = 0.

Therefore, the system (4) and, hence, the problem (3) is solvable in 7i if and
only if the energy z satisfies the "quadratic" equation

( \ i - z - Ai)(A2 - z - ft2) - (612 - /?12)(612 - (321) = 0. (5)

It is easy to check that exactly the left part of the equation (5) is present as a
denominator in the expression for the resolvent r(z). Obviously, this equation
has no solutions z with Imz ^ 0 in the physical sheet. Otherwise, such z were
the discrete spectrum eigenvalues of h. However, this is impossible since the
Hamiltonian h is a self-adjoint operator. Therefore the equation (5) may be
solvable only in real axis and/or in unphysical sheet(s) of the energy Riemann
surface of ro(z).

At the beginning, let us consider, a special case where 6i2 = 0 and, say,
boj ̂  0 but bok = 0, k ^ j . In this case, the eigenvalue A* stays fixed. At the
same time the equation (5) turns into

2 = A i - ( r 0 Wid i l 6b i ) . (6)

If H&70II is small enough, to prove existence of solutions in a vicinity of z = Aj,
one can apply to the equation (6) the fixed point theorem. Since, by sup-
position, \j is not a threshold point of (Tc(ho), the equation (6) gives us two
resonances (see, e. g., [14], [15]) looking in a first order of perturbation series
as

bo;) + o(||6i0||2), (7)

and being situated, respectively, in lower and upper half-planes of unphysical
sheet(s) neighboring with the physical one in a vicinity of the point z = Xj.
The real, E^\ and imaginary, 1^/2, parts of the resonances z}', ZJ' ~

•) r ( i )

ER ± »-—-, are given by



Eg - A, - Re^A, + .Ojfcy,**) + °(||&;o||2),
= 2Im(ro(A i + iO)&oi,&o;) + o(\\bj0\\

2). (8)

For analysis of the general three-channel equation (5), it is convenient to
resolve it for given j3jk — (ro(z)6oj> bok) as a quadratic equation with respect
to z:

Ai + A2 — fin — /?22 ,
z = —~ ±

0)
We suppose the resonances generated by the both eigenvalues Ai and A2,

are narrow. This means that the coupling of the channels in (1) must be
weak, i. e. the previous conditions of a "very small" ||6oj||, j=l,2, as well
as the condition of a "very small" |6i2| are valid. So, the solvability of the
equations (9) in unphysical sheet(s) may be proved again using the fixed point
theorem.

Here, we consider two cases:

1. Ct>| |&o i | | | |6o f c | |< |A2-A1 | forall j ,A;=:l ,2and| |61 2 | |< |A2-A1 | . One
can see easily in this case the equations (9) give two pairs of solutions which
are practically independent on each other and these solutions are expressed
by formulae like (7).

2. The case where Ai « A2, but nevertheless

|(*ia - 0 M ) ( 5 « ~ &i)l < |Ai - A2 - fin + fi22\\ (10)

Namely this case is of most interest for us in the context of the main topic of
the work. We have in mind that the Hamiltonians

A, 1 )

are as if modelling, respectively, the nuclear subsystem of a molecule forming
a resonance state and the molecule itself in absence of the nuclear resonance.
Leading terms of the "nuclear" and "molecular" resonances z}*' and z^ gen-
erated by the respective Hamiltonians hi and h2 are given by (7). According
to (2) their widths (8) satisfy inequalities

and c<,2)|M|2 < rg>/2 <

Since the molecular width T$ is usually much more small, T$ < T^\ as
compared to the nuclear one, IjJ , one may require

^ . (12)



The channel H\ belongs to the pure nuclear part of the system. This means
that, if there are no special reasons, its constant of coupling |&i2| with the
molecular channel 7i2 must have the same order of magnitude as H&02II, i- e.

I&12IHMI (and, thereby, Cv\bl2\
2 < ( 1 3 )

From the beginning, we assume for convenience the "coupling constant" ||6oi||
to be so small that

<

i. e. the "nuclear" resonances z\ are as narrow as Y^' < C-p
In the condition (12) we have

- A2 - /3U - A2 - f3u\2 >

+tO)]2

(14)

. (15)

At the same time,

\(b12 - A

Since the conditions (13) and (14) take place, we get

( 1 6 )

L e t u s s u p p o s e f u r t h e r t h a t t h e " n u c l e a r " r e s o n a n c e s z^' is i n f a c t a s
n a r r o w t h a t

Tg )<l/cg>. (17)

Then, as follows from the estimates (15) and (16), the condition (10) is obvi-
ously satisfied if

( )

R

(2) f r ( 1 )
(18)

Now, using the expression \ / l 4-:"e = 1 + - 4- O(e2) at |e| <C 1, one can
Zi

2rewrite the equations (9) for z in

i + A2 ~ fi\\ —

-vicinity of Ai and A2 = Ai 4-

z =

± ^
— A2 — /?11 4"

1 + A2

6

faf
(19)



with e ~ (4?) rJJVfr^) • It follows from (19) that in the conditions
above, the equations (9) have solutions

i(*i T -0) + o(||6o,||2)

and

= A , - iO) + o(|M|2) - f
i — A2 — Pn^Ai -f

(20)

Due to (13) and (18) we have

A2 - MX, ± io)\

D

Therefore, the resonances 2 ^ j are only weakly perturbed initial "nuclear"
resonances z\ ' with practically the same width T^'. In a contrast to z ^ j , a
difference between widths of the resonances z^J and z2 in the case concerned
can be very large. Such a situation takes place if the initial "molecular" energy
A2 coincides with real part of the "nuclear" resonances z[ ,

A2 = E

and, in accordance with (20),

t'O).

The width of the resonances

(m) -R mol | —

being small, Th1' < F)J\ is nevertheless much more large than
2Im/922(A2 + iO). Indeed, due to (13) and (17) we find

R R



This completes the proof of our statement in the case of three-channel Hamil-
tonians, concerning a crucial influence of a narrow "nuclear" resonance on the
width of the "molecular" level: if the "molecular" energy A2 coincides with the
real part ER of the "nuclear" resonance then the "molecular" width TR is
inversely proportional to the width TR of this resonance and, thereby, for
a small TR) TR -C 1/cp , it can be very large compared with such a width,
VR, in absence of the "nuclear" resonance.

To get a feeling of the Cp value in a molecular case, let us suppose the
Hamiltonian ho describes indeed a few-nucleon system (constituted by nuclei
of the molecule). Then the kernel of the resolvent component r^(z) corre-
sponding to the continuous spectrum of ho allows, say, in configuration space
IRn (the dimension n is determined by number of the nucleons), the following
representation [12]

u A UA(X,PA)UA(X\PA)

R"A

where X, X' stand for points of IRn and A, for multi-indices (see Ref. [12], §§2-
4 of Chapter I) numerating the scattering channels. Notations UA are used for
respective channel wave functions (kernels of the wave operators) and EA, for
thresholds. The channel dimensions nA are determined by numbers of clusters
(nuclei) in respective initial scattering states.

In the case, the coupling vectors 602 have to be considered as functions
bo2(X) belonging to a subspace corresponding to a specific symmetry of the
molecule concerned. Calculating a jump of the kernel r^(X, X',z) when z
crosses the real axis at the point A2 one finds the following estimation for cL'

A: E

where 5 f lA~1 stands for the unit sphere in IRnA, pA G 5 f l A"1 .

III. TWO-CHANNEL HAMILTONIAN WITH EXPLICIT
SEPARATION ONLY OF A "MOLECULAR" RESONANCE

CHANNEL

In the present section we consider a Hamiltonian h in the Hilbert space
H = Hi © C defined (cf. Section II) as a matrix

*-(<•% i) (22>
8



where hi stands now for a main ("nuclear") Hamiltonian acting in a Hilbert
space H\ and A2, A2 € IR, again for a trial "molecular" energy. A vector b £ Hi
realizes a coupling between the channels. Evidently, the Hamiltonian (1) is a
particular case of the Hamiltonian (22).

If b ^ 0, the eigenvalue A2 turns into resonances z being solutions of the
equation like (6),

z = A2 - 0{z) (23)

with (3(z) = {ri(z)b,6), Ti(z) = (hi — z)'1. In a contrast to Section II we
assume here that the "nuclear" resonance* closed to A2, is present immediately
in the channel 1, i. e. the function (3(z) continued in an unphysical sheet
sticked in vicinity of A2 with the physical one, say, along upper rim of the

()
cut, has a pole zx = E$ - i-~, with E*$ G IR, r£ } > 0. For the sake of
simplicity we suppose that this pole is simple, so that in this vicinity

^ (24)
Z —

with a holomorphic function /?rag(^). For a fixed "structure function"
A

b = b/\\b\\ we have \a\ = CO||6||2 with a constant Ca > 0 determined by the
residue at z = zi of the resolvent r\(z) continued. Note that this residue is ex-
pressed in terms of respective resonance wave functions, the so-called Gamow
vectors, corresponding to the resonance Zi [see below formula (42)]. In fact, we
suppose that this resonance corresponds to a kind of an "almost eigenstate"
of the Hamiltonian hi, i. e. a limit procedure is possible, in principle, with
respect to a certain parameter (or parameters) inside of hi in which 1^ —* 0
and the resonance turns into usual eigenvalue with eigenvector ifii € Hi. In
other words we suppose that

Ca = Ca
0) + o(l) as rg J - fO (25)

and Ca = (6,0i)(t/>i,6) ^ 0. An example of such a situation with Ca
0^ — 1

was already demonstrated in the previous section with the Hamiltonians (11).
The limit procedure (25) will be discussed in more detail in Section IV B.

Analogously to a, we represent the regular term ^r^(z) as (3re&(z) =
||6||2/(z) with a factor f(z) depending only on b. We shall suppose the vector
b to be such that, in a sufficiently wide domain T> about A2 concerned, in

*More precisely, two resonances. Since the Hamiltonian hi is a self-adjoint operator
its resolvent obeys in the physical sheet the symmetry condition [fi(.?)]* = ri(J).
Then, it immediately follows from the uniqueness principle of analytic continuation,
if zi is a resonance in a sheet neighboring with the physical one then the conjugate
point 2i is also a resonance with the same multiplicity (but maybe in another sheet).



the unphysical sheet, the function f(z) is bounded, Cv = sup | / (z) | < oo,

and cp = inf | Im / ( z ) | > 0. Therefore |/?reg(z)| < CD| |6 | |2 and cp||6||2 <

< Cv\\b\\2 where Cv = sup | Im/(z) | , Cv < Cv.

A substitution of the representation (24) for f3(z) into equation (23) turns
the latter into "quadratic" equation

_ X3)(z - = 0

with "solutions'

z — — a. (26)

The equations (26) are quite analogous to the equations (9) being suitable for
applying the fixed point theorem when proving a solvability of (23).

We shall suppose that the coupling between channels in the Hamilto-
nian (22) is so weak that

la

a n d

This means

A\a

^(i)

I ^ (28)

Note that if the resonance z\ was absent in the channel 0 and in such a case,
one had [3(z) = /9reR(z), then the eigenvalue A2 had generated, in the lower
half-plane Imz < 0, the resonance z2 = E^ — tT^72 (see Section II) with
the width T^2) « 2Im/3re8(A2 -f iO) satisfying inequalities

Therefore, we can compare (in terms of the "pure nuclear", I # , and "pure
molecular", TR , widths) the case where a "nuclear" resonance, z1} is present,
with an opposite case where such a resonance is absent. In particular, the
second condition (27) follows from the requirement, analogous to (18),

10



It follows from the relations (26) considered together with the esti-
mates (27) and (28) that the domain V includes (at Ini^r < 0) only two
roots 2nuci and zmo\ of the equation (23) with leading terms given by

a a
2nucl"Zl + \2-Zl- p*(zx) ~Zl + A T ^ ? (29)

° = A2 - -r^—. (30)
A z

r = A2 r
A2 - z\ - /*reg(A2 + zO) A2 - zx

Due to the second condition (27) we have a <C FjJ and, thereby,
A2 -

the resonance 2nuci represents only a very weak perturbation of the initial
"nuclear" resonance zi. At the same time, a situation with the "molecular"
resonance is crucially different (cf. Section II).

In particular, if the "molecular" energy A2 coincides with the real part
p(m)

of the "nuclear" resonance zx then zmol = ^ m ) - t - - g - with Et] ^ \ 2 -
R

and

W i ^ l , Rea<0. (31)
R

Since | Rea| - Ca||6||2 ~ ^ r ^ 2 ) , one finds for r^m) the estimate

(32)
R

It should be noted in this place that, due to the consideration (25) of the
resonance zi as an "almost eigenvalue", the ratio Ca = |a|/||6||2 is separated
from zero, Ca > C > 0, as T$ -* 0. With this remark, it follows from
the estimations (31) and (32) as in Section II, that, in the case of a narrow
"nuclear" resonance with a width T$ < Ca/cv, one has to observe a large rise,

proportional just to the factor ~ [cf. formula (21)], of the "molecular"
1 j{

width as compared to the case where such a resonance is absent.
Concluding the section we note that if the conditions (27) do not fulfil

i. e. the coupling between channels in the Hamiltonian (22) is not small
as compared to the "nuclear" width T^ then it follows from (26) that the
molecular width F^ l ) acquires itself an order of T^\ We do not consider
this case in the paper since such a situation seems to be unreachable in real
molecules.

11



IV. CONSIDERATION OF A REAL MOLECULE

In this section we will prove the main statements of previous sections but
for a "model-free" Hamiltonian. Namely, we consider now the Hamiltonian

H = h0 + vi + v2 (33)

in a Hilbert space 7io with a self-adjoint main operator h0. The potentials v\
and v2, symmetric operators, are supposed to be such that the operator H is
also self-adjoint as well as the operators h\ = ho -f v\ and h2 = /to + v2 in the
same domain D C 'Ha-

We consider such H in particular as a realistic Hamiltonian for the nu-
clear subsystem of a iV-atomic molecule, N > 2. The part /i0 will include in
this case a sum of the kinetic energy operator and Coulomb interactions in-
side of the nuclear subsystem. The term v\ will describe a strong interaction
and v2, an additional effective interaction between the nuclear constituents
due to electrons. By Tio we understand a subspace corresponding to a spe-
cific symmetry of the molecule (and thereby, of its nuclear subsystem, too).
This is why we assume that continuous spectra of the operators /i0, hi and
h2 fill semi-infinitive intervals, respectively, <rc(h0) — crc(h2) = (Eo, +00) and
&c{h\) = (2?i,-t-oo) and the lower boundary (lower threshold) E\ of the con-
tinuous spectrum ac{h\) of h\ is situated below than that, Eo, of /i0 and h2:
E\ < EQ- The "molecular" Hamiltonian h2 is supposed to have a simple iso-
lated eigenvalue A2, A2 < Eo, with an eigenfunction ip2 £ Tio, h2y>2 = \2ip2l
\\ip2\\ = 1 • For the sake of simplicity we suppose that all the discrete spectrum*
of h2 consists of this point A2 only. At the same time, as in the previous sec-
tions, we assume that the ("pure nuclear") channel described by the Hamilto-

p()
nian hi, has a narrow resonance zi = E^' — i~-, E^' € IR, 1^ > 0, closed

to the threshold EQ SO that E& w A2.
In principle, one could reduce the Hamiltonian H to the matrix mod-

els (1) or (22) using a standard projection procedure. For example, to ob-
tain from H the three-channel Hamiltonian (1) one can introduce a state
V?i € Ho, \\<pi\\ = 1, being a good approximation of the nuclear resonance
wave function v?je* [see below formula (42)] at least at nuclear distances so that
(hi<fii,ipi) w ER . Then one ortogonalizes the functions <pi and <p2 obtaining
new orthonormal vectors ij)\ and ip2 closed respectively, to (p\ and y>2. Consid-
ering the projectors Pi = rj)\(•, tfti), P2 — ij>2( •, ij>2) and PQ = / — P2 — P2, one
rewrites the Hamiltonian H as a matrix operator, H' = {P{HPj}, i,j == 0,1,2,
corresponding to the decomposition H — Tio^Hi^Hi. The operator H' (and,

in the case of a real molecule one has to take in mind only the discrete
spectrum corresponding to the subspace Ho above of a specific symmetry of the
molecule.

12



of course, the Hamiltonian H itself) turns out evidently to be unitary equiv-
alent exactly to the operator (1) with Xj = (Hiftpiftj), 6i2 = (Htpi,^2) and
6Oj = PQHIJIJ. The 00-component of the matrix (1) stays the same, PQHP0,
as in H'. Unfortunately, the separation described of the resonance channels
is approximate and resolvent of the operator PQHPQ has to keep poles (with
rest, rather "small", residues) at the molecular and nuclear resonances (cor-
responding to the total Hamiltonian H). Account of this circumstance, in
analysis of the type (5) or (23) equations, requires an additional, and cumber-
some, consideration. To make an exact (and rather simple) separation in H
of the nuclear and molecular channels, we propose another natural approach
motivated by the Faddeev method [11], [12].

A. Separation of the molecular resonance channel in the Faddeev
approach

A study of the spectral properties of the Hamiltonians decomposed like
if in a sum of a main Hamiltonian (usually the kinetic energy operator) and
few perturbations of a rather arbitrary nature (in the example of three-body
problems these ones are usually two-body potentials) can be reduced to an
investigation of the Faddeev matrix operator (associated with the respective
Faddeev equations [11], [12]) on its "physical" invariant subspace (see Ref. [17]
and Refs. cited therein).

The Faddeev matrix corresponding to the decomposition (33) looks as

V2 J \V2 h2 J (34)

being considered as operator in the Hilbert space H = H\ © H2 with Hi =
7i2 = 'Ho.

The Hamiltonian (34) represents a particular case of the general 2 x 2
matrix operators (with components h\ and h2 generally independent on v\
and v2), some aspects of spectral theory for which may be found in Refs. [18]
and [19].

In the special case of h\ = ho + v\ and h2 = ho + t>2 considered, one can
check that

(HF - z)-1 = (h0 - ,)->! - (h0 - z)-> 2 2 (« - >r (35)

with I, the identity operator in H. This allows one to conclude that although
the operator HF is non-symmetric but nevertheless it has a pure real spectrum.
Moreover, one can show (see [17]) that the spectrum of Hp consists of the
("physical") spectrum of H and ("spurious") spectrum of h0. Eigenfunctions

$ of the initial Hamiltonian H are expressed via eigenfunctions t/> = ( j J

of the Faddeev operator Hp corresponding to its "physical" spectrum as \P =

13



It follows also from the identity (35) that if a resonance appears as a pole
of analytic continuation of the resolvent kernel (H — z)~l than it has to be
such a pole as well for the resolvent (HF — z)'1. An inverse statement is also
valid if the resonance is not a pole of respective continuation of the resolvent
kernel (h0 — z)~l.

Let Q2 be the projector on a subspace of W2 orthogonal to the "molecu-
lar" eigenfunction (̂ 2, Q2 = I ~<f2{ •, ¥2)- A separation of contributions to h2
from the eigenvalue A2 and the rest spectrum allows us to rewrite the Hamil-
tonian (34) in the form very closed to the model (22). Namely, we rewrite
this Hamiltonian as the matrix operator

(36)

Q2H2. By HF weconsidered in the Hilbert space 7i © C where Ti,
understand the operator in H defined as

Q2V2

viQ:

where hi stands for a part of the Hamiltonian /12 in $2^2- The vectors bi2
and b2i of the space H determining a coupling between the channels in (36),

look as b12 = f Q2 J with bu — t>iV?2, 1̂2 € Hi, and b2i = f Q1 ) with

62i = ^2^2, hi € 7i\.
The resolvent (H'F — z)~l of the reduced Faddeev operator H'F may be

written as

RF(z)b12(RF{z) • ,b2i)

(RF(Z)-MI)

D(z)

D(z)
1

W)
(37)

where RF{z) stands for the resolvent of the Hamiltonian HF, RF(z) — (HF —
z)~l, and D(z), for the scalar function

D(z) = \2~

with

Here, g\{z) is a generalized resolvent of the operator HF,

g x { z ) - { h x - z - V i l

(38)

(39)

(40)

14



where r2(z) = (^2 ~ z) l•
Since the expression (36) represents an unitary equivalent form of the

Faddeev operator Hp, singularities of the resolvent {H'F — z)~l in the physical
sheet have to coincide with those of (Hp — z)~l

y being located in the spectra of
the Hamiltonians h0 and/or H, i.e. in the real axis only. This is an advantage
of the representation (37), in a contrast to the formula (35), to manifest
explicitly that a perturbation of the molecular eigenvalue A2, in a presence
of the nuclear channels, may be computed solving the equation D(z) = 0, or
equivalent, the equation

z = \2-0(z). (41)

According to the formulae (37) and (38), the roots of the latter turn out
automatically to be poles of the resolvent (Hp — z)~l. Hence, such roots in
the physical sheet may exist in the real axis only. Searching for the roots
of the equation continued in unphysical sheet(s), one can find, among them,
resonance(s) engendered by the initial molecular eigenvalue A2.

B. Perturbation of the nuclear resonance due to a continuous spectrum
component of the molecular Hamiltonian

Evidently, an analysis of the equation (41) in the case of "small" coupling
vectors 612 and/or 62i may be carried out in the same way as the analysis of
the analogous equation (23) in the previous section. And, if there exists a pole
of P(z) having a real part closed to A2, the effect of the inversely proportional
growth of the "molecular" width as the "nuclear" width decreases, will appear
again. We have a candidate for such a pole, the initial "pure nuclear" reso-
nance z\ which is, of course, perturbed due to the presence in Hp of the extra
channel with h2. Now we will formulate certain sufficient conditions when
such a perturbation of z\ is small as compared to 1^ . It should be noted
that in real molecular systems such a property is very natural from physical
reasons.

First we remind that the eigenvalue A2 is situated below the threshold
EQ. Therefore, we consider analytic continuation of the resolvent kernel(s)
(H'F — z)~l and, thereby, the form (3(z) on unphysical sheet** neighboring
below EQ with the physical one in a vicinity of the point A2. The energy EQ
is, at the same time, a lower boundary of the continuous spectrum of h2 and,
thereby, of h2. This means that the resolvent r2(z), included in (40), will stay
during such a continuation in the physical sheet. Of course a domain V about
A2 where the continuation is provided in the unphysical sheet concerned, will

definitions of Ref. [16] for a three-body problem, this one is called a two-body
sheet.
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be chosen to be "sufficiently small", with a diameter of order of 1^ and, to
be separated from the ray [Eo,+oo)-

Let us suppose that the analytic continuation of the resolvent kernel r\{z)
in a. vicinity of the resonance pole z\ admits the representation with explicitly
factorized residue,

4 -res/ ,
^' ( ' y i ) + f ( , ) (42)

Z\

resHere, the (generalized) eigenvectors (the so-called Gamow states) <^cs and (p\
of the Hamiltonian h\ are assumed to be specific (including in the coordinate
representation only outgoing waves with exponentially increasing asymptotics)
solutions of the Schrodinger equation /ii^i = 2^1 » respectively at z = 21 and
z = z~\. A complex number A is a "normalization" constant. The term f\(z)
represents a regular at z — Z\ summand of T\. Surely, as the resolvent kernel
r\(z) itself, the terms of the representation (42) have to be understood in
the unphysical sheet in a sense of the generalized functions (distributions)
like e. g., in Ref. [16]. This means in particular that only sufficiently "good"
elements (e. g., sufficiently quickly decreasing test functions in the coordinate
representation) forming a dense subset 7i[ in Hi, can be substituted instead
of " • " into the products (•, y?™") and (•, ^e8>.

The near-resonance representation of the Green function (42) is approved
in the two-body problems e. g., in framework of the Jost formalism [20]. A
possibility of such a representation in the three-body problems follows from
the results of Ref. [16], at least in the case of the quickly decreasing, in the x~
space, interactions and thereby, in the cases where one can cut the Coulombic
potentials between nuclear constituents, say, at molecular distances.

As in Section III we assume that the resonance z\ is a kind of a discrete
spectrum eigenvalue going from the real axis. So that, a limit procedure is as
if possible where TR —> 0 and the Gamow states <p\ea and (p™ turn (in the
weak sense) into a "normal" eigenfunction y>\ (the same for both of them),
i. e. for any / G W{0)

<</r , / )—> <*i,/), < « " , / ) — (<PiJ) and A—+ 1 / | | ^ | | 2 (43)

as r^x) -»0.
Let the strong, v\ and molecular, v2, potentials be such that the product

is an uniformly bounded operator-valued function of z G V with a finite and
rather small norm

At the same time, let the width 1^ ' satisfy the condition

r£> < 4 1 } - E[ (44)



where E[ is the nearest from below (may be, differing from E\) threshold of
the continuous spectrum of h\ (just such a situation is expected to take place
in a real molecule). Then one can assume that a kernel of the normalized

product w\2(z) — -r.—~ falls off in coordinate space as quickly that it may

be applied, in condition (44), to (̂ f*, (fif* and ri(^), so that, in particular,
Wi2{z)y>¥* € "Hi and w\2(z)(f?f* £ Ti[ \ One can assume, moreover, that the
matrix element (wi2(z)<p™, p™) makes a sense for z 6 V as well as the cross
products (u>i2(2)y?ie8,fi (*) • ) , (ty12(2)fi(2r) •,<£?*) a n d (^12(2)^ (2) • , r i (* ) *>
where one has to substitute, instead of " •", the elements of a dense subset
Tii mentioned above. We suppose further that the value of ||u)i2||z> is as
small that, for a fixed 1012(2), the following estimate takes place

< \\wl2\\v • sup |A(u» 1 2 (^ r^m < rg*. (45)
z£V

With these presuppositions one can prove already that a shift of the initial
"nuclear" resonance z\ due to a presence of the h2 channel in Hp is indeed
very small as compared to the width 1^ . To show this, we consider the
Lippmann-Schwinger equation for the generalized resolvent gi(z),

In the conditions above this equation may be continued in the domain V of
the unphysical sheet concerned. To give an "explicit" representation for 01(2),
we shall use a solution r[(z) of another Lippmman-Schwinger equation in the
same unphysical sheet,

- h{z) - fi(2)u,i2(2)f'1(z). (46)

With a fixed 1̂ 12(2) and sufficiently small ||u>i2||x>, the unique solvability of
the last equation may be easily proved for 2 € P . One can show in fact that
the solution of (46) belongs to a class of kernels satisfying the same conditions
concerning the cross products with U)\2(z) as fi(z).

Then, representing the resolvent ri(z) in the form (42) one finds immedi-
ately that the generalized resolvent 01(2) looks as

^ p + f [ { 2 ) (47)
with

Fl(z) ^zx-z + A{u;ia(*M-,0H + A(wX2{z)f[{z)wl2{z)^r^T) (48)
It follows from the expression (47) that the initial nuclear resonance 21

transforms into a solution 2 of the equation

= 0. (49)
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Thus, due to (48), the resonance z\ generated, instead of /i1: by the Hamilto-
nian HF, has the following asymptotics (as ||ti/i2||p —• 0):

+ O(\\u)12\\v),

and, thereby, according to the supposition (45) the perturbation of z\ due to
h2 is small indeed,

C. Interplay between molecular and nuclear widths

Let us return now to the equation (41). Additional assumptions are ac-
cepted here that the nuclear, i>i, and molecular, t>2, potentials and the "molec-
ular" eigenfunction (p2 are such that the products (612, <p™) and (</>!**, &21)
make a sense (i. e. the both functions 612 and 621 are elements of the

dense subset Hi above) as well as the products ( u ^ z ) ^ ' 2 ) ^ ? V î68) and
(f'l(z)wi2{z)ipY*>^2i)J z € V. Then one can obviously rewrite the function
J3(z) for z € V exactly as (23),

z —

Here, a stands for a residue of this function at the pole z — z\ and /3reg(z), for
a regular part. Therefore, the equation (41) may be rewritten as (26), i. e.

zx (50)

It follows from the representation (47) that for a given (and fixed) "structure

functions" wi2{z)t 612 = T——- and 62i = TTT—rr the following asymptotical
II M l llO ||

formulae keep true for a and /?"* as ||ioi2||p —> 0:

a = a -f 0 ( | | u ; 1 2 | | p | | M | M | ) , ?"(*) = ^M ( lh»l |Dl l i2 | l l l2 i
(51)

where a = -A^a ,#") (¥>?• ,6M) W { W )
We suppose that at least the function 612 = UiV?2 is so small** that

**Due to internuclear Coulombic barrier suppressing the molecular eigenfunction
at nuclear distances
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« W = c.-IIM-11*21 IK ( rg 1 ) - (52)

Notations C-p and Ca make now the following sense:

Cv = sup |(r!(^)612,621|, Ca = S

Repeating almost literally a discussion of the equations (26) in Section III
we show that the equations (50) have only two solutions in the domain V,
Znuci in the case of sign "—" and zmo\ in the case of sign "-f ", leading terms of
which are given by formulae (29) and (30).

If the molecular energy A2 "almost" coincides with the real part E^' of
the nuclear resonance z\y \ER — A2| «C F^ , one gets

1 R

~ • 2 a

zmo\ = A2 + *"-jj[y- (53)
^R

It is evident that the pole znuci, being a weak [since, in view of (52),
Ial/Ift *^ F ^ ] perturbation of the resonance z\, belongs to the unphysical
sheet concerned. Analogous assertion for the molecular resonance 2moi fol-
lows, in principle, from the statement above that the equation (41) can have
at Imz > 0 no solutions in the physical sheet. However, at least for small F ^ ,
one can immediately check the inequality Re a < 0 holds true guaranteeing a
location of the resonance zmo\ in the unphysical sheet. Indeed, we note that

= -{{ho - ziiipfiVTl + (A2 -
+ (Aa - ^ ^

Therefore,

a = -

Remind, we suppose the nuclear resonance Z\ to be such that a limit proce-
dure (43) is possible. This means

So that
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is really negative, at least for sufficiently small widths Fn\ (Of course, we
exclude here the cases of an incidental degeneration where (ipl, Viip2) = 0.) So
that, according to (53), the width FR of the resonance zmoi depends on VR

r>(l) r\ i\ / o n r«(m) ~ >«

as 1^ -+ 0 exactly as (31), TR ' == 4—r-r—.
ft

To complete discussion of the equation (41), let us compare the behavior
of TR in the presence of the nuclear near-threshold resonance z\ with an
opposite case where such a resonance is absent and, thus, the function 0(z),
ft(z) = /5reg(z), is holomorphic in V. In this case, the equation (41) has in V
only one solution zR , leading terms of which are given with account of second
formula (51) by

(2) ~ \ / / \ i ,'n\L L \ \
D ~— * * 2 "~~m' \ 1 1 2 *"• ^ / 1 2 ^ 2 1 / — 2 ~~

Since v2<p2 = — (h2 — A2)^>2, one finds

' of the resonance zTherefore, the width FR' of the resonance zR is given by

This means that one has, in presence of the nuclear resonance z\, to compare
the width T^m) with the value (Im/3reg(A2+1'0)| w | Im(fi(A24-»0)ui^2,
Cx»||612||

2 where dj, = inf |(f1(jzr)6ia, 6ia)|- As a result we come to (a rough)

estimation like (32),

rkm) ~ rg» • ̂ . (55)

with

Again, as in Sections II and III we find that if the nuclear resonance is narrow,
TR <C C'afc'v then a large increasing of the molecular width, proportional just

to the factor a,7?, has to be observed. In other words, the nuclear fusion
r

reaction in the molecule concerned is considerably enhanced.
Note in a conclusion that the formulae (53) and (54) may be used for a

practical estimation of the width Yj? . Here, a crucial role belongs to the val-
ues V(0)" (cf- ^ne Jackson formula [21]) of the molecular function y>2 at small
(nuclear) distances where the strong interaction v\ is localized in configura-
tion space. Surely, such estimations for concrete molecules require numerical
computations.
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V. EXPONENTIAL DECAY OF THE MOLECULAR STATE

In Section IV, we have accepted a description of the nuclear subsystem of a
molecule by a (realistic) effective Hamiltonian (33). Let us suppose now that
an initial state of the molecule corresponds exactly to the pure "molecular"
wave function <p2, (̂ 2 — ^2)^2 — 0, ||v?2|| = 1- Then, a consequent evolution
(in time t) of the nuclear subsystem is described by a solution #(t) of the
Cauchy problem

Probability Pmoi(t) at a time moment t to find the subsystem still in the
molecular state cp2 is given by

Since A2 < Eo and, thereby, the continuous spectrum channel of the "molec-
ular" Hamiltonian h2 is closed down, the remainder 1 — Pmoi{t) determines a
decay probability of the state ip2 into open channels (branches) of continuous
spectrum of the nuclear Hamiltonian hi. The latter correspond to all possible
variants of synthesis of the nuclear constituents or/and their rearrangement
at energies below EQ.

It is easy to check that

where {/j € Hi, C/j € Q2H2 and 1*2 € C stand for components of solution

U = I (j(2) I, U € H, of the evolutionary problem
\ u2 )

idU - H' I!1-—- — tlpU,

- 0 . L 1 ( }
1=0 i=O

corresponding to the Faddeev operator H'F. Therefore, to estimate the product

determining the probability -Pmoi(2), we use the standard integral represen-
tation of function of operator via its resolvent. In the case considered we
represent the evolution operator for the problem (56) in terms of the resolvent
(H'F-z)-\

ex?{-iH'Ft] = —-.fdze-^iH'r-z)-1. (57)
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Integration in (57) is provided along a contour 7 going clockwise in the physical
sheet around spectrum of the Faddeev operator H'F. Remember, this spectrum
is real, being a union of the Hamiltonians ho and H spectra. With account
of (37) and (57) one finds

Wl.ri^r-f^e.-«t

A 2 - z -
(58)

In the physical sheet, norm of the generalized resolvent g\{z) allows the
estimate ||<7i(z)|| < dist~1(z,a(Hp)) where &{HF) stands for spectrum of
Consequently, at t = 0, the integrand in (58) behaves like z l as | Imz| —• oo.
One checks immediately due to this fact that (^(0),</>2) = 1.

Concerning properties of (ty(£),p2) for t > 0, the following important
statements take place.

1. Behavior of the integral (58) for t > 0, in the conditions of Section IV,
is described by the formula

= exp{-tzmol<} + e(t) (59)

where term e(t) = 0(||&i2||yb.r all* > 0 is small, |e(*)| < 1.
2. If, additionally, the nuclear resonance zx is "extremely" narrow, i. e.

L <C EG — A2, then a more detailed representation takes place,

= exp{-i2molt}

+ exp{-iznw:lt}

1 -
4a

Aa .2o0

OT

(60)

with a0 = A(<p¥*,y2)(b\2,wT) = ̂  (^^2)^1^2,<#*"}• A S i n (59), a back-
ground term i{t) = O(||612|l) is small, \i{t)\ < 1, for all t > 0.

Proof of the formula (59) is carried out via estimating a contribution to the
integral (58) from the resonance pole 2moi only. The formula (60) explicitly
includes also a contribution from the pole 2nuci, because, with the condition
Tp <C Eo — A2, one finds the background summands are of a more high order
of smallness as compared to the contribution above from znud- The estimation
of the contributions from zmoi and znuci is realized as a result of deforming the
contour 7 fragments situated in a vicinity of the molecular energy A2. A
part of 7 situated initially in upper rim of the cut, is pulled into the domain
T> (see Section IV) of a neighboring unphysical sheet. Having done such a
deformation one finds explicitly the residues at z = zmo\ and z = znuc\ of the
integrand in (58). An analogous deformation of a part of 7, situated initially
in the lower rim, is realized in a domain Im z < 0 of the physical sheet. In such
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a way one shows, for t > 0, that the conjugate resonances zmoi and znuci give
to the integral (58) only a very small contribution which is then included into
the background terms e(t) and i(t). At the same time, the summands e{t) and
e(t) include also a contribution to (58) from the discrete spectrum of H (with
ignorance of factors oscillating when t changes, a value of this contribution
stays practically the same for all t) as well as a contribution (decreasing non-
exponentially as t —> oo) from the rest part of the Hamiltonian H continuous
spectrum.

The formulae (59) and (60) show explicitly, that, in a large time interval
o

0 < t < T, T ~ —T—r|lnmax|e(<)||, decay of the "molecular" state (p2 in a

presence of the narrow pre-threshold nuclear resonance do has an exponential

character^. A rate of this decay is determined mainly by the width F^ of the

"molecular" resonance zmo\, i. e. by a concrete value of the ratio ^

3 exp i - 1 ^ ^ • • (61)
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^Surely, a similar statement takes place as well in the case of the model Hamil-
tonians (1) and (22), generally more simple than Hamiltonian (33). In par-
ticular, the two-channel model (22) gives us for Pmo\(t) the following value:

Pmol(t) = . Here, the contour 7 goes clock-

wise around spectrum of the operator (22). The function Pmoi(t) represents a proba-
bility for a time moment t to find a system in the initial "molecular" state described

in the model (22) as tp — ( , j . The integral included in the expression above for

Pmoi{t), is quite analogous to (58). One can show in conditions of Section III that
all the dependence of the integral on t is described exactly by the formula (59) or
by a more detail formula like (60).
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Беляев В.Б., Мотовилов А.К. Е4-96-201
Возмущение собственного значения, пофуженного
в непрерывный спектр, близколежащим резонансом

Рассматриваются квантово-механические системы (в том числе электрон-
ные молекулы), гамильтонианы которых позволяют, например, с помощью
метода Фаддеева отделять слабосвязанный канал. Ширина (т.е. мнимая часть)
резонанса, порождаемою точкой дискретного спектра отделенного канала,
исследуется в случае, когда основная компонента гамильтониана также порож-
дает резонанс. Показывается, что если вещественные части этих резонансов
совпадают, а связь между каналами достаточно мала, то ширина резонанса,
отвечающего выделенному (молекулярному) каналу, обратно пропорциональна
ширине резонанса в основном (ядерном) канале. Имея универсальный характер,
этот эффект может ифать важную роль в увеличении вероятности «холодного
синтеза» в молекулах, ядерные подсистемы которых обладают узкими предпо-
роговыми резонансами.

Работа выполнена в Лаборатории теоретической физики им.H.H.Боголюбо-
ва ОИЯИ.
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Belyaev V.B., Motovilov А.К. Е4-96-201
Perturbation of Embedded Eigenvalue by a Near-Lying Resonance

The case of quantum-mechanical system (including electronic molecules)
is considered where Hamiltonian allows a separation, in particular by the Faddeev
method, of a weakly coupled channel. Width (i.e. the imaginary part) of the resonance
generated by a discrete spectrum eigenvalue of the separated channel is studied
in the case where main part of the Hamiltonian gives itself another resonance.
It is shown that if real parts of these resonances coincide and, at the same time,
a coupling between the separated and main channels is sufficiently small then
the width of the resonance generated by the separated (molecular) channel
is inversely proportional to the width of the main (nuclear) channel resonance. Ttiis
phenomenon being a kind of universal law, may play an important role increasing
the «cold fusion» probability in electronic molecules whose nuclear constituents
have narrow pre-threshold resonances.

The investigation has been performed at the Bogoliubov Laboratory
of Theoretical Physics, JINR.
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