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In neutron and x-ray diffractometry the Bragg reflexes, for which form-factor F(q) = 0,
where ¢ = 2kp is the momentum transfer, and kp is the Bragg wave vector, are called forbidden,
because reflection for these ¢ are absent. We want to show here that these reflexes, strictly
speaking, are not forbidden. They are the same as nonforbidden ones with the only difference
that the Darwin table width (DTW) for them is very narrow. We shall show it with the help
of multiple wave Darwin (MWD) approach [1},[2] to the Dynamical Diffraction Theory (DDT)
applied to a simple model of a crystal having two atoms in the elementary cell. As a result of
such approach it will be shown that the reflection amplitude depends on two different form-
factors: F(q) and G(q) and both of them give nearly the same contribution to DTW. If we
denoie the DTW of nonforbidden reflex by w, the DTW for forbidden one has a value of order
wy o wu/k%, where u is optical potential of the crystal: u = 4xNob, Ny is the atomic density
and b is coherent amplitude.

Our model is a semi-infinite crystal consisting of crystalline planes parallel to the entrance
surface. The elementary cell of a plane is a square with the lattice parameter a being con-
siderably smaller than the period s in the direction of the normal to the surface. The period
consists of two identical planes separated by distance a along the normal. All the atoms of
the crystal are motionless, nonabsorbing and have the same scattering amplitude b,, which for
a single atom, separated from the crystal, and surrounded by vacuum is representable in the
form

b, = bo/(1 + ikbo), (1)

where by is a real magnitude, called “scattering length”, and k is the wave-number of the incident
neutron. Such a representation of the amplitude automatically satisfies the requirements of
optical theorem. ,

We consider the reflection of neutrons from this crystal when neutrons have wave number
k € 2r/a. For such neutrons we can neglect diffraction on a single crystalline plane and
describe the scattering on a plane with the help of only two parameters: reflection r and
transmission ¢t = 1 4+ r amplitudes.

Reflection amplitude r from a plane is equal to

r=—ip/(kL +1ip), p=2xN3b, (2)

where N, is two-dimensional density of atoms N; = 1/a?, and b is a somewhat renormalized
amplitude by (see (1)), which was calculated in [1). The expression (2) can be obtained with
the help of multiple wave scattering theory [1] or with one-dimensional Schrédinger equation,
in which the crystalline plane is represented by a potential of the form 2pé(z) like in Kronnig-
Penney potential. In the following we shall omit the subscript L.

Now we consider reflection ry3 and transmission t,3 amplitudes for the system of two planes
separated by a distance a. From multiple wave scattering in MWD approach it follows that

1+ (t? - r?) exp(2ika)
1 — r3exp(2tka) '’

ri2=r+ t282ikor/(1 _ ',Zem'ko) =y

and
t12 = t?exp(ika)/[1 — r? exp(2ika)).

Substituting t = 1+ r and r from (2) in these relations, we get

o k cos(ka) + psin(ka)
- tka
M e Sipk T 2% sin(ka) cos(ka) — 2p2sin’(ka) @
2
tl? = eika k (4)

k3 + 2ipk + 2ip? sin(ka) cos(ka) — 2p2sin®(ka)
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Figure 1: The single period of the model. It contains two planes at distance a and two vacuum gaps on both
sides of them. The total width s is the length of the period.

Now we must define reflection from a period. To do that it is necessary to choose the form
of the period. We choose it to be symmetrical as is shown in fig. 1.

The reflection amplitude from the period, p, is p = explik(s — a)]ri2, where the first factor
appears because before and after reflection from two planes the wave is to propagate through
the vacuum gap of the width (s — a)/2. Substitution of (3) in this formula leads to

k cos(ka) + psin(ka)

— __2' iks 5
P P 2ikp + 2ip? sin(ka) cos(ka) — 2p? sin?(ka) (5)
In the same way we get the transmission amplitude 7 of the period
A . k2
r= elk(a-—a)t12 = ellu (6)

k2 4 2ipk + 2ip? sin(ka) cos(ka) — 2p? sin®(ka)
Reflection amplitude R from the semi-infinite crystal is defined by the expression [1]
VL) — 72— /(1 - p)? — 72
Ja+pr—r+/0-pp-r

After dividing numerator and denominator by

Va+p+n)(1-p+7)

we get

g VU-—149)/(1+7—p) = [l —7—p)/(1 4T +p) .
Va=1+p)/(1+7—=p)+/(1—7—p)/(1+7+p)

From (5), and (6) it follows that 7 4 p can be represented in the form

ke k?  2ip|k cos(ka) + psin(ka))
k? + 2ikp + 2p? sin®(ka) + 2ip? sin(ka) cos(ka)
with 6+ = F¢é, — d9, and

Ttp=ce = exp(iks — 1d4)

¢1 = arctan (2p[k COS(kal)c:_ pSin(ka)]) ’ (8)
_ 2pk + 2p? sin(ka) cos(ka)
¢2 = arctan ( k? — 2p? sin®(ka) ) ' (%)
After substitution into (7) we get
. Vtan(ks/2 + ¢1/2 — $2/2) — \Jtan(ks/2 — ¢1/2 — 62/2) (10)

 Vtan(ks/2 + 61/2 — 62/2) + \Jtan(ks/2 — 61/2 — ¢2/2)



If two tan have different sign, this expression becomes of the form R = (a — ib)/(a + ib) with
real a, and b. In that case |R| = 1, and we have total or Bragg reflection. It happens when

ks/2 — ¢1/2 — $2/2 < nm /2 < ks/2+ ¢1/2 — $2/2, (11)

where n is integer. The magnitude ¢, determines posftion of the Bragg peak, and ¢; determines
the width of the Darwin table.
Now, let us remind how form-factor of elementary cell is defined. Usually it is defined as

F(q)= ij exp(igr;),

where b; is scattering amplitude of an atom at point r;, and ¢ is momentum transfer. We use
a slightly modified definition:

F(q)=Y_ Bjexp(igrj),  B; =b;/) b
J ]

In our model we have two atoms, so the form-factor is equal to

F(g) = cos(qa/2),

if the origin is chosen in the middle between planes. For specular reflection we have ¢ = 24, so
in our case F(q) = cos(ka).

In the expressions (8), and (9) besides F'(q) enters another form-factor, which is represented
by sin(ka), and which we shall denote by G(g). Thus the expressions (8), and (9) can be
represented in the form '

G (12)
2pk F(0) + 2p* F(k)G(2k)
k2 — 2p3G2(2K) ) '

where F(0) = 1 is introduced to get a form-factor for every entry of p.

It is supposed that it is G(q), which is important for determination of the DTW for forbidden
reflexes.

To get the width of the Darwin table it is necessary to find 2|¢,(£.)|, where £, is the solution
of the equation (k. — kg)s = ¢2(k.). Let us suppose that a = s/4. The forbidden reflex should
be at kg = 27 /s, but because of small shift the center of the reflex is at k. = kg + 2p/skg.
Substitution of this value into (8) gives

A L 2 .
4, = arctan (2pLF(2L) +2p F(O)G’(2L)) ,

@2 = arctan ( (13)

%( p . p P’
26, (k. =2——(-— L) <ok .,
If we take into account, that p = 2xr N3b = us/4, where u = 4x Nyb is the optical potential of
the medium, (we can also represent it in the form u = uF(0), since F(0) = 1) and Ny is the
number of atoms in a unit volume, we obtain that the DTW in the considered case is equal to

T u

|k«-kc|=zzg, or |k*—k ——u (15)

T2k}
For nonforbidden reflex (for instance for k =~ 7 /s) we have
|k* — k}| = 2uF(kg) = V2u.

It follows from (14), that DTW is determined not only by the additional form-factor but
also by the main form-factor which is zero only precisely at Bragg point, and is not zero at the



shifted position. For instance, let us suppose, that there are no additional form-factor, i.e. we
calculate ¢; and ¢, by perturbation theory and get:

#: = arctan(2pF{2k)/k), $2 = arctan(2p/k).

Since for p > 0 the reflex takes place for £ > kg, and the phase ¢, < 0 for these &, the inequality
(11) must be represented in the form:

ks/24 ¢1/2 — $2/2 < nw /2 < ks/2 — ¢, /2 — ¢3/2, (16)
or
2pcos(ka) < kys — ks + 2p/k < —2pcos(ka), (17)

and we get the the same DTW as before. Of course the coincidence here is an accidental one.

It is also important to stress that the result obtained here was not possible to obtain in the
framework of the Ewald theory, because there it is not the form-factor F'(2k), which enters
the theory, but the pure number: F(2kg), and this number is identically zero for forbidden
reflexes. To explain forbidden reflexes that are observed experimentally [3] in Ewald theory it
is necessary to consider four wave approximation

Thus we proved that forbidden reflexes differ from unforbidden ones only by the width of
the Darwin table. This width is provided by an additional form-factor and by the shift of the
central point in the main form-factor that is zero at precisely the Bragg point. In practice
the forbidden reflexes are sometimes observed (see for example [5)- [9]) but they are usually
ascribed to double unforbidden ones.

The presented here considerations are also aplicable to x-ray diffraction. It is interesting to
note, that because of very narrow width the forbidden reflexes can be used for measurements
of small shifts of atoms under the action of external forces.
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Urnatosuu B.K., [porononecky [., Macauko Y1cypo E17-96-194
LIupuHa ctonuka [JapsuHa wis pedriekcon
¢ Hyn1eBbiM dopmdakTopom

[Moka3aHo, 4to peduiekchl ¢ paBHbIM HYM0 GOPMPAKTOPOM HE pabBHbl HYNIO,
HO LLIMPHHA cTOMWKA JlapBMHA y HUX OYEHb Malla M ONPEAENNETCH KaK CMEiUueHHeM
nosoXeHus peduiekca OTHOCHTEIbHO TOUKH bparra, Tak 1 npucyrcteuem dopmdak-
TOpOoB HMHOro Tvna. OTMmeuaeTcs, YTO Teopus DBaibda UHMHAMHUYECKOH NHPpaK iy
HE NMO3BOJIAET paccuuTaTh 3(PPeKT OTpaxeHHs B 3aNpeUleHHbIX pedeKcax.

PaGora Bbinonuena B Jlabopatopuu HelTpoHHoH ¢u3uku 1. U.M.®Dpanka
OHSIHN.

Coobwenne O6betHHEHHOr0 HHCTHTYTa AUEPHBIX HechenoBanui. ybus, 1996

Ignatovich V.K., Protopopescu D., Masahiko Utsuro E17-96-194
Width of the Darwin Table for Forbidden Reflexes

It is shown that reflexes with form factor equal to zero are not absent, but have
very small Darwin table width, which is determined by shift of the Bragg point
and by form factors of another type. It is pointed out that this effect cannot be
obtained within Ewald theory of dynamical diffraction on single crystals.

The investigation has been performed at the Frank Laboratory of Neutron
Physics, JINR.
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