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ABSTRACT
A wealth of structural information from colloid and polymer solutions on a large range of
length scales can be obtained using small angle neutron scattering (SANS) experiments.
After a general introduction to the field of soft condensed matter, I shall give a few selected
examples on how SANS combined with suitable contrast variation schemes can be used to
extract information on the size and conformation of polymer coils in solution and in the
melt, and on the local structure and flexibility of polymerlike micelles and microemulsions.

1. Introduction

During the last 10 -20 years colloid and polymer sciences have undergone a
'renaissance', which has not only manifested itself in the creation of a new name, the
term 'soft condensed matter', but indeed resulted in a considerable gain of understanding
of the structural and dynamic properties of these complex fluids. The reason for this
progress was on the one hand the realization of the existence of close analogies to
established areas in theoretical physics such as between polymers and magnetic systems
or field theory, or between colloidal suspensions and simple liquids. On the other hand,
the availability of new experimental techniques such as dynamic light scattering or
neutron scattering has also been instrumental in this development.

When talking about soft condensed matter, we generally consider three different
areas: polymers, colloids and so-called association colloids or surfactant systems (see
Fig. 1). Polymer sciences has greatly advanced in particular through the work of P. G.
de Gennes, who for example demonstrated the existence of universal behavior
(expressed through so-called scaling laws) for different physical properties of polymer
solutions and melts. In such a treatment, the basic idea is to concentrate on global
properties, i.e. on the dependence of observable physical properties such as the overall
coil dimension (characterized for example by its radius of gyration, Rg) on chain length,
concentration or a few basic interaction parameters, and reduce the polymer molecule to
an idealized model omitting all chemical details. A classical model for such a
description is the random walk with N completely independent steps as the simplest
idealization of a flexible polymer chain consisting of N monomers in solution or in a
melt. This simple model does in fact provide a very good description of the
conformation of flexible polymer chains in theta solvents (where the different
contributions to long range interactions between segments cancel and the polymer
solution exhibits a pseudo-ideal behavior analogous to the Boyle point of gases) or
melts. Additionally, one can for example take into account interactions between
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neighbouring monomers (i.e., include the local 'chemistry') as done in the wormlike
chain model, or include excluded volume interactions by modelling the polymer chain
as a self-avoiding random walk.[l-3] SANS can then be used as a very good test of the
predictions from the various theoretical models in order to assess their validity under
various experimental conditions as will be demonstrated in the second chapter of this
presentation.

Polymers

polymers as (self-avoiding)
random walks

Soft Condensed
Matter

Association Colloids

surfactant self-assembly

Colloids

SCATTEWIG VICTOR - » • • >

colloids as "macrofluids"

Fig. 1: An overview over some important areas in soft condensed matter

In colloidal suspensions, considerable progress in the understanding of questions
such as the effect of interparticle interactions on the structure and stability of colloidal
suspensions has been achieved by making analogies to simple fluids such as liquid
argon. The idea is to make a typical coarse graining ansatz and consider a collection of
colloidal particles as a 'macrofluid' dispersed in a continuous medium, i.e., the solvent is
treated as a quasi-inert continuum that is defined through its macroscopic properties
such as density, index of refraction and dielectric constant only. One can then apply the
well known tools from statistical mechanics derived for simple liquids in order to create
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a link between the suspension structure and the interaction potential.[4, 5] In this
respect it is important to realize that the potential used as an input in the statistical
mechanical treatment is a 'potential of mean force', and that the osmotic pressure now
plays the role of the pressure in the corresponding atomic or molecular systems. SANS
offers a very valuable tool to test these theoretical models and to obtain information on
interparticle interactions and suspension structure. [4,5]

Surfactants in solution exhibit a complex aggregation behavior as a result of a
delicate balance of opposing forces.[6] An important aspect of surfactant systems is the
relation between microstructure and phase equilibria. Several theoretical concepts based
either on packing considerations of the surfactants in the aggregates or on the role of the
bending elastic energy of the surfactant monolayer have provided us with a theoretical
framework for a better understanding of these systems.[6, 7] In particular the 'flexible
surface model', which is an interfacial description using curvature elasticity, has
considerably advanced our understanding of many aspects of the complex phase
behavior exhibited by surfactant systems.[7, 8] In these systems, SANS is a particularly
powerful technique for determining structural properties on all length scales as it allows
to specifically label certain components through contrast variation as will be
demonstrated in chapter 3.

2. SANS from Polymer Solutions

In this chapter I shall discuss some structural aspects of linear polymers. As a
classical example of such a polymer we can look at polystyrene:

- f CH

where the number of repeat (or monomer) units, N, which is often called the degree of
polymerization, can be as large as > 106. As already mentioned, the simplest possible

Fig. 2: Schematic representation of a random walk mode! of a linear polymer chain

model for the conformation of such a linear chain in solution is a random walk in three
dimensions as shown schematically in Fig. 2.. The corresponding orientationally
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averaged and normalized single particle scattering function P(Q), which contains all the
structural information on the conformation of the scattering object can then be
calculated according to

where rjk = I rj - rjj is the distance between two scattering centres (monomers) and Q is
the scattering vector. For the random walk model, the evaluation of Eq. 1 is particularly
simple due to the Gaussian distribution for the intersegmental distances and leads to the
so-called Debye function

<2)
A

where x = (Rg
2)Q2 and (Rg

2) is the mean square radius of gyration of the polymer coil.
The Debye function results in the classical asymptotic behavior of P(Q) ~ Q~2 for large
values of x, which is the typical 'finger print' of a structure generated by a random walk-
However, the local flexibility of polymer chains is basically caused by the potential
energy of rotation about chemical bonds. While the random walk model assumes that
the directions of individual chain segments are completely uncorrelated, i.e., that these
rotations are completely unhindered, for 'real' polymers this is generally not true due to
steric hindrances between side groups. Therefore, real chains are locally stiff, and it is
only after a certain distance b (the Kuhn length or statistical segment length) along the
chain that the direction of individual chain segments become completely uncorrelated
and that the time averaged distance distribution function between two monomer units
loses its local character and starts to obey Gaussian statistics. Furthermore, due to
excluded volume effects between monomers we can expect that the ideal random walk
model doe's not provide an adequate description of the stain statistics in good solvents,
and that we have to use a self-avoiding random walk instead. This does not lead to
Gaussian statistics for the distribution function of intersegmental distances and therefore
does not allow for an easy evaluation of Eq. 1. Summarizing this short introduction to
polymer statistics, we can point out the following characteristic features that we expect
to find in data from scattering experiments with large single polymer coils in solution
that cover a broad range of scattering vectors:

The data reveal a series of different regimes with a behavior characteristic of the
various length scales of the chains: For very low values of Q (1/Q < Rg), i.e., in the so-
called Guinier regime, the scattered intensity I(Q) becomes insensitive to structural
details and is dominated by the finite overall length of the particles, and we can
determine the radius of gyration Rg of the particles. At intermediate Q (cross section
radius Rc « 1/Q « Rg), I(Q) becomes much more sensitive to the local aggregate
structure, and polymer theory predicts for flexible polymer coils that I(Q) should decay
with a power law of the form I(Q) ~ Q~x, where x = 1.66 for a self-avoiding random
walk chain and x = 2.0 for an ideal random walk chain. At large values of Q, I(Q) is
controlled by distances over which polymers are rod-like rather than flexible, and we
expect a crossover to an asymptotic Q"' -dependence for I(Q) which is typical for locally
cylindrical structures. However, a real polymer is not an infinitely thin chain, and
therefore the local cross section structure of the chains give rise to a cross section
Guinier behavior and a strong decrease in the scattering intensity at still larger Q-values.
The different characteristic regimes are demonstrated in Fig. 3.
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Fig. 3: Schematic plot of the asymptotic behavior of the scattering intensity I(Q) versus scattering vector
Q for polymers in solution. The crossover regions are denoted by circles (see text for details).

However, it is important to point out that the experimental verification of the
asymptotic behavior can be quite difficult, and in particular the crossover from a
flexible to a locally stiff chain that contains the very important information on the
polymer flexibility is often masked by the local cross section structure. This can be
demonstrated with data from partially deuterated polymer chains, where different parts
of the monomer unit contribute differently to the overall intensity. The scattering
functions of atactic polystyrene (PS) in carbon disulfide (CS2) with different selective
deuteration of the polymer have been determined by Rawiso et al. [9] using SANS. CS2
is a good solvent for PS, and this is reflected in the scattering function which shows a
Q-1-7-behavior at intermediate Q values. The data for a molar mass of Mw = 50'000 and
three different selective deuterations ((i) fully deuterated, (ii) deuterated in the phenyl
ring, and (iii) deuterated in the backbone) are shown in Fig. 4. CS2 has a low scattering
length density, C and D have a relatively large scattering length, and H has a negative
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scattering length. Therefore it is mainly the deuterated parts of PS which contribute to
the scattering from the polymer coil.

10

Fig. 4: Scattering functions for PS (Mw = 50*000) in CS2-[9] The lower data are for fully deuterated PS,
the middle data for the phenyl ring and the upper data for the backbone deuterated. The curves are fits for
a model scattering function that includes excluded volume effects. [10]

At low Q values we observe a well defined Guinier regime from which we can
determine the molar mass (or contour length L) as well as the radius of gyration.
However, we also immediately see from Fig. 4 that both for the fully deuterated as well
as the phenyl ring deuterated samples the relatively large cross section radius of the
chain leads to a direct cross-over from the asymptotic Q"1-7-behavior at intermediate Q
values to the exponential decay in the cross section Guinier regime, thus completely
masking the cross-over to the Q/1-regime from which the Kuhn length b as a measure of
the chain flexibility could be determined. It is only for the backbone deuterated sample,
where the cross section radius is much smaller, that one is able to observe this part of
the scattering function. In the original paper of Rawiso et al. the authors concentrated on
the different asymptotic regimes in order to extract the maximum amount of data on the
structure of PS in good solvents on all length scales, and no attempts were made to fit
the data in the full Q range as the appropriate scattering functions for wormlike chains
with excluded volume effects were not available. As a result of this unsatisfactory
situation we started a series of off-lattice Monte Carlo simulations on semi-flexible
polymer chains with and without excluded volume interactions.[11] The primary goal
has been to obtain "experimental" data for the scattering function P(Q) for semi-flexible
chains with excluded volume effects with an accuracy of about 1 % in the range up to
Qb = 10 and to parameterize them in such a way that they can be used for model fitting
of experimental scattering data on polymer-like micelles. The model used is a discrete
representation of the worm-like chain model of Kratky and Porod. The parameters of a
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chain are the contour length L, and the statistical segment length b. In practice the chain
is represented by N points along the contour, such that L = Na, where a is the point
separation ("bond length"). For the excluded volume effects the finite cross section
radius of the micelle was taken into account by placing hard spheres of radius R = 0. lb
at each point along the chain. Simulations were performed for chains with contour
lengths of 17b = 0.3, 0.6, 1.25, 2.5, 5, 10, 20,40, 80, 160, 320, and 640. The accuracy of
the resulting P(Q) was estimated to be better than 1-2 % for L/b < 160 and 2-3 % for
L/b=320 and 640. The resulting P(Q) have been parameterized using various methods in
order to obtain numerical approximations that can be used in the analysis of "real"
experimental data. The most accurate (and general) method used follows an approach
used by Yoshizaki and Yamakawa in order to obtain P(Q) for helical wormlike
chains.[12] In this approach the scattering function can be written as

= Cw Ap I SWC(Q) SC(Q) <M>w (3)
m

where Cw is the polymer concentration (in weight per volume), Apm is the average
excess scattering length density per unit mass, SWC(Q) and SC(Q) are the normalized
scattering functions of the infinitely thin wormlike chains and of the cross section,
respectively, and (M)w is the weight average molar mass. The scattering function
SWc(Q)isgivenby

Swc(Q,L,b) = [(l-x(Q,L,b))Schain(Q,L,b) + x(Q,L,b)S rod(Q,L)]r(Q,L,b) (4)

where S chain (Q> L. b) is the scattering function of a flexible chain with excluded volume
effect,[13] Srod(Q, L) is the scattering function of a stiff rod,[14] %(Q, L, b) is a cross-
over function and T(Q, L, b) corrects the crossover region. Explicit expressions for %(Q,
L, b) and F(Q, L, b) are given elsewhere.[10] Such a scattering function indeed allows
for a quantitative analysis of scattering data form semi-flexible chains over a broad Q-
range as can be verified with the data from polystyrene in a good solvent shown in Fig.
4. A fit of Eqs. 3 and 4 to the experimental data is shown in Fig. 4. In the fit the local
cross section structure of PS was approximated by a cylindrical shape, for which the
corresponding cross section scattering function can be written as

(RcQ) J (5)

where J \ (x) is the first order Bessel function and Rc the cross section radius.
The model scattering functions give almost perfect fits to the data over the entire

range of Q values. The resulting values of the contour lengths L are in very good
agreement with the calculated values based on the known molar mass and
polydispersity for the three different samples. The Kuhn length is determined to be b =
24.8 A, in good agreement with previous studies. The values for the cross-section radii
that come out of the fit are also quite reasonable considering the molecular structure of
the PS chain in solution as determined by other investigations. This clearly
demonstrates that Eqs. 3 and 4 provide us with an analytical expression for the
scattering cross section of polymers in good solvents capable of quantitatively
reproducing the experimental features over an extended range of scattering vectors. This
represents a major improvement compared to the previous characterization of
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semiflexible polymers with small-angle scattering methods, where the analysis
primarily relied on an individual interpretation of different Q-regimes based on
asymptotic expressions. It also demonstrates the strength of SANS in the analysis of
structural properties of polymers in solution, in particular when combined with contrast
variation experiments and suitable model fits.

3. SANS from Polymerlike Micelles and Microemulsions

As pointed out in the introduction, surfactants in solution exhibit a complex
aggregation behaviour as a result of a delicate balance of opposing forces.[6] Micellar
solutions and microemulsions represent thermodynamically stable liquid dispersions
containing surfactant aggregates, which can often be found in a large region of the
phase diagram of 2- or multi-component surfactant systems.[15-17] In micellar
dispersions, the aggregates are formed by self-assembly of surfactant monomers. While
micelles are frequently spherical, they can also exhibit a sphere-to-rod transition and
even grow to giant flexible and polymer-like aggregates. This micellar growth can be
induced by a reduction in the so-called spontaneous curvature Ho due to a change in a
"control parameter" such as temperature (in nonionic surfactant systems), ionic strength
(in ionic surfactant systems) or cosurfactant concentration, which subsequently results
in a characteristic transition in the particle morphology from spheres to cylinders to
lamellae.[8, 18, 19] Microemulsions are formed in 3- or multicomponent systems. The
microemulsion aggregates have a liquid core (oil in oil-in-water (o/w), water in water-
in-oil (w/o) microemulsions) which is surrounded and stabilized by a surfactant
monolayer. They frequently possess a droplet-like structure, but they can also grow into
large tubular or sponge-like and multi-connected structures. [8, 15] In addition to
micellar and microemulsion phases, a number of liquid crystalline phases such as the
lamellar (La), hexagonal (H) or cubic (I) phases or the so-called "sponge" phase (L3)
can be found.

A typical example for the phase behaviour of a ternary system with a nonionic
surfactant of the ethylene oxide type is shown in Fig. 5. The surfactant-to-oil ratio is
kept constant, and the temperature and the composition (characterized by the weight
fraction of surfactant and oil) is allowed to vary, i.e., the system corresponds to a
section through the phase prism as illustrated in Fig. 5(a). Three separate phases can be
identified in the phase diagram shown in Fig. 5(b): A microemulsion phase, L, a
lamellar liquid crystalline phase, La, and a second liquid phase, the so-called sponge or
L3 phase.[20] The relation between microstructure and phase equilibria is an important
aspect of surfactant systems. Several theoretical concepts based either on packing
considerations of the surfactants in the aggregates or on the role of the bending elastic
energy of the surfactant monolayer have provided us with a theoretical framework for a
better understanding of these systems.[6, 8, 21, 22] The sequence of phase transitions
shown in Fig. 5(b) is, for example, in good agreement with the predictions of the
flexible surface model.[8, 20] The phase transitions follow the trend of a decreasing
mean curvature of the surfactant film with increasing temperature, i.e., are consistent
with the strong temperature-induced variation of the spontaneous curvature for nonionic
surfactants.[23] This temperature-induced variation of Ho not only results in the
appearance of phase transitions. It also causes variations of the microemulsion structure
in the L-phase from almost monodisperse droplets at the lower phase boundary (the so-
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called emulsification failure[8]) to anisotropic and possibly multiply-connected particles
at the upper phase boundary. [20, 24, 25]

surfactant

Fig. 5: (a) An illustration of the phase prism of a ternary system surfactant-water-oil. The shadowed
region represents a plane through the phase prism defined by a constant surfactant-to-oil ratio (51.9/48.1
by weight), (b) Phase diagram of the system C j2E5-D2O-decane for a constant surfactant-to-oil ratio of
51.9/48.1 (see (a)), where temperature is plotted versus the total weight fraction of surfactant and oil. L
denotes a liquid microemulsion phase, La is a lamellar liquid crystalline phase, and L 3 is an isotropic
liquid phase often referred to as the "sponge phase" (adapted from ref. [8]).

It is this particular feature of micelles and microemulsions that makes scattering
investigations of these systems so challenging. The micellar shape, the size distribution
and the intermicellar interactions may depend strongly upon solution composition (e.g.,
surfactant concentration, ionic strength) and temperature, in contrast to other classical
macromolecular systems such as polymers, biopolymers or lyophobic colloids.
Therefore single particle properties such as the weight average molar mass M w or the z-
average mean square radius of gyration (Rg

2)z cannot be determined unambiguously
from an extrapolation of the scattering data to infinite dilution. The neglect of this
inherent property of surfactant systems and the various attempts to decouple micellar
growth and intermicellar interactions have led to a number of controversies.
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In the following paragraph I shall demonstrate that SANS can indeed provide
important contributions to a better characterization of micellar structures in solution. It
has been demonstrated in various reports that it is possible to find conditions where
micelles or microemulsion particles grow dramatically with increasing surfactant
concentration into giant cylindrical aggregates. These giant micelles normally have a
high degree of flexibility, and their overall structure is generally well described by
polymer theory.[18, 26] Several attempts have been made to demonstrate the existence
of cylindrical micelles and to characterize the micellar structure using small-angle
scattering experiments. [19, 27-34] The basis for such an approach comes from the fact
that scattering experiments on polymers or polymer-like micelles covering a broad
range of scattering vectors reveal a series of different regimes with a behavior
characteristic of the various length scales of the chains as outlined in the previous
paragraph (Fig. 3) These different characteristic regimes are indeed also found in
solutions of polymerlike micelles as demonstrated in Fig. 6 with data form polymer-like
lecithin reverse micelles, where results from static light and small-angle neutron
scattering experiments have been combined. The particular example used is a
microemulsion system in which giant polymerlike and tubular aggregates form. This
formation of polymer-like structures upon the addition of trace amounts of water to
almost spherical lecithin reverse micelles in organic solvents such as isooctane or
cyclohexane has been demonstrated with a combination of light scattering and small-
angle neutron scattering at low surfactant concentrations, which allowed verification of
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Fig. 6: Plot of scattering intensity I{q) versus scattering vector q for solutions of soybean lecithin in
deuterated isooctane ( water-to-lecithin molar ratio w0 = 1.5) at volume fraction <j> = 0.0021. Data shown
is obtained from light (A) and neutron (O) scattering experiments. Also indicated are the regimes/length
scales where a different characteristic ^-dependence can be observed (see text for details).
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the locally cylindrical structure of these reverse micelles and an estimate of the
persistence length and overall dimensions.[43,44]

In most previous studies, the data analysis primarily reiied on an interpretation of
different Q-regimes based on asymptotic expressions such as a Guinier approximation
or the Debye equation for the low-Q part, the use of simple crossover relations for the
incorporation of flexibility in the intermediate Q-range or a Guinier approximation for
the high-Q part. [30-33, 35] However, in order to fully take advantage of the information
content of the data it is desirable to perform a least squares analysis employing a model
cross section as given for example by Eq. 3 for semiflexible polymers in good solvents.
This is important, for example, in any attempt to determine the micellar flexibility
characterized by the Kuhn length b, which is a key parameter in the interpretation of the
micellar properties within the flexible surface model.[10, 34] Fig. 6 demonstrates that
the scattering function developed for the wormlike chain model with excluded volume
effects is indeed capable of quantitatively reproducing the experimental features of the
SANS data from polymerlike micelles over an extended range of scattering vectors.

In the analysis of the local structure we can not only use model scattering
functions as given by Eqs. 3-5, but we can try to extract detailed information on the
local scattering length density profile of the micelles using a model-independent
approach. This can be achieved through the indirect Fourier transformation (IFT) and
square-root deconvolution (SQDEC) methods.[34, 36-39] The high-Q part of the
polymer-like scattering intensity reflects the local cylindrical symmetry of the micelles,
and the cross-section scattering intensity at Q = 0, Ic(0), is directly related to the mass
per length ML-[40] While IFT uses the assumption that the cross-sectional contribution
to the total scattering can be decoupled from the rest, it has the advantage that it does
not rely on the low-Q part of the data used in the model fitting approach and that no
specific model assumptions have to be made regarding the structure of the micelles
except for the locally cylindrical symmetry. Therefore contributions from polydispersity
of the overall size and interaction effects are minimized, which should result in a more
reliable determination of the local micellar structure in micellar samples at finite
concentrations.

Here I present experimental results from a detailed small-angle neutron
scattering study of polymer-like lecithin reverse micelles (for details see [41, 42]).
SANS experiments with polymer-like lecithin reverse micelles in cyclohexane provide
an ideal test for the applicability of IFT and SQDEC methods. In cyclohexane, the
water-induced formation of giant cylindrical micelles occurs at relatively high values of
the molar ratio water-to-lecithin, WQ, which according to the previously postulated
model for the micellar structure should lead to a tubular arrangement with a well
defined water core and a surfactant shell. One thus has the possibility to dramatically
modify the cross-section excess scattering length density profile Ap(r) by using
deuterated cyclohexane as the solvent and either H2O or D2O. This is demonstrated in
Fig. 7, where a schematic drawing of Ap(r) versus the cross-section radius Rc is shown
for wo = 14 and both H2O as well as D2O. From an application of the IFT and SQDEC
methods to SANS data obtained on absolute scale, one should be able to resolve the
corresponding variations in Ar(r) and obtain quantitative agreement with the known
scattering length densities of the water core and the lecithin headgroup and tail regions.
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Fig.7: Schematic representation of the expected radial cross-section excess scattering length density
profiles for lecithin reverse micelles in deuterated cyclohexane with a molar ratio of water to lecithin WQ

= 14 with either H2O (ApH2°(r), solid line) or D2O (Ap^^ir), dashed-dotted line) as based on a simple
model of tubular aggregates with a well defined water core and surfactant shell. Also shown is the result
of a simple geometrical model that includes solvent penetration into the tail region as the dotted line.

The results from measurements with lecithin reverse micelles in deuterated
cyclohexane at wo = 14 and a lecithin concentration of C = 30 mM (which corresponds
to a total (surfactant plus water) weight concentration of Cw = 30.6 mg/ml for wo =
14.0) are summarized in Fig. 8. We see from Fig. 8 that the exchange of H2O with D2O
indeed results in a significant variation of the Q dependence of the scattering intensity
I(Q). If H2O is used, both water and lecithin have comparable scattering length
densities. The expected radial cross-section excess scattering length density profile
Ap(r) can then be approximated by a simple step function modified by the solvent
penetration into the chain region at higher values of r, which will cause a smoother
decay of Ap(r) (Fig. 7). This results in the typical monotonically decaying scattering
pattern of a locally cylindrical particle with an intermediate Q'1 dependence of I(Q)
followed by an exponential (Guinier) decay due to the cross-section form factor. [34]
However, when D2O is used instead of H2O, the reduced excess scattering length
density in the water core of the tubular reverse micelles results in a pronounced shell
contrast (see Fig. 7), and a well defined first minimum of the cross-section form factor
now becomes visible at high Q values. Having seen that the scattering data qualitatively
agrees with our expectations based on the structural model of tubular reverse micelles,
we can try to extract much more quantitative infonnation on the local micellar structure
by applying the indirect Fourier transformation (IFT) method to the experimental
data.[36, 37] Starting point is again the decoupling approximation given by Eq. 3.
Provided that Rg > b > Rc, for bQ » 1 the high-Q asymptotic behavior can then be
expressed by

KQ)= ( I ) 2TI jpc(r) J0(Qr)dr = ~ IC(Q) (6)

where the normalized cross-section distance distribution function pc(r) is given by

Pc(r) = (7)
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and Jo(x) is the zeroth order Bessel function. Note that pc(r) and Ic(Q) contain a factor
C W / M L , which is important for absolute normalization.
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Fig. 8: A comparison of the experimental (o) and fitted (using the indirect Fourier transform method)

normalized scattering intensity [da(Q)/di2]/C w (A, B), the corresponding distance distribution functions

pt(r) (C, D) and the radial cross-section excess scattering length density profiles (as obtained by the

square-root deconvolution method) (E) for lecithin reverse micelles in deuterated cyclohexane at WQ =

14.0: (A3): [da(q)/dii]/Cw versus q for measurements with D2O (A) and with H2O (B). The solid lines

correspond to the intensity smeared by the instrumental resolution, and the dotted line corresponds to the

ideal intensity (Note that the data obtained with different combinations of neutron wavelenght and

sample-detector distance and the corresponding fitted curves are slightly shifted due to resolution

effects.). Also shown by the arrow is the lower cut-off value of the q range used for the IFT.

(C, D): pt(r) versus r as determined by IFT for measurements with D2O (C) and with H2O (D),

respectively. Also shown as the full curves are fits to the data by the square-root deconvolution procedure

for Pc(r), resulting in the radial cross-section excess scattering length density profile Ap**2O(r) (solid

line) or A p ^ ^ r ) (dashed line) shown in (E). The light lines in (E) indicate the errors in Ap(r).

We can deduce a parameterized form of pc(r) through the IFT method. The
lower limit Qmjn = 0.04 A"1 of the fitted Q-range (indicated by the arrows in Fig. 8) was
chosen in accordance with the known Kuhn length of b = 240 A.[32, 41] A very good
fit of the experimental data can be achieved with the applied IFT method, and the thus
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obtained pc(r) functions closely resemble the simulated functions for filled and hollow
cylindrical particles (see for example Fig. 3 of ref. [41]). Furthermore, a well defined
shoulder with an initially linear region below r < 10 A is also clearly visible and is most
likely due to so-called diffuse longitudinal correlations as described in detail in ref. [41]
(see Fig. 14 B in ref. [41]). The pc(r) functions vanish both in the "homogeneous
cylinder" (H2O) as well as in the "shell" (D2O) contrast at approximately 70 A, thus
qualitatively confirming the previously postulated geometrical model which would
predict a cross-section radius Re = 30 A. Having determined pc(r), we can calculate the
integral parameters of the micellar cross-section using the corresponding relations for
the cross-section radius of gyration RCjg

00

fr2 pc(r) dr
l

2jpc(r)drj
the cross-section forward scattering intensity Ic(0)

00

IC(0) = 2TC Jpc(r)dr (9)
0

and the mass per unit length M L in units g/cm given by

ML = ~ (10)
Apm2

In addition to the evaluation of these integral parameters of the micellar cross-
section, we can also aim at a quantitative estimate of the radial cross-section excess
scattering length density profile Ap(r) from the pc(r) functions using the SQDEC
method as described in detail in ref. [41]. The resulting profiles Ap(r) versus r in
absolute units (cm~2) as well as the agreement between pc(r) determined from IFT and
fitted using SQDEC are also shown in Fig. 8 C-E. Except for the initial part of the pc(r)
function, which is strongly influenced by diffuse longitudinal correlations and which
therefore was not used in the fitting procedure, the fit using the SQDEC method results
in good agreement. Moreover, the thus obtained excess scattering length density
profiles Ap(r) for H2O and D2O are in close agreement with the expectations based on
the geometrical model and the known scattering length densities of lecithin and water.
The clear difference in Ap(r) at low values of r and the subsequent perfect overlap at
higher values of r provides us with a first direct estimate of the extension of the water
core. The values of approximately 20 A for the extension of the water into the
headgroup region and approximately 22 A for the hydrophobic tail region are in good
agreement with the geometrical dimensions of the lecithin molecule and the relative
volumes of water, headgroup and tail region. Moreover, the entire data analysis has
been performed in absolute units throughout, and no free parameters have been used to
adjust the obtained Ap(r) values such as to make them for example overlap in the tail
region. The degree of overlap in the chain region between the data sets from samples
with H2O and D2O is extremely good and provides us with a very sensitive test of the
applied data normalization procedure. The cross-section excess scattering length density
profiles given in Fig. 8 E provide us for the first time with a direct verification of the
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previously postulated geometrical model of a tubular cross-section with a well defined
water core and a surfactant shell for the structure of polymerlike lecithin reverse
micelles.

3. Outlook

The preceding two sections have given a few selected examples on the application
of SANS for a characterization of structural properties of soft condensed matter
systems. These examples hopefully demonstrate how powerful a tool SANS can be in
these areas, in particular when combined with contrast variation experiments and the
application of suitable theoretical models. However, while these were quite classical
examples of the application of SANS to soft condensed matter research, with the advent
of more powerful SANS instruments with very high neutron flux and large two-
dimensional detectors becoming available (such as for example D22 at ILL), new
possibilities for experiments under non-equilibrium conditions and time-resolved
studies of structural transitions and phase transitions become feasible.
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