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ABSTRACT

We present a new variational approach to the study of phase transitions in frustrated

2D XY models. In the spirit of Villain's approach for the ferromagnetic case we di-

vide thermal excitations into a low temperature long wavelength part (LW) and a high

temperature short wavelength part (SW). In the present work we mainly deal with LW

excitations and we explicitly consider the cases of the fully frustrated triangular (FFTXY)

and square (FFSQXY) XY models. The novel aspect of our method is that it preserves

the coupling between phase (spin angles) and chiral degrees of freedom. LW fluctuations

consist of coupled phase and chiral excitations. As a result, we find that for frustrated

systems the effective interactions between phase variables is long range and oscillatory

in contrast to the unfrustrated problem. Using Monte Carlo (MC) simulations we show

that our analytical calculations produce accurate results at all temperature T; this is seen

at low T in the spin wave stiffness constant and in the staggered chirality; this is also

the case near Tc: transitions are driven by the SW part associated with domain walls

and vortices, but the coupling between phase and chiral variables is still relevant in the

critical region. In that regime our analytical results yield the correct T dependence for

bare couplings (given by the LW fluctuations) such as the Coulomb gas temperature TCG

of the frustrated XY models. In particular, we find that TCG tracks chiral rather than

phase fluctuations. Our results provide support for a single phase transition scenario in

the FFTXY and FFSQXY models.



INTRODUCTION

Frustrated magnetic systems have been extensively studied, in part because they

constitute non-disordered versions of spin-glasses1'2. They display rich low-temperature

phases and remarkable phase transitions since frustration modifies the naive symmetry

of the Hamiltonian. For spatial dimensions D > 3, Kawamura found by renormalization

group (RG) techniques that frustrated O(n) spin models belong to a new, "chiral" univer-

sality class3. For D = 2 and XY spins, which is our present concern, phase transitions are

dominated by defects. Frustration results in additional chiral variables, which generate a

discrete symmetry. In the fully frustrated case the Hamiltonian for a square lattice is be-

lieved to possess an 0(2) x Zi symmetry (see for instance Ref1); for the triangular lattice

(FFTXY) one has the extra CW symmetry associated with the permutation of the three

sublattices, thus adding the possibility of a Potts transition5. The transition associated

with the 0(2) part (phases i.e. angular variables) would be Kosterlitz-Thouless (K-T)-like

at a temperature TKT6 and the discrete Zj part (chiral variables) would be broken below

a temperature TDS- There is an ongoing controversy concerning the order in which these

transitions should take place. RG calculations suggest that Tc = TKT = TDS but two

transitions are not ruled out4'7"10 : in the single phase transition scenario, measurements

of critical exponents for the chiral and of the central charge using MC and MC transfer

matrix techniques11 reveal non Ising behavior, providing support for Kawamura's claim of

a new universality class even in 2D. This is also suggested by studies based on the selective

breaking of certain symmetries12"16. Some MC studies performed on the FFTXY17'5'15

and on the fully frustrated square (FFSQXY) models12 yield a single phase transition;

yet other MC simulations for the FFSQXY model and for the 1/2 integer Coulomb gas

give two phase transitions very close in temperature18"^2.

In view of these unsettled issues the present paper has two objectives :

First we would like to give a quantitative description of the relevant excitations in FF

systems. In doing so, we wish to assess the importance of the coupling between phase

and chiral degrees of freedom at low temperature (T) and in the critical region. This

would allow us to identify the nature of the critical fluctuations and to decide whether

one should expect two phase transitions or just one.

Second we would like to test if the thermodynamic properties of the FFTXY and

of the FFSQXY models are similar or not, and in particular if the nature of the phase

transitions is different or the same for the two systems.



In order to get some insight into these issues we present a new analytical approach to

study 2D XY frustrated systems. It is inspired by Villain's analysis for ferromagnetic (F)

systems23 where: (a) the partition and correlation functions are products of a Long Wave-

length (LW) - spin waves - and of a Short Wavelength (SW) - vortex - contribution24; and

(b) the long wavelength part is mapped quantitatively (by perturbation theory or varia-

tional scheme) onto the low temperature contribution of the original cosine Hamiltonian25.

Steps (a) and (b) allow one to compute accurately all relevant thermodynamic quantities

from T = 0 up to Tc. Our results are best summarized in the figures. In section I we begin

with a brief discussion of steps (a) and (b) for the unfrustrated case and we show that

a simple variational approach - the self-consistent harmonic approximation (SCHA)25 -

yields quantitative agreement with MC at all T so long as one considers thermodynamic

variables sensitive to LW excitations (Fig (1)). Extending the method to FF systems

produces incorrect results even at very low T (Fig (2)). Failure is due to the fact that a

naive application of the variational approach eliminates chiral fluctuations. In section II

we set up a new variational method (we call it NSCHA for new SCHA) which explicitly

preserves the coupling between phase and chiral degrees of freedom. As a result, LW

excitations consist of coupled spin waves (phase) and polar (chiral) fluctuations. This

feature causes the effective interactions between phase variables to be long range and to

oscillate in sign (Figs (3)-(4)). One may contrast this behavior with the unfrustrated

case where phase couplings remain short range and positive in sign. Focusing on LW

fluctuations, in section III we compare our results to MC simulations performed on the

FFTXY and FFSQXY systems. For the FFTXY model we have done MC calculations for

sizes up to 60 x 60, using 10B — 106 MCS/spin and fluctuating boundary conditions15'26.

For the FFSQXY lattice we have used available data from the literature : this is justified

since we only use in a quantitative fashion data pertaining to LW excitations (i.e. re-

sults which are common to all studies ). For all T MC simulations and analytical results

agree closely: this is apparent in the LW contributions to the stiffness constant and to

the chiral order parameter (Figs (5)-(8)). Above a characteristic temperature T* defects

become important and they ultimately drive the transition: we introduce a variable r equ

(36) which allows to track chiral domain walls. Fig (7) shows that they become relevant

above T*. Furthermore, Figs (5) and (6) show that for T > T* domains affect both the

chiral order parameter and the spinwave stiffness constant. The relevance of the coupling

between phase and chiral variables near the transitions is also visible in Fig (8) where

we can see the agreement between analytical and MC predictions for the bare couplings



- here the Coulomb gas temperature TQG (equ 37)-. Noteworthy is the fact that TCG

is connected to chiral variables in FF systems whereas it is a bare coupling constant for

phase fluctuations in the unfrustrated situation (Fig (1)); this point is important in view

of the fact that MC studies of FF systems assume that Tea is a bare coupling for the

phase variables (see discussion in section III). Our study thus suggests that the vanishing

of the spinwave stiffness and of the chiral order parameter occur at the same T, for the

FFTXY and for the FFSQXY models.

I. THE SELF CONSISTENT HARMONIC APPROXIMATION

A. The ferromagnetic case

Using standard notation the Hamiltonian reads

n = - £ Ju

In the ferromagnetic case (J,-y = J > 0 for nearest neighbor pairs) Villain replaces the

cosine potential by a parabolic form; ^Jcot(9<-6i) j 3 approximated by :

Const. Y, e-OW^-2™^ (2)

where the integers riij express the periodicity of the original interaction. The main features

of the "Villain form " are that it includes both LW excitations (spin waves connected to

the phases 0) and SW excitations (vortices connected to the lattice curl of the n) and

that the partition function is the product of the LW and SW parts. Below TKT the vortex

part is essentially irrelevant (it simply introduces a dielectric constant tv ~ 1 4- e~J/T)

and LW properties are described by a harmonic spin wave hamiltonian with a spinwave

stiffness constant 7 = Jyfty. The importance of Villain's form stems from the fact that

by applying the Migdal-Kadanoff scheme to the original cosine interaction, one iterates

towards an effective harmonic spin wave theory below TUT74. The shortcoming of (2)

is that the coupling constant of the LW part is temperature independent whereas the

original cosine form introduces interactions between spin waves. To deal with this issue

one may use the self consistent harmonic approximation (SCHA)25 : for the LW part one

uses a variational hamiltonian

I Jii(0i - 9tf (3)



Anharmonicites of the cosine potential translate into a temperature dependence of Jyj.

The variational free energy is given by Fvar = Fo+ < H — Wo >n0 (^o is the free

energy for hamiltonian HQ ) and reads

/ ( - = ~\ £ Java ~ £ -V*1"" + ? loB ̂ < W'O CO

i7 is the matrix with diagonal elements £ * «Afc an<l °ff diagonal elements —J,j. The

quantities y,j = < (0,- — 0j)2 >^0 are themselves functions of the variational parameters

Jij. Therefore, we may use y,j as alternative variational parameters. The variational

equations read :

(5)

with

f ^ ^ a (6)
JBZ ™ J(0) -J(q) K ]

Here J(q) is the Fourier transform of «/,-j. In the ferromagnetic case, the effective

interactions J^ only couple nearest neighbors. Their magnitude J(T) is given by

J(T) = Je"$n (7)

(z is the number of nearest neighbors of the lattice). One may then compute the spinwave

stiffness matrix; its elements are given by the second derivatives of the free energy with

respect to uniform twists of the phase27. For isotropic lattices the matrix is diagonal

and all the elements are equal. In SCHA the constant is -JSCHA = J(T). We may then

simply replace Jv in equ (2) above by ISCHA- Figs (la) and (lb) show the temperature

dependence of the SCHA stiffness for the square (SQ) and triangular (TR) lattices along

with the MC result (denoted by f(T)). At low T vortices contribute with a probability of

order e " ^ T so that SCHA and MC agree quite well. Near TKT « 0.892 J (SQ lattice28"30)

or 1.446J (TR lattice31) vortices cause a drop in i(T). Since SCHA only describes LW

fluctuations it fails to produce a fall-off.

B. the Fully Frustrated case

The previous analysis is easily extended to the situation where spins are non collinear

in equilibrium32. We rewrite the 0, of equ (1) as:



Oi = Oi° + <Pi (8)

where 0j° = < 0; >y0 and the variational hamiltonian is

(9)

In addition to the parameters yy = < (y>,- — <pj)2 >«0 one has the extra variables 0°.

The variational equations now read

(10)

Jijtan(0i°-9f) = Q (11)

and ytJ- is given by equ(6). Denoting by ?i — (xi,yi) the vector connecting the origin of

the lattice to site i and by uy the vector connecting nearest neighbor sites t and j , the

solution 0i° to these equations is independent of T and given by:

(mod 2TT) (12)

for the square lattice, along with the symmetry property

0°(f- + On) - (?>(*) = +(0°(ri - *u) - «°(r*)) (13)

and by:

Of _ tf.o = ^o(?. + Stj) - 9°(ri) = QMu = >40- ± aTR (mod 2n) (14)

for the triangular lattice, along with the symmetry property

(15)

Here Aij = — J4J,- = TT if J,j < 0 and Ay = 0 if Jy > 0. o is a lattice dependent,

temperature independent quantity. For the FFTXY lattice (J tJ = — J < 0 ) one has

Q oc ( ^ , ^ ) so that QT« = f • For the FFSQXY lattice - the so-called Villain odd

model - (Jy = — J < 0 every other row along, say, the horizontal direction and Jy =

+J > 0 otherwise) one finds ctsq = \. In addition Jy is a nearest neighbor interaction of

magnitude

J(T) = Jcos(a).e~$T) (16)



Fig (2) shows the SCHA stiffnesses for the FFTXY lattice together with the MC result.

Even at low T, J(T) and y(T) differ significantly. The same effect is observed for the

FFSQXY lattice. The reason for this discrepancy is clear : inserting equ (8) into equ (1)

gives

« = ~ £ Mcos(9i° - Oficosto - ifi) - sin(8i° - efiainfa - &)) (17)

Within SCHA the sin() term of equ (17) averages to zero. But this term precisely

discriminates the +a solution from the —a solution in equs (12,14) and these two solutions

correspond to the two chiral groundstates of the FF system. As a result SCHA washes

out chiral fluctuations and maps the hamiltonian into an effective ferromagnetic phase

problem since the Jij are simply renormalized to Jijcos(8i° — 0j°).

Our analytical method was thus required to preserve the coupling between the two

chiral states and to allow fluctuations of the chiralities. The next section shows that our

approach then yields accurate results for the FF case. Furthermore, it also improves on

the standard SCHA in the unfrustrated case.

II. NSCHA

Using equ (17) the partition function reads :

Z = TrMVi ~ v» i)e^<'^> J i ' c o ' ( ' i 0- ' '0 ) c o j ( v ' -v ' ) (18)

where I2 = e"/J^<*.»J|>fin(*1°"'>0)'1'n(v>>"v>). We rewrite I7 as the sum of a term even in y>

plus a term odd in y>:

I2(x) = }[/,(x) + /,(-*)] + J[/a(x) - /,(-x)J
Now the trace over <p in equ (18) is constrained by equ (8) 0,- = 0,° + y>,- but for LW

excitations we expect </>,- to fluctuate about 0, so that we can safely extend the domain of

variation of y>, to the interval [—n, +JT]. AS a result the odd term of /2 drops out and the

partition function reads

Z = Tr^e-W*" where

"He// = - E < . - j > Jncos(0i Oficosfri if)
0 fi- T L o g [ c o s h ( Z

<itj>



The second term on the r.h.s of equ (19) is the new relevant term. It has the following

properties :

• it is a thermal contribution since it vanishes at T = 0

• it is zero for collinear systems (i.e. either unfrustrated or frustrated but with non

chiral configurations)

• it couples chirality (0° - more precisely Jijsin(6i° — $/*) for each link (ij) equ (30)

below - ) and phase (y>,) variables, allowing chiral fluctuations. Similarly, it preserves the

symmetry between the two chiral groundstates.

We now compute the variational free energy associated with Tie// using the trial

hamiltonian Ho (equ (9)). To do so we have to expand the log(cosh) term of "He//

in power series of its argument. It is justified since the series amounts to a multipole

expansion as is seen below. Besides, the leading term is the first term, especially at low

T. Tie// then becomes

(20)

The variational equations for - what we call - the NSCHA (new SCHA) ensemble are:

k ^

sin(${° - OflsinWj0 - 0,°)

cosh(yij + yk, - yit - yjk)

= 0

Again y y = < (ipt - tpj)2 >Wo and

(1 - cosq.jf, - fjff
JJBBM M J ( 0 ) J M ( 2 3 )

For the FFTXY and FFTSQXY lattices it is easy to check that 0? is a temperature

independent quantity and that its value is still given by equs (12,14)

Furthermore, equ (21) shows that J(j is no longer a short range interaction. In fact

we find that for all T,



Jii ~ i ^ z r p (24)

for large distances r = If, — rj\ (Fig (3)). This comes about because y,j ~ log(r) at large

distances so that y,* -f- yji — yu — y^ ~ \ in equ (21) : this contribution is quadrupolar

like. Similarly, expanding the log(cosh) term to next order would produce a higher order

multipolar contribution (see also Appendix A).

In addition, the sign of J|;- varies with the relative orientation of t and j and, in the

case of the FFSQXY lattice, with the distance between t and j Fig (4a) and (4b).

These features are to be contrasted with the results of SCHA yielding a positive nearest

neighbor Jij. The coupling between phase and chiral degrees of freedom has produced

an oscillating, "long range" interaction between the phase variables. Because of these

properties it is clear that renormalization group analyses (e.g. Migdal-Kadanoff) are not

straighforward for FF systems.

Within NSCHA we can compute the phase stiffness constant. Owing to the isotropy

of the lattices we have :

r(r) = Km W > - f t W > (25)

where ux is the unit vector along the horizontal direction of the lattice. Besides, within

this new variational ensemble we also get a stiffness associated with the canting of the

spins; considering a small variation of the nearest neighbor angle difference 0° — 0j° from

its equilibrium value in the form Aur.u,j we get:

1NSCHA{T) = ^gj

* ( ii 003(6,° -

[cos{0i° - e^cosiOk0 - 0,°) + sin{6i° - 9jO)sin(9k° - 0,°)])

It is easy to show that 1NSCHA(T) is nothing but the average of the exact spinwave

stiffness "f(T)s in the ensemble 7i0, i.e.

1NSCHA{T) = jf < E< l > i> Jii 003(0, - $,) (Uij.U,)*

<fc,/> JijJu (uijMx)(ukiMx) sin(9i - 0j)sin(0k - 0,) >Wo

A plot of T(T) and INSCHA(T) versus T is shown for the TR lattice (Fig (5a)) and

for the SQ lattice (Fig (5b)). We note that V(T) and 7NSCHA(T) coincide at low T. This

is explicitly demonstrated in Appendix B. In particular, we find that

10



(28)

• For the triangular lattice 70 = >/3/2J and T^ = —^j&J ~ 1.975J

• For the square lattice 70 = \ /2/2J and TM - &1 &J ~ 2.075J

For both cases T^ ~ 1J (Ref33).

Another quantity of interest is the staggered chirality

P denotes plaquettes of the same sublattices i.e. plaquettes in the same chiral state at

T = 0. The summation 52(fc,j)eP ^s performed over the links of plaquette P oriented

clockwise, cr*/ is defined as :

<7W = ./u*«n(0* - «,) (30)

(see below for a discussion on the definition of <rw ).

Using equ (8), we have

°u = Jki(cos(0k° - 6i°)sin(tpk - (pt) + sin(0k° - 0,°)cos(ipk - y?,))

Within NSCHA the sin(<pk - <pt) term drops out and akl(T = 0) = Jki(cos{6k° - 9,°) so

that

<*NSCHA = e~'vu (31)

where A: and / are nearest neighbors (yki has the same value for all the nearest neighbor

sites / of any given site k). CNSCHA versus T is plotted in Fig (6) for the TR and SQ

lattices.

To summarize the results of this section we see that LW thermal excitations in fully

frustrated lattices are characterized by a strong coupling between chiral and phase degrees

of freedom. The effective interaction between phase variables is long range and oscillatory

- in contradistinction with the unfrustrated case - .

Let us now compare our results to those coming from Monte Carlo simulations.

11



III. MONTE CARLO VERSUS NSCHA

In order to test the predictions of NSCHA we used the results of Monte Carlo simu-

lations. For the FFSQXY lattice we took data from the literature insofar as we did not

seek to extract information about critical fluctuations. In that case there is agreement

among the various studies. For the FFTXY and for the ferromagnetic triangular lattice

recent data is rather scarce (Refs17>5>!5) so that we performed our own simulations. We

considered typical lattice sizes of 48 x 48 and ran 105 — 106 MCS/spin. In order to mini-

mize boundary effects we used fluctuating boundary conditions (Refs16*26). We monitored

the following quantities :

• the spinwave stiffness constant 7(T)

• the staggered chirality a equ (29):

several definitions of a have been used in the literature. One of them is the definition we

use here (see also Olsson26), others are19

ffl = F < E % « ( £ *«)> (32)
y V / > P {k,l)€P

where aki is defined in equ (30) and Mp the number of plaquettes of each sublattice, or

^ ^ > (33)
Jyr p (jt.oeP

with21

akl = — { 9 k - 0 i - Akl) (34)

or with

</u = — {6k - 6,) (35)

In equs (34,35) the angular determination of the terms in parenthesis is taken in the

interval ] — it, -f-rr]. All these definitions lead to the same T dependence for a in the critical

region. For the square lattice this is reported by19 for instance and for the triangular lattice

this is seen in Fig (7) using the definitions equs (30) and (35).

• the chirality amplitude r :

1

using again the previous definitions for aki- So long as chiralities are ordered on each

sublattice r and a coincide. When domains of the "wrong" chiral state form on a given

12



sublattice the two quantities differ. Thus r allows us to track the formation of domains

and domain walls (where the chirality of a plaquette X^fc.ijef0^' = 0). For the FFTXY

lattice for instance Fig (7) shows that at Te we have ~ 30% of positive chiralities, ~ 30%

of negative chiralities and ~ 40% of a-chiral plaquettes on each sublattice.

• the Coulomb gas temperature Tea •

This quantity monitors the bare (unrenormalized) coupling constant and allows to

define the critical point for the XY model (Refs34'30). Within MC it is given by30

Tea - r — p Jo = J < cos{0i - 6j) > (37)

for nearest-neighbors i and j .

Figs (5a) and (5b) show r(T),yNSCHA{T) and 7(T) versus T. The three curves yield

the same variation at low T. Furthermore, as could be expected from our previous discus-

sion, INSCHA(T) tracks -y(T) for T <T* (T* ~ 0.32 J for the square lattice and T* ~ 0.35 J

for the triangular lattice); for T > T* the two curves move apart. Since NSCHA describes

LW excitations but neglects SW excitations responsible for the transitions, this had to be

expected.

Similarly, Fig (6) shows a comparison between NSCHA and MC for o{T)\ again the

agreement is quite good for T < T*. Moreover we also see from Fig (7) that T* marks

the temperature above which domain walls become important, since <7(T) and T(T) start

to differ for T ~T*.

At this stage we might worry that the discrepancy between MC and NSCHA pre-

dictions for T > T* not only marks the point when defects become important but also

signals the breakdown of the variational approach. In fact, NSCHA still yields accurate

results for quantities sensitive to LW fluctuations including in the critical region. We see

this by comparing the MC and the NSCHA Jo entering the definition of the Coulomb

gas temperature. Tea represents the bare (unrenormalized) coupling constant when LW

fluctuations are taken into account.

For instance, in the case of the square lattice, Olsson finds that Tea ~ 0.12822 at

the KT transition (TKT ~ 0.446J); this value is to be compared with the MC results

by Grest18 (TCo ~ 0.126) and by Lee20 {Tea ~ 0.1297) on the half integer Coulomb gas

representation of the FFSQXY.

Fig (8) shows Jo(T) for the square and triangular lattices determined both in MC and

in NSCHA. We notice that:

13



a) both determinations agree extremely well in the critical regime

b) Jo tracks the chiral variable couplings rather than the phase variable couplings :

Indeed, if we use for Jo the definition given in equ (37) we find that in the NSC1IA

ensemble

JONSCHA = cos(0" - 0")aNScHA (38)

and Jo is therefore connected to the chiral variables. We have seen that the LW contribu-

tion to the chirality a - given by equ (31) - does not vanish at the transition (a becomes

zero because of defects) so that JONSCHA
 ls finite even in the critical regime. For instance,

for the square lattice NSCHA gives TCG ~ 0.125 using TKT = 0.446J. By contrast, for

the unfrustrated case, equ (37) gives JQSCHA — J{T) (see section I). So Jo is connected

to phase variables then (see also below).

In the frustrated case, if we replaced Jo by r(T) equ (25) we would find too high a value

for Tea (namely 0.139) compared to MC.

Similarly, for the triangular lattice MC gives TKT = 0.51 J (Refs5-15) and Tea ~ 0.123

to be compared with the NSCHA prediction (using equ (38)) TCG ~ 0.122.

This result has direct implications for MC studies : these introduce a second critical

temperature TDS where chiral order vanishes. Some authors find TKT > TDS19'9 whereas

others predict TKT < TDS18'21'72- At TDS critical exponents are found to be Ising-like

by some authors12'22 but non-Ising by others19'21. The magnitude of the jump of the

spinwave stiffness constant or of the dielectric constant seen in MC appears universal

for the FFTXY model (33) but non universal for the FFTSQXY model33'18^1. Recently,

Olsson has argued that a correct analysis of the transitions in the case of the FFTSQXY

requires extra care due to their closeness in temperature. As a result he finds a universal

jump at TKT and similarly Ising exponents at the chiral transition22 in contradistinction

with previous authors33'18"21. One should note that the claim of universality or non

universality for the KT transition is based on a scaling a la Minnhagen for the magnitude

of the jump : yet, according to Minnhagen's study this scaling should not hold (one

might even expect a first order transition) given the value of the critical Coulomb gas

temperature corresponding to TKT34'35-

Our results show that, because of the coupling between phase and chiral degrees of

freedom, TCG pertains to chiral variables; because of this coupling one might thus expect

a single phase transition in these systems.

For the unfrustrated case - e.g. in the ferromagnetic limit - , equ (37) gives JQSCHA =

ISCHA — J{T). Its temperature dependance compares reasonably well with MC (Fig

14



(1)). In fact MC and variational predictions agree extremely well if one compares Jo to

KNSCHA' NSCHA reduces to SCHA for the most part but even in the ferromagnetic case

the stiffness 1NSCHA(T) equ (26) does not coincide with J(T). Chiral fluctuations exist

even when 9f = 0. Equ (27) shows that -yNSCHA(T) represents the LW contribution to

the stiffness constant 7, i.e. the bare coupling for the phase variables. So it is natural

to identify ^— with Tea- If we use 7WSC/M(T) in equ (37) we find analytically

Tea = 0.198 for the SQ lattice and TCa - 0.191 for the TR lattice, to be compared with

the MC values 0.1956 for the SQ lattice30 and 0.192 for the TR lattice.

To summarize our results, we have constructed a variational ensemble (NSCHA) for

fully frustrated XY systems in 2D. Testing its predictions with Monte Carlo simulations we

see that our approach yields accurate results at all temperature - including in the critical

regime - for quantities sensitive to long wavelength excitations. The key ingredient of

the theory is the coupling between phase and chiral degrees of freedom and this coupling

is always relevant. In particular, it causes the interaction between phase variables to be

polar-like (long range and oscillatory). As a result, renormalization schemes assuming

short range couplings might not be reliable.

If a Coulomb gas temperature is introduced it appears to track chiral variables rather

than phase variables.

Monte Carlo simulations show that defects drive the transitions. In particular, chiral

domains appear to affect the spinwave stiffness constant and chiralities in a similar fashion

giving support for a single phase transition scenario.

The above results pertain to both the FFTXY and the FFSQXY lattices suggesting

universality for fully frustrated systems.

For ferromagnetic systems NSCHA still improve on SCHA. The reason is because NSCHA

incorporates fluctuations of the macroscopic phase (60) about its equilibrium (zero) value,

in contradistinction with SCHA. In that sense NSCHA is a canonical ensemble as opposed

to SCHA which is a microcanonical ensemble. In that limit the Coulomb gas temperature

is associated with the bare coupling constant of the phase variables.
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APPENDIX A:

In this appendix we show that in the limit of large distances R = |f; — fj|, J,y given

by equ (21) behaves as Jij ~ if,-V|« (eclu (24)).

We start with the NSCHA variational equation for Jij :

+ 4 £ J* JH *™(e°i ~ 6°k) s in(0° " O cosh(yij + yM - yu - yjOe
1 k,i

where y^ = y(fj — fi) is given by equ (23) and where the angles {0f} satisfy equs (12,

14).

For the FFTXY the expression 7,, sin(0° — 0°) only depends upon rj — n . For the

FFSQXY lattice however, there are four different types of sites (see equ (12)) so that

Jij sin(0° — 0°) explicitly depends upon site t. Yet, for the FFSQXY lattice the quantity

(-l)*'+>" Jij sin(0j - 0?) is independent of i .

Therefore, we introduce

For the triangular lattice we choose w = 1 and for the square lattice we set w = — 1.

The quantity J defined in that way only depends upon fj- — fj. J possesses the following

symmetry properties :

J(-e) = - J{e) (A2)

for the TR lattice and

J(-e) = J(e), J(ux) = -J(uy) (A3)

for the SQ lattice.

In the following we introduce the notations R = fj — f), e' = f) — f}, e = f^ — r*,-.

For large R, only the third term in the r.h.s. of equ (21) contributes, since J,j is a

nearest neighbor interaction. Using the fact that J,, is independent of i, that we have

the symmetry properties, equs (A2,A3) and that the value of y,j is the same for all the

nearest neighbors j of a given site i (by symmetry) we get

h = —e-Mw*** £ JeJp cosh l-(y(R + e + e>) + y(R) - y(R + e ) - y(R + e'))
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where e~o is any nearest neighbor vector connecting two sites.

We denote by Ay(R, e, e') the following quantity:

Ay(fl,e,e') = y{R + e + e') + y(R) - y(R + e) - y{R + £*')• In the large R limit we

expand y in powers of R; with :

2

and

/ j \ y*a"p*"i "a"T-p "pi'i'-a i ^a^p^y i "a*"r-p • ^v-r-aJ o n an AD
aj),1 OnaOttpOtL,

we have that Ay(fl,£,£f) = A2y(fl,£*,£*) + A3y(H,£,£f) + • • •

In Appendix B we show that Jo — Jf ~ Tq2 for small q*so that - using equ (23) - we get

y(R) ~ log |^ | for large R. As a result

>j . rv I A4)D2' ac ao an D 3 V'l^y/I OrlaOrlpOrLy It

Expanding cosh() we get:

T 1 -.,t.i\ n_j.i;
WAy(/U£-')]2 + • • •} (A5)

that is

ew22JiJp{l + [A2y(^£,£"')]2 (A6)

• for the triangular lattice, using equ (A2) we have

,£,£*')]2 = 0,

so that

1* ~ __«-»l«o) V1 I-Ii-\A*n(R F F'W2 ~ —- (A71
JR— rpe 2-»^JeJol 3"vn» e» e JJ pe lr t'^

for the square lattice, using equ (A3) we have

17



but Epir^?lAay(fte,c"J)]a 1 0.
so that

~ (A8)

We note the sign alternation due to the (-1 )*•+*» term for the FFSQXY lattice (see

Fig. 4) .
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APPENDIX B:

In this appendix we compute 1NSCHA{T) (equ (26)) and T(T) (equ (25)), at low T.

We show that for the FFTXY and FFSQXY lattices -yNscHA{T) - T(T) = O(T2).

We start with equ (21). Using the same notations as in Appendix A we have

\ cos a(R)e-^{R) (Bl)

x(8(R - e) + 8{R -e') + 8{R -r) + 8(R- (r + e + e'))

-S(R-e-r)-S(R-e'-r))

where &(...) denotes the Kronecker delta symbol, where a(R) was defined in equs (12,14)

and where the expression is written in such a way as to preserve the symmetry under the

transformation e f+ e'.

We now Fourier transform equ (Bl) :

?* = £ \J/l\cos ot{R)e-^R)e-^R (B2)
A

L J2 Y] Yl wr*+r»JeJie-*M*+v^)+vi?+r+p)+vi^-vine

*{6{R - e) + 8{R - £-') + 8{R - r) + 8(R - (f + e + c'))

-8{R - e - 0 - 8(R - e' - f))e~ifn

setting

B =
A

-8(R-e-r)-8{R-e' - r))e"

we see that B = e~^e+ e"**1 + e-«^+ c-"«'-C+'+«"')

Since we wish to compute

V(T) = \im±(J(0) - Jlu-,) (B3)

we may expand B to second order in q:

5 = 2 - (**)($£) + 0(q3)
and thus :

19



(B4)

Similarly, 7NSCHA{T) equ (26) is given by

1NSCHA(T) =W \M COS a(e)(e.ux)
2e-l>v& (B5)

We see that the difference between the expression of T(T) and the expression of

!/NSCHA(T) comes from the term proportional to cosa(e)cosa(£').

With the notations:

A = \

s = j

x e

1NSCHA{T) and T(r) read :

T(T) = A + ^S

Expanding /4, C and S in T yields:

C = C° + ClT + CT2 + 0(T3) and 5 = 5° + SlT + S2T3 + 0(T3)

We set g(f) = y(r)/T such that g(f) approaches a Rnite limit as T -> 0.

to order T° :

~« 1
?I «* a(e')(e.ut)(t.ux) = 0

20



C° is clearly zero when one sums over e*and e*

5° = 0 for the SQ lattice because w = - 1 so that £r-«>r"+r* = 0; 5° = 0 for the TR

lattice because ^gJ^t.Ux) = 0

to order Tl :

I1 = 7££|J^cosa(^|J^cosa(^(e.tIx)(e/.uI)

-g(r + e)-g(r-

4 f e.e

= 0

1

= 0

Doth Cl and 5 1 equal zero, owing to the parity in e and £*, and using the fact that

+ a) = £jr</(r) whenever a is any vector connecting sites of the lattice.

to order T7 :

C" = \ZZ\Mcosa(e)\J;l\cosa(e')(eMx)(i>Mx)

- n(v A- F^\ — n(r •

Using the same properties as for the terms of order T we find:

e

Also expanding A to order T gives :

T
EI-M cos a(e).(iT^)(l

21



From these calculations we deduce that INSCHA(T) = T{T) to order T ( C = 0(T3)).

At this order we may simply replace Jf by J$ in the expression of g{r) and we find that

(equ (28))

1NSCHA{T) = 7o(l - Y~) (B6)

with

• For the triangular lattice 70 = y/Z/2J and T^ = x\^J ~ 1.975J

• For the square lattice 70 = y/2/2J and 7^ = t ' ^ J ~ 2.075 J
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1.0?

0.0

FIG. 1. Comparison of Monte Carlo and SCHA spinwave stiffnesses versus T for the fer-

romagnetic triangular (Fig l.a) and square (Fig l.b) lattices. Circles represent MC data,

long-dashed lines fscHA = J{T) equ (7), solid line INSCHA equ (26) with 6>j° = 0. Diamonds

denote MC data for the bare coupling Jo entering the definition of the Coulomb gas temperature

(equ 37).
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FIG. 2. Comparison of Monte Carlo and SCHA spinwave stiffnesses versus T for the fully

frustrated triangular lattice. Circles represent MC data, long-dashed lines fscHA = J(T) equ

(16).
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FIG. 3. Log(\J(R)\) vs Log(R) for T = 0.4.7 for the square and triangular lattices

R = \Fj — fi\ . For the SQ lattice the slope is 4 (solid line), for the TR lattice the slope is

6 (dashed line). The slope is in fact T independent (see text).
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FIG. 4. The sign of j y equ (21) at point f for the triangular lattice (Fig 4.a) and the sign

of (~l)x+vJij at point f = (z,y) for the square lattice (Fig 4.b). Circles denote sites where J i ;

is negative. 2 g



0.2 0.4

FIG. 5. Comparison of Monte Carlo and NSCHA stiffnesses versus T for the fully frustrated

triangular (Fig 5.a) and square (Fig 5.b) lattices. Circles represent MC data, long-dashed

lines T(T) equ (25), solid line INSCHA equ (26). Diamonds denote MC data and dotted lines

the NSCHA prediction for the bare coupling Jo entering the definition of the Coulomb gas

temperature equ (38).
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0.0

FIG. 6. Comparison of the Monte Carlo and NSCHA determined chiral order parameter a

vs T equ (31) for the TR and SQ lattices. Triangles (resp. squares) denote MC points for the

triangular (resp. square) case. Solid lines are the corresponding NSCHA predictions.
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FIG. 7. MC determination of the staggered chirality a(T) equ (29) and of the chirality

amplitude T(T) equ (36) for the fully frustrated triangular lattice. Two definitions of ou have

been used : one is from equ (30) (open diamonds), the other is from equ (35) (open circles).

They yield the same results near Tps- The corresponding values of r show as filled diamonds

and filled circles respectively.
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FIG. 8. Bare coupling J0(T) entering the definition of TCa for the TR and for the SQ lattice

near the transition. Filled triangles (resp. square) are MC data for the TR (resp. SQ ) lattice.

Dashed lines are the corresponding NSCHA predictions equ (38).
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