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ABSTRACT

We study a new generalized version of the square-lattice frustrated XY model where

unequal ferromagnetic and antiferromagnetic couplings are arranged in a zig-zag pattern.

The ratio between the couplings p can be used to tune the system, continuously, from

the isotropic square-lattice to the triangular-lattice frustrated XY model. The model

can be physically realized as a Josephson-junction array with two different couplings, in a

magnetic field corresponding to half-flux quanta per plaquette. Mean-field approximation,

Ginzburg-Landau expansion and finite-size scaling of Monte Carlo simulations are used

to study the phase diagram and critical behavior. Depending on the value of p, two

separate transitions or a transition line in the universality class of the XY-lsing model,

with combined Z2 and U{\) symmetries, takes place. In particular, the phase transitions

of the standard square-lattice and triangular-lattice frustrated XY models correspond to

two different cuts through the same transition line. Estimates of the chiral [Zi) critical

exponents on this transition line deviate significantly from the pure Ising values, consistent

with that along the critical line of the XY-lsing model. This suggests that a frustrated

XY model or Josephson-junction array with a zig-zag coupling modulation can provide a

physical realization of the XY-lsing model critical line.



I. INTRODUCTION

There has been an increasing interest in frustrated XY models in relation to Josephson-

junction arrays in a magnetic field1"3. At a particular value of the external field, corre-

sponding to half flux quanta per plaquette of the array, the ideal system is isomorphic to a

frustrated XY model, or Villain's odd model4, with ferromagnetic and antiferromagnetic

bonds satisfying the odd rule, in which every plaquette has an odd number of antifer-

romagnetic bonds. Frustration has the effect of introducing a discrete Z2 symmetry in

the ground state with an associated chiral (Ising-like) order parameter, in addition to the

continuous (/(I) symmetry. The interplay between these two order parameters may lead

to critical behavior which is not present in the unfrustrated model which is known to have

a transition in the Kosterlitz-Thouless (KT) universality class.

Earlier Monte Carlo simulation results for the isotropic square-lattice (SFXY)1'17 and

triangular-lattice (TFXY)5'6 frustrated XY model, and some recent ones7'8, suggest a

critical behavior associated with the chiral order parameter in agreement with pure Ising

exponents while the continuous (XY) degrees of freedom display the main features of the

KT transition, possibly with a nonuniversal jump. Estimates of the corresponding critical

temperatures are always too close to be satisfactorily resolved within the errorbars, spe-

cially when possible systematic errors due to the assumed KT scaling forms are taken into

account. These results can either be regarded as an indication of a single but decoupled

transition, where the Ising and XY variables have standard behavior and the same critical

point, or else there are two separate by close transitions of Ising and KT type. There

also exist some appealing arguments which exclude one of the two possibilities, Ising fol-

lowed by a KT transition for increasing temperature, in the case of a double transition

scenario2. Other numerical works, however, which attempt an improved estimate of the

chiral critical exponents tend to conclude that these exponents deviate significantly from

the pure Ising values91012. In particular, based on the results for the coupled XY-Ising

model as an effective Hamiltonian for these systems13'14, it has been argued that, in the

case of the single transition scenario, both the SFXY and TFXY model display a tran-

sition with exponents deviating from the pure Ising values. Moreover, the exponents are

given by the corresponding values along the critical line of this model. Estimates of chiral

exponents from Monte Carlo data15 and transfer-matrix calculations11-12 are consistent

with the XY-Ising model universality class15'16.

A generalized version of the SFXY model has been introduced by Berge et al.17 where



the strength of the antiferromagnetic bonds can be varied. This introduces a particular

anisotropy into the system and leads to clearly separated Ising and KT-like transitions for

unequal strengths1820 but which appear to merge into a single one for equal strengths,

corresponding to the isotropic SFXY model. There is a critical value for the bond strength,

1/3, below which the twofold degeneracy disappears. Other generalizations have been

introduced for the TFXY model that also leads to a critical strength below which the

frustration effect is suppressed22. A common feature in the topology of the phase diagram

of these generalized versions is that the isotropic model always corresponds to the region

where chiral and XY ordering cannot be clearly resolved. However, so far, the SFXY and

TFXY models have been treated as separated models.

In this work, we introduce a new generalized version of the SFXY model where unequal

ferromagnetic and antiferromagnetic couplings are arranged in a zig-zag pattern. The

ratio between the couplings p can be used to tune the system, continuously, from the

isotropic SFXY to the TFXY model, allowing to study both models within the same

framework. The model can be physically realized as a Josephson-junction array with two

different couplings, in a magnetic field corresponding to half-flux quanta per plaquette.

We use a mean-field approximation, Ginzburg-Landau expansion and finite-size scaling

of Monte Carlo simulations to study the phase diagram and critical behavior. Depending

on the value.of p, two separate transitions or a transition line with combined Z2 and

t/(l) symmetries, takes place. Based on an effective Hamiltonian, we show that this

transition line is in the universality class of the XY-Ising model and the phase transitions

of the standard SFXY and TFXY models correspond to two different cuts through the

same transition line. Estimates of the chiral (Z2) critical exponents are consistent with

that along the critical line of the coupled XY-Ising model, suggesting a possible physical

realization of the XY-Ising model critical line in a frustrated XY model or Josephson-

junction array with a zig-zag coupling modulation.

The remainder of the paper is organized as follows. In Sec. II, we define the model.

In Sec. Ill, the ground state properties obtained by two different methods are presented.

In Sec. IV, a mean field approximation is used to obtain the global features of the phase

diagram. In Sec. V, the effective Hamiltonian obtained by Ginzburg-Landau expansions

is presented and its relation to coupled XY models and the XY-Ising model is discussed.

In Sec. VI, we present numerical results of Monte Carlo simulations for the phase diagram

and chiral critical exponents obtained from finite-size scaling. Finally, Sec. VII is devoted

to the conclusions.



II. THE MODEL

The generalized version of the frustrated XY model introduced by Berge et al.17 can be

regarded as an XY version of one of the two frustrated Ising models with periodic interac-

tions first introduced by Andre et al.23. The other model has the important feature that

it reduces to the triangular-lattice antiferromagnetic Ising model in one particular limit.

In analogy to this model, we consider a system of classical XY spins on a square lattice

with nearest neighbor interactions modulated in a periodic pattern. The Hamiltonian of

this zig-zag model is given by

where the sum is restricted to the first neighbors and Si is a two-component unit vector.

The couplings JXJ can have two different values, J and J', distributed periodically in a

zig-zag pattern as indicated in Fig. 1. We choose J to be ferromagnetic (J > 0) and

define J' = —pJ, where p is the coupling ratio. We are interested in the case p > 0, where

each plaquette has an odd number of antiferromagnet bonds, Villain's odd rule4, which

leads to frustration effects.

When p — 1, the model reduces to the SFXY model while in the limit p —> +oo it is

topologically equivalent to the TFXY model. The latter limit can easily be established

after performing the "gauge" transformation S, -¥ e,5t, J.-j —>• J^utj, where e, = 1 and

— 1 on the sublattices A and B of Fig. 1, respectively, resulting in antiferromagnetic J and

ferromagnetic J' couplings. When p —> -f-oo, each pair of spins connected by a J' bond

become locked and may be replaced by an effective spin, leading to an antiferromagnetic

XY model with the same coordination number as the triangular lattice. The model is

then well suited for the study of the universality classes of both SFXY and TFXY models.

When p — 0, Eq. (1) reduces to a ferromagnetic XY model on a hexagonal lattice which

undergoes a KT transition.

III. GROUND STATE

In another generalization of the frustrated XY model17, it has been shown that the

lowest energy state can be constructed by building up the configuration of the infinite

lattice from the ground state configuration of a single plaquette. In our case, the same

procedure can be used if we allow for rotations and reflections of the "one plaquette



ground state configuration" which also assures that the true ground state is obtained. No

assumption on the periodicity of the ground state is made. The plaquette configuration

is indicated in Fig. 2a for p > 1/3 and it is the same as used in Ref. 17. The spin

configuration is collinear for p < 1/3 and a canted one for p > 1/3. For the canted

configuration one can define a chiral variable for each plaquette P

1
(Tp = —

where Yl<ij>eP is a direct summation around the plaquette and ao is a normalization

factor given by

2p V P

For p > 1/3, the ground state of the infinite system constructed by the above procedure

consists in a helical spin ordering which is incommensurate with the underlying square

lattice, except when p = 1 and p = oo, corresponding to the SFXY and TFXY models.

The pitch A of the helical configuration, can be obtained from half the phase difference

within the same sublattice in the x direction and is given by

A = 2 c o s - 1 ( i , / ^ _ [ ) - arccos
2V p

In Fig. 2b we show the resulting ground state configuration. The ground state is dou-

ble degenerate, corresponding to an antiferromagnetic arrangement of plaquette chiralities

a = ±1 .

For p < 1/3, where the single plaquette configuration is collinear, the ground state is

a ferromagnetic configuration of spins.

As an alternative to the above method, the ground state can also be obtained by a

direct minimization of the Fourier-transform interaction matrix, Jq<q>. In the present

case, we note that there are two non-interacting sublattices, corresponding to the sites A

and B in Fig. 1, where the Fourier transform can easily be carried out. The interaction

matrix J*', where k,l denote the sublattices A and B, can be written as

kl 0
(5)

»» 0 J

The eigenvalues are given by, Xq = ±V^, where

Jq - J

- pe"1' + €-">' + e"** -(- e-'q»

Vq = Jy/(\ + p)2 + 4(-pcos2(qx) + COS2(9B) + (1 - p)cos(9r)cos(<7y)), (6)



and the dominant eigenvalue A, = + Vq reaches a maximum at

(q* = 0,qy = 0) for /><i

(qx = ± arccos [(1 - p) / (2p)\, qy = 0) for p > I

From Eq. (7), the wavevector characterizing the ground state for p > 1/3 is, in general,

incommensurate with the lattice periodicity in the x direction, except for p = 1 and

p — oo corresponding to the SFXY and TFXY models. The eigenvector associated to

the largest eigenvalue is a possible realization of ground state provided the corresponding

spin configuration satisfy the unit vector condition |Sj| = 1. In the present case, they do

satisfy this condition and correspond to the same configuration as found from the single

plaquette method described above.

IV. MEAN-FIELD PHASE DIAGRAM

The general form of the phase diagram can be obtained by a mean field (MF) analysis.

Although, at finite temperatures this analysis neglects the role of fluctuations, it gives

nevertheless a good qualitative picture of the phase diagram that can also be greatly

improved by perturbative or variational techniques. The mean field equations for the

zig-zag model can be derived by an analysis similar to the one used in Ref. 19. The

corresponding MF equations are

where //, is the mean field at the site i ,

Hi^^JiiMj, (9)
i

and R is a ratio of Bessel functions,

R(x) = /i(x)//0(x), (10)

(3 — \jkT being the inverse temperature.

The ground state configuration can be obtained by taking the limit (1 —>• -foo in Eq.

(8). Using the fact that /?(oo) = 1, it reduces to finding the lowest energy state of all the

configurations where the spins are aligned with their local field, i.e.,

& = %•• ( 1 1 )



At finite temperatures, Eq. (8) has no analytical solution but to find the MV phase

diagram we can expand (8) about the transition temperature Tc using the fact that

Mi = O(T - TC
MF) for T < Tc and that R{x) = \x + o{x) for x -> 0. In this case, Eq. (8)

reduces to

It appears that one needs to make an assumption on the form of the solution A/, in order

to find T^F. However, if we note the similarity of Eq. (12) and the zero temperature

one, Eq. (11), we can identify the transition temperature as

TTGS
rpMF _ "

c

provided the local field //, = 5Zj JijM} is independent of the position. Although this

property is not expected to hold in general, it is satisfied exactly in the ground state

found in Sec. III. We then obtain

r — • lc — (~P + 3)/2 (14)
3

P > ~ -> TC
MF = }/(1 + p)3 /4p

6

If, in addition, we assume that //, remains independent of i at any temperature 0 < 7' <

THtF we obtain

R(Ri-r\ i
(15)

H ~

This equation, together with Eq. (8), shows that the structure of the local configura-

tion around a plaquette and the pitch of the helical configuration is independent of the

temperature in this approximation.

Fig. 3 shows the phase diagram obtained by the mean field approximation. For

p < 1/3, the system undergoes a transition from a paramagnetic to a ferromagnetic phase

along the transition line XL. This transition is in the KT universality class since there

is only a single critical mode q = (0,0) and no additional symmetry in the ground state

besides the continuous U(\) symmetry. For p > 1/3, there is a paramagnetic phase

at high temperatures and a helical phase at low temperatures which is incommensurate

with the lattice periodicity except for p — 1 and p + oo where the model reduces to the

SFXY and TFXY models, respectively. The helical phase has an additional discrete Z2

symmetry associated with the antiferromagnetic arrangement of plaquette chiralities op in

8



the ground state. The mean field analysis gives a single transition for p > 1/3. Therefore,

the whole line LT for p > 1, including the TFXY limit, is expected to have the same type

of behavior as the SFXY model at p — 1. The nature of this transition, however, cannot

be studied at mean field level and other methods are required, as will be presented in Sec.

V and VI. Note that, in contrast to the generalized version of the frustrated XY model

considered by Berge et a/.17, where a clear separation into two transitions for p ^ 1 is

already found at the mean field level19, the zig-zag model displays two transitions only

for p < 1/3 within the same kind of approximation. This suggests that the separation of

these transitions is not simply a result of the induced anisotropy for p / 1 but should be

related to the nature of the coupling between chiral (Ising) and XY degrees of freedom, in

agreement with arguments based on an effective coupled XY-Ising model Hamiltonian14.

As will be shown in Sec. IV, for the zig-zag model the form of this coupling is unchanged

for p ~ 1 and p > 1, suggesting that a clear separation is not expected.

For p —> +oo we expect to retrieve the mean field solution of the TFXY model.

However, Eq. (14) leads to a diverging value of T^F as p -> +oo. As can be seen from

Eq. (8), the temperature is scaled by the magnitude of the mean field vector ( £_, J^M, )

which diverges when —» +oo. This is an artifact of the mean field approximation and

other methods, such as perturbative or variational approximation24 , can remove this

divergence. In fact, in Sec. V we show that the phase diagram obtained by Monte Carlo

simulations leads to a transition temperature that saturates, for p —V +oo, to a value

consistent with the transition temperature of the TFXY model.

The transition line CL separating the ferromagnetic from helical phase can be regarded

as a commensurate-incommensurate transition which joins the other transition lines, XL

and LT, at a Lifshitz point L at T / 0. In mean field, this transition line is given by

p = 1/3 corresponding to the stability boundary between the two modes in Eq. (7).

Although, there are interesting questions regarding the precise location of the Lifshitz

point and the nature of the phase transition along this line25"28, these will not be the

subject of a detailed study in this work.

V. EFFECTIVE HAMILTONIAN

The universality class of phase transitions can be considered on the basis of an ef-

fective Hamiltonian obtained by Ginzburg-Landau expansions. Invoking the universality

hypothesis, one expects that models with the same effective Hamiltonian differing only by



irrelevant terms are in the same universality class. In this section, we discuss the critical

behavior in the region p > 1/3 where the ground state is double degenerated by deriving

the corresponding effective Hamiltonian. An effective Hamiltonian can be obtained from

the free energy functional, describing fluctuations around the MF solution discussed in

Sec. IV, via a Hubbard-Stratonovich transformation in a standard way29'30. One replaces

Eq. (1) by

where t, are unconstrained spins weighted by W{i) ~ x2/4 - x4/64 + Q(J"6) and A',̂  =

JijjkT. In the present case, we can separate the lattice spins into two non-interacting

sublattices, corresponding to sites A and B in Fig. 1. The interaction matrix Jl
q'

k is

then given by Eq. (5) and the corresponding eigenvalues by Eq. (6). For p > 1/3,

there are two degenerated modes 4>Q- and 0<j+, that maximizes the dominant eigenvalue

A = +VQ, corresponding to the wave vectors in Eq. (7). Retaining these modes only and

introducing the real two-component fields 4>x = \{4>Q- + 4>Q+) and 4>2 — |*(</>y- — 4>Q+)

, one can expand Eq. (16) to quartic order in </>1|2 leading, in the continuum limit, to a

free energy density of the form

0/ = \rjft + ft) + '̂[( JU)2 + (J^>2)] + \ ^ ^ ? + {

where r0 = kT/XQ - 1/2, e = j p - ^ A Q , / = ^ - ^ A Q , and u,v > 0. For p < 1/3, there

is only one critical mode, {qx,qy) = (0,0), and the resulting Ginzburg-Landau expansion

has a single two-component fluctuating field which is known to lie in the KT universality

class. Apart from the space anisotropy, e / / when p ^ 1, that can be eliminated by

rescaling the x and y space directions appropriately, the free energy (17) has the same

form as those obtained for the SFXY and TFXY293130 '15 in terms of complex scalar fields

Kpi = \tp\e'9' . In particular, since the present model incorporates both the SFXY and

TFXY as special cases, it clearly demonstrates that the SFXY and TFXY are described

by the same Ginzburg-Landau free energy up to quartic order, in agreement with the

arguments of Ref. 15.

As usual, in two dimensions, fluctuations in the magnitude of the order parameter

are assumed to be irrelevant. We can then approximate these magnitudes by their cor-

responding mean-field values \ipi,2\ — 0O
 = — ro(2u — v) and consider only fluctuations of

the phase 0, in Eq. (17), leading to an effective lattice Hamiltonian in the form of two

coupled XY models

10



- ^ , , ) (18)
<«J> i

where Fi = F2 = \i/>0\y/e7 and the spatial anisotropy has been removed by rescaling

x —> xJe/f, y —> y. In a renormalization study of this model18, the Pi = F2 subspace

is only preserved under renormalization if they are initially equal. For Fi ^ Fj, a double

transition is found with an Ising followed by a KT transition as temperature is increased.

It is also found that the coupling term h is a relevant variable locking the phase difference

into #2t = $ii + nTi where r = 0,1. This leads, in the h —>• oo, to an effective Hamiltonian

in the form of coupled XY and Ising models14'15

(19)

where Aej/, Bejj and Ce// are effective couplings which depend on the initial values of Fi,2,

h and other couplings generated by the renormalization procedure, and <r, = 2T, — 1 = ±1

is an Ising-like variable. The condition Ae/f = Bejj is preserved if Fi = F2 in Eq. (18) as

is the case for the zig-zag model, even though this model is anisotropic for p ^ 1. This

should be contrasted to the generalized SFXY model considered by Berge et a/.17 where

the Ginzburg-Landau free energy has the same form as in Eq. (17) but with a spatial

anisotropy, in the x and y directions, of different magnitudes for the (f>\ and (fo fields which

cannot be removed by simple rescaling18. This leads to coupled XY models with Fi ^ F2

in Eq. (18) and consequently should be described by an XY-lsing model with A ^ B in

Eq. (19) which undergoes two separate transitions, an Ising followed by a KT transition

for increasing temperatures, in agreement with simulations17.

The phase diagram of the XY-Ising model of Eq. (19) for A = B consists of three

branches which meet at a multicritical point15. One of the branches corresponds to single

transitions with simultaneous loss of XY and Ising order, and the other two to separate

KT and Ising transitions. The line of single transitions eventually becomes first order

further away from the branch point. Our model corresponds to a particular path through

the phase diagram of the XY-Ising model and the single or double character of the tran-

sition depends on the relative position to the multicritical point. Since there are already

indications from numerical simulations9'10'12 that both SFXY and TFXY limits are in

the single transition region, we expect that the whole transition line LT for./) > pi in

Fig. 3 should correspond to this critical line. Numerical estimates of critical exponents

associated with the Z2 order parameter for the XY-Ising model deviate significantly from

the pure Ising values along the critical line15'16 and will be used in Sec. VI to identify

which particular path through the phase diagram is realized for the zig-zag model.

11



VI. MONTE CARLO SIMULATIONS

Due to the presence of an incommensurate phase, the standard periodic boundary

conditions are not appropriate for the zig-zag model since they cause an additional frus-

tration in the system. Therefore we use a self-consistent boundary condition that allow

the system to adapt the boundary condition to the pitch of the helical configuration2627 .

In addition, this boundary condition also improves the determination of the spin stiffness.

A similar method8 has also been recently used for the SFXY.

A. Phase diagram

To determine the global phase diagram we used simulations of a 36 x 36 system for

various values of p. For each value, two separate simulations, one starting from the ground

state and the other from the high temperature phase, were used to estimate the critical

temperature. The transition temperature, T/, associated with the chiral order parameter,

was obtained from the peak in the chiral staggered susceptibility, with the chiral order

parameter defined by Eq. (2). An estimate of the KT transition temperature, 7'KV, was

obtained from the expected universal value of the spin stiffness 7, '){TKT)/^TI<T — 2/tf, at

the transition. Since for p ^ 1 the model is anisotropic, 7 was obtained as 7 = v /7n7y y ,

where ~yxx and 7yy are the x and y components of the stiffness 7^.

The phase diagram obtained by Monte Carlo simulations is shown in Fig. 4. The

estimates of 7/ and T^j agree within the errorbars for p larger than a critical value />/,,

which we take as an estimate of the Lifshitz point. This phase diagram is similar to the

MF result of Sec. Ill but the Lifshitz point is located at [pi ~ 0.6, Ti ~ 0.35) and should

be compared with the MF result, (p = | , T = | j . The transition line XL has the main

features of a KT transition with a jump in the spin stiffness consistent with the universal

value 2/?r and a nondivergent specific heat.

The transition line CL is characterized by a divergent chiral susceptibility and an

apparent continuous vanishing of -fxx while 7yy remains finite as shown in Fig. 5. An

analysis similar to the one used in Ref. 20 for the model studied by Berge et al.17 can

also be applied to the zig-zag model and shows that 7IX is inversely proportional to the

chiral susceptibility and should therefore decrease continuously at the transition when the

susceptibility diverges. Similar behavior has been found in a generalized model for the

triangular lattice26-27.

12



B. Critical exponents

There have recently been many attempts to obtain improved estimates of the critical

exponents for the fully frustrated XY model21'9"12. For the continuous symmetry, the

available scaling forms requires the simultaneous fit of two or more parameters and an

assumption of KT behavior. This may lead to systematic errors in the location of the

KT transition temperature. For the chiral (Ising-like) order parameter there exist scaling

analyses which do not require a precise knowledge of the bulk Tc and can provide an

estimate of the critical exponents with a two parameter fit. As simple estimates of T/ and

TKT already agree within errorbars along the transition line for p > PL , as indicated in

Fig. 4, attempting to locate the transition line using, separately, KT scaling forms for the

U(l) symmetry and pure Ising critical behavior for the chiral variables will inevitably lead

to estimates of critical points which are difficult to resolve on purely numerical grounds

due to errorbars. However, if the critical behavior along this line is in fact in the same

universality class as the XY-Ising model as suggested by the analysis of Sec. V, then in

order to verify the single nature of the transition, it is sufficient to study the Z-i degrees of

freedom14. If the critical exponents are inconsistent with pure Ising values, the transition

cannot correspond to the Ising branch of a double transition or to a single but decoupled

transition. Moreover, the value of the critical exponent can be used to verify if indeed

the critical behavior corresponds to the critical line of the XY-Ising model. In order to

estimate the chiral critical exponents independently of Tc, we use the same method, based

on the finite-size scaling of free energy barriers, which has been applied to the SFXY and

TFXY models15.

In order to obtain good statistics, we consider only systems of size 8 x 8 to 36 x 36, with

typically 6— 12 x 106 Monte Carlo steps. The simulations were performed near the effective

(finite size) critical temperature found in the previous Section. The histogram method

is then used to extrapolate the needed quantity for different temperatures in the vicinity

of the critical temperature. The thermodynamic critical temperature Tc is obtained by

the crossing of the energy barriers AF obtained from the depth of the minimum in the

logarithm of the chirality histogram9. The exponent v\ is extracted from the finite-size

behavior of AF near Tc and is given by the slope of -jpf- ~ L1^ from a one-parameter

fit, without requiring a precise determination of Tc. The exponent 2(3 jv is extracted from

the scaling behavior of <7mtn ~ L~^^v corresponding to the minimum in the logarithm of

chirality histogram.



We have studied two different values of p in detail, p = 0.7 and p — 1.5, which arc

located between the SFXY model limit and the Lifshitz point and between the SFXY

model and the TFXY model limit, respectively. For p — 1.5 we observed crossing of AF

for L > 18 as shown in Fig. 6. Corrections to scaling are clearly seen for 6 < L < 12.

These sizes were not used for the estimates of critical exponents. Note that, these free

energy barriers suffer less from corrections to scaling than Binder's cumulant32, Uj, —

1— < 0"£ > /3 < o\ >2, which is also expected to cross at a unique point. This is shown

in Fig. 7 where a sign of unique crossing is only observed at the largest system sizes. The

latter behavior has been used by Olsson8 in relation to the SFXY model to suggest that

there are, in fact, two separate transitions and the estimates of v are still dominated by

small system sizes. The method we are using, however, indicates clearly a single crossing

point suggesting a reliable estimate of i/[. Fig. 8 shows the size dependence of the slope

TC from where l/u = 1.25(1) can be estimated and Fig. 9 shows the behavior of

which give the estimate 2f3/v = 0.29(2). The same analysis has been done for

p = 0.7 giving Tc = 0.408(2), \jv = 1.28(2) and 2(iju = 0.32(4). These estimates deviate

significantly from the pure Ising values, 1/f — 1 and 2j3jv = 1/4, and suggest a single

transition scenario. Moreover, these values are consistent with those found for the XY-

Ising model along the critical line15'16. This is the same behavior found for the SFXY and

TFXY models using the same methods'5.

VII. CONCLUSION

We have introduced a new generalized version of the square-lattice frustrated XY

model where unequal ferromagnetic and antiferromagnetic couplings are arranged in a

zig-zag pattern. One of the main features of the model is that the ratio between the

couplings p can be used to tune the system through different phase transitions and in one

particular limit it is equivalent to the isotropic triangular-lattice frustrated XY model.

The model can be physically realized as a Josephson-junction array with two different

couplings and in a magnetic field corresponding to a half-flux quanta per plaquette. We

used a mean-field approximation, Ginzburg-Landau expansion and finite-size scaling of

Monte Carlo simulations to study the phase diagram and critical behavior. Mean-field

approximation gives a phase diagram which qualitatively agrees with the one obtained

by Monte Carlo simulations. Depending on the value of p, two separate transitions or a

transition line with combined Z2 and (7(1) symmetries, takes place. Based on an effective

14



Hamiltonian, we showed that this transition line is in the universality class of the XY-Ising

model and the phase transitions of the standard SFXY and TFXY models correspond to

two different cuts through the same transition line. Estimates of the chiral (Z2) critical

exponents from a finite-size analysis of Monte Carlo data were found to be consistent

with previous estimates for the SFXY and TFXY models using the same methods. They

also agree with the corresponding values along the critical line of the coupled XY-Ising

model suggesting a possible physical realization of the XY-Ising model critical line in a

frustrated XY model or Josephson-junction array with a zig-zag coupling modulation.
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FIGURES

FIG. 1. Generalized frustrated XY model with zig-zag coupling modulation. Continuous

lines correspond to coupling J,j = J and double lines to Jl} = J'. The sites A and B denote two

sublattices where spins do not interact.

FIG. 2. Ground state for p > 1/3 consisting in a helical configuration of spins, a) ground

state configuration of a single plaquette and b) spin configuration for the infinite lattice.

FIG. 3. Mean field phase diagram. F indicates the ferromagnetic phase, P the paramagnetic

phase and H the helical (chiral) phase.

FIG. 4. Phase diagram obtained from Monte Carlo simulations. For p > pi, criti-

cal-temperature estimates Tj and T^T agree within errorbars and only 7/ is indicated.

FIG. 5. Temperature dependence of spin stiffness and chiral susceptibility through the CL

transition line of the phase diagram in Fig. 4 at p — 0.4. The data points for 7 x r are scaled by

10 and for \o scaled by 1/10.

FIG. 6. Finite-size scaling of the free energy barrier AF for p = 1.5.

FIG. 7. Finite-size scaling of Binder's cumulant Ut for p = 1.5.

FIG. 8. Finite-size scaling of ^§f for p = 1.5.

FIG. 9. Finite-size scaling of amtn for p — 1.5.
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