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An interesting feature of the presence of exchange nonlocal effects in

the nucleus-nucleus collision description is the modification of the nuclear

barrier. This results, on the one hand, in an enhancement of the nuclear

fusion cross sections due to the modification introduced in the basic quantum

mechanical tunnelling calculation and, on the other hand, leads one to the

study of the consequences of those effects in the nuclear elastic scattering.

In this paper, we discuss the manifestations of the presence of those effects

through an approximated model Schrodinger equation describing a nuclear

system colliding at energies around the barrier. As an aplication, the elastic

channel and. concoinitantly, the fusion processes are studied for the 16O+60Ar/

system at energies close to the barrier.



I. INTRODUCTION

In a series of papcts. it has been pointed out that the introduction of kinematical non-

local effects, i.e., those of quantum exchange nature, in the description of nuclear colliding

systems can be responsible for an important modification in the nuclear barrier transmission

function [1 3]. In fad. it was shown that in the effective reduced mass approximation those

exchange nonlocal effects modify the barrier, in such a form to redefine the static barrier

curvature so that the tunnelling, and consequently the fusion process at subbarrier energies.

is enhanced. It was emphasized that this redefinition constitutes, together with the stan-

dard tunnelling calculation, the starting quantum mechanical background upon which the

many-body nuclear collision description must introduce the additional degrees of freedom

related to the relevant coupled channels to the process [2]. The comparison between the

contributions for the fusion process coining from the exchange nonlocal terms and from the

coupled channels ones was discussed in a schematic model [.'{] in which the nonlocal potential

form was the one proposed by Perey and Buck [5] and the treatment of the coupled channels

was that proposed by Dasso [6]. The results of this calculation, although schematic, have

pointed out to a very peculiar difference between the coupled channels effects and those

stemming from the nonlocal effects, namely, while the coupled channels generate a family

of barriers of different heights, the exchange nonlocal effects only redefine the barrier cur-

vature, as already mentioned. It is clear that one expects both effects to occur in a realistic

description of the process, or even that in a full coupled channels calculation the barrier

curvature may also to be redefined, at least in part, due to the exchange nonlocal effects.

These considerations about the presence of exchange nonlocal effects in the description

of the nuclear fusion leads us to I he related problem of verifying how these effects manifest

themselves in the nuclear elastic scattering. In this form, we have drawn attention to the

description of the elastic scattering by adapting a model Schrodinger equation in such a

form to embody the exchange nonlocal effects through an approximation to the full integro

differential equation. In fact, we have made the usual adiabatic approximation which, in our



case, reduced the original problem to an effective reduced mass approach. The approximated

Schrodinger equation can then be solved and the relevant information about the nuclear

collision extracted in a direct way.

In section 2 we present a brief discussion about the introduction of the exchange nonlocal

effects in the Hamiltonian energy kernel and how one can introduce the relevant approxi-

mations. The Schrodinger-like equation is then introduced in section 3, in which we discuss

how the approximated form of the Hamiltonian can give rise to a differential equation that

can be numerically solved. The results from an application carried out to the 16O + ^Ni

system are discussed in section 4, while in section 5 we present our conclusions.

II. A MODEL TREATMENT OF EXCHANGE NONLOCAL EFFECTS

A particularly convenient way of treating an Hamiltonian associated to a nuclear system

consisting of two colliding nuclei, which is expressed in terms of global collective coordinates

(q,p), referring to the relative motion, and a coordinate £, characterizing a particular intrinsic

degree of freedom of the nuclei that is coupled to the relative motion, is through the Weyl-

Wigner transformation of a nonlocal energy kernel [2] which is expressed as

H (P> 9» I) = &*,(] e><P (TP • v) H {q, v,Z)dv (1)

where

,K) = (q-v/2,K\H\q + v/2,K). (2)

Instead of first writting a full microscopic Hamiltonian operator H, we will start our

approach by modelling the description of the nuclear collision through the introduction of

the nonlocal energy kernel which must be written in terms of all the corresponding variables

associated to the whole process. At the end of the construction of the nuclear collision model

we will be able to obtain the Hamiltonian operator by just performing a Weyl-Wigner inverse

transformation [4]. This way of treating the system Hamiltonian is particularly convenient



because we want also to deal with exchange nonlocal effects of the type described by a

Perey-Buck-like nucleus-nucleus interacting potential [5]. In the model Hamiltonian this

term is introduced so as to simulate nonlocal effects originating from quantum correlations,

i.e., mainly those stemming from exchange effects, so that H(q,v,n) is given in an explicit

form

H (q, v, K) = ~—8" (v) + VNL (q, v) + VL (q, v)8{v) +
Zfi

(3)

Here /.i is the reduced mass of the relative motion, V}VL {q, v) is the nonlocal potential written

as a Perey-Buck-like interaction

I) (4)

where 6 measures the nonlocal range. From this expression one can verify that the considered

quantum exchange effects between the two colliding nuclei will be relevant only for separation

distances of the order of the nonlocality range. In expression (3), Vi is a local potential,

Vcpi {q, v, K) is the interaction coupling the relative motion and the intrinsic degree of freedom

and HQ (K), the intrinsic Hamiltonian of the system, is associated with the eigenvalue problem

#o I «> = e , I «). (5)

The eigenvectors | K) characterize the spectrum of the selected intrinsic degree of freedom.

As has been already discussed previously in connection with nuclear fusion reactions

[2,3], one can write the VVeyl-Wigner mapped expression for the Hamiltonian describing a

nuclear colliding system as an integral of the kernel of a nonlocal operator through a Fourier

transform

J ) d S (6)

thus giving



where 0 n ) (q) is the nth-moment of the nonlocal potential with respect to v. Due to the

conservative character of the Hamiltonian description, only even values of n will be present

in the power series, furthermore we will keep only the first two terms which will give the

dominant contributions to our Hamiltonian. This assumption corresponds to an adiabatic

approximation and is valid for pb/h < 1. Therefore, we have, up to n — 2, the model

Hamiltonian

+ V<°> (q) + VL (q) + Vc (q, f) + Ho (fl • (8)

Hereafter V^ (q), the zeroth-moment of the nonlocal potential, will be identified as a stan-

dard nucleus-nucleus attractive potential V^ (q). Furthermore

li{q;b) = nl (l - i

< ° l ) (9)

is an effective reduced mass now depending on the form of the potential V^ (q) as well as on

the nonlocality parameter b. We observe the asymptotic behavior of the mass \x (q; b) —f (i

in the local limit 6 -» 0 or when V{0) (q) -»• 0.

Now, in order to deal with the heavy-ion elastic scattering we have to adapt the general

approach just presented so as to properly treat that channel. To begin with, we must reduce

the general Hamiltonian in such a form as not to explicitly present the term which couples

the relative motion and intrinsic degrees of freedom and, consequently, the intrinsic collective

Hamiltonian and its corresponding spectrum will be ignored in what follows. With these

assumptions we end up with a model Hamiltonian which embodies the exchange nonlocal

effects through the effective reduced mass, and, since this Hamiltonian is obtained by making

an adiabatic approximation, it has therefore a validity range which restricts its use to system

energies around the Coulomb barrier.



III. SCHRODINGER EQUATION WITH NONLOCAL EFFECTS

The model Hamiltonian used in the present approach for the heavy-ion elastic scattering

is then written as

; D)

where fi{q\b) is the effective reduced mass of the system which also depends on the non-

local range. As is known from the Weyl-Wigner mapping techniques [4], it is possible to

find the Hamiltonian operator H (p,q) by taking the Weyl-Wigner inverse transform of the

Hamiltonian kernel, Eq. (2), which can be cast in the form

H (p,q) = J 6(q- q)6(p- p)ho(p,q)dpdq, (11)

with

This expression shows that we can find the operator H(p,q) from its Weyl transform,

H(p,q), by first calculating ho(p,q) and then substituting the variables p and q by their

respective operators p and q. To follow the Weyl-Wigner prescription it is necessary to

always krep the coordinate operator to the left of the momentum operator. Substituting

Eq. (10) in Eq. (12) leads to

/ / r .. 1 . a h ( d 1 \ h* ( <P l_\
) P 8 \dq* fi(q;b))

(13)

In the usual representation for the momentum operator, p = —ih(d/dq), the Hamiltonian

can still be written as

(14)



It is important to stress that in the local limit, i.e., when b —f 0, or in nucleus-nucleus

interaction free regions, expression (14) reduces to the usual Hamiltonian operator.

The Schrodinger differential equation associated to the eigenvalues of the Hamiltonian

operator can be directly given

where W^L is the nonlocal wave function. Now, it has been numerically verified [5,15] that

the nonlocal model results can be reproduced with a great accuracy by a calculation where

use is made of the local wave function

then:

j_^_JL_v* _ *L [v-~J • v

— — V 2——— + Vs (q) + VL {q) \ ^ L {q} — E^?L {<?) • (15)
8 ^i(q;o)J I

This is the wave equation in an effective reduced mass approximation which embodies

now the exchange nonlocal effects through a redefinition of the mass. Similar equations have

been obtained in the past for the description of a nucleon in the nuclear medium [7]. Taking

into account that the main purposes of the present studies are just to have an estimation of

"ioral effects, we did not consider the second term in the wave equation. We point

his approach, which has been already adopted in other different calculations of

local equivalent potentials [8,9], corresponds to consider in equation (15) an unsymmetrized

kinetic energy operator. With these considerations, the wave equation (15) is reduced to a

Schrodinger-like equation which can be treated in a standard way.

The local part of the potential was assumed to be the Coulomb potential plus an imagi-

nary term to simulate the absorption by the reaction channels,

VL(q) = VCoul(q) + i
o

7



In the usual partial wave expansion, the approximated form of Eq. (15) is written as

(16)

where v (r) is the radial part of the wave function. After a straightforward calculation Eq.

(16) can be rewritten as

6}
v (r) + | f \E - Vfcoul (r) - ^ 2

 h2 - Utq (r, E; 6)1 v (r) = 0 , (17)
dr*

which is the equivalent radial Schrodinger equation and Ueq (r, E; 6) is the equivalent local

potential to the nonlocal one, whose expression reads:

Ueq(r,E;b) = Veq(r,Eib) + i W(r;b) , (18)

with

I _ ^ L I J + __ Bill Vr
2VW(r) (19)

and

(20)

) • (21)

As expected, the nonlocal character of the real part of the complex nuclear potential (origi-

nally independent of the energy) gives rise to an explicit energy dependence in the equivalent

local potential. It is remarkable that this same form of energy dependence for the real op-

tical potential was found in a study of nucleon-Bucleus interaction under the assumption of

nuclear matter [10].

The adiabatic approximation expressed by the relation A'6 < 1, which also gives a

measure of the vality of the semiclassical method to study the effects of nonlocal potentials

[11], can be write in the form 2 \i b2fh2 \ E — Ve(r) |< 1, where Vfl(r) is the effective

8



local (t>=UJ potential in according to equation (21). The maximum of the function Vfl(r)

defines the height and radius of the local barrier, VB(RB) and RB respectively. The elastic

scattering process is defined mainly at interaction distances r ~ RB what means to consider,

in the adiabatic approximation, only energies close to the barrier height E ~ VB(RB)- We

remark that the external region (r >• RB) is dominated by the long-range local Coulomb

potential and the inner region (r <C RB) is not important to define the elastic and fusion

cross sections if the penetrating waves are absorved, which is the case of heavy-ion collisions

at energies around the barrier.

IV. APPLICATION

A numerical solution of Eq. (17) allows us to obtain the angular distribution for the

elastic scattering, as well as the fusion cross sections. As an application we choose the

I6Q _|_ wjsfi system at energies close to the barrier. In recent studies of this system [12],

by measuring the elastic and inelastic (2f) target excitation cross sections at sub-barrier

energies (£*Lab — ̂  MeV), it was possible to explain the data using the coupled channel

approach in a two channel model (0*, 2J"). The coupled channel calculations have also

shown that the effects of other reaction channels, with much smaller cross sections compared

to the 2* target excitation, are negligible for the elastic cross sections. It was possible to

obtain the bare nucleus-nucleus potential — in the sense that no coupled channel affects are

included — with a well defined form in the surface region (r > 9 fm) assuming the nuclear

coupling potential as energy independent in the small energy range considered (A2?Lab = 3

MeV). The resulting nuclear nucleus-nucleus potential [12] has a Woods-Saxon shape with

parameters Vo = —360 MeV, r0 = 1.06 fm and a — 0.58 fm. In the present application, we

have considered these parameters for the nuclear potential VJv(r) and an imaginary potential

W(r; 6), also of Woods-Saxon shape, confined to the interior of the nucleus in such a way to

allow us to identify the reaction cross section with the fusion cross section. In the calculations

we considered Wo = —30 MeV, rw = 0.8 fm, aw = 0.2 fm and we adopted b = 1.0 fm,

9



which is an approximation to the value already discussed in connection to exchange nonlocal

effects only [13,5,3].

Initially, we evaluated the equivalent local barrier, Ve/(r,E;b) — VcOui[r) + Vr
e,(r, f?;6).

The Figure l(a) shows the K/(r, E;b) function at interaction distances around the barrier

radius {RB) for three bombarding energies, E^^ = 35 (dashes), 39 (dots) and 42 MeV

(dash-dots). In the Figure it is also included the local effective potential Vej{r, E\b — 0) =

Vfl(r) (solid line). For the region r > RB, the equivalent local potentials are equal the

local one due the asymptotic behavior of the effective reduced mass, i.e., /i(r —y oo;6) —y /i.

In the barrier region, r ~ RB, the lower the bombarding energy the lower will be the

maximum height of the local equivalent barrier. This behavior is related to the [E — Vg(r)]

dependence of the equivalent local potential, eq. (19). It is remarkable that for E^^ = 39

MeV (Ec.m. = 30.8 MeV w VB{RB)) the heights for the equivalent barrier and local one

are approximately the same showing, thus, that in this interacting region the expression for

Veq{r, E;b) is reduced to VN{r) + {E- VB(r)} (1 - ft{r;b)/n). Therefore, the barrier height

of the equivalent potential assumes values greater or smaller as compared to the local one,

VB(RB), for energies E > VB(RB) or E < VB(RB), respectively. In the inner region r -C RBI

Figure l(b), the adiabatic approximation is not justified since the wave number K is very

large, as consequence the equivalent potential is even eventually repulsive for energies some

MeV above the local barrier. However, for energies closer to the local barrier height there is

still an inner pocket in the effective potential, which allows the absorption of the penetrating

waves and , therefore, at these energies it is possible to calculate the elastic scattering and

fusion cross sections using the present approach.

In the Figure 2 the calculated angular distributions are shown for the elastic scattering

considering the local (solid line) and the equivalent local (dashed line) potentials at E^^ —

35 MeV (Ec.m. = 27.6 MeV). We point out that in the effective mass approach the predicted

elastic scattering cross sections present an hindrance at backward angles (Oc.m. > 130)

as compared to the local case. Nevertheless, the bump (100 < 9 c m . < 130) is more

pronounced in the equivalent local case. Also, in the equivalent local case occurs a shift of

10



flux from the elastic to the reaction channel, here identified with the fusion process. This

can be also observed in Figure 3 where are shown the corresponding calculated phase shift

$f (Figure 3(a)) and modulus | Si | (Figure 3(b)) of the 5 matrix as a function of the orbital

angular momentum. For low partial waves the behavior of $/ and | Si | shows that the

equivalent local potential is more atractive and more absorptive as compared to the local

one.

Finally, we comment our results for the fusion when we take into account the exchange

nonlocal effects. The local Coulomb barrier height (/ = 0) is defined as

VB S VB{RB) = VCOUI(RB) + VN(RB) .

In the present case VN(RB) is replaced by Veq{RB,E;b), thus:

V? = VCoui(RB) + Veq(RB,E;b) .

Using the Wong approach [14], we can write the following expression for the fusion cross

section:

We already verified that in the adiabatic approximation the equivalent local potential is

described approximately by

thus

E - V? * (E - VB)

where, from eq. (9),

Defining

11



with fiu)B > /i^B for /> > 0, we have:

For energies £ < I'g, this expression is dominated by a term which decreases exponen-

tially with [2n(E — V'B)/^B]
 a n ( l the redefinition of the barrier curvature KCJB prevails,

resulting in an enhancement of the fusion cross section <rejq{E) in relation to the local one.

We remark that this result is in accordance with previous works [2,'-\] for the fusion process

on the framework of barrier tunnelling with the effective mass approximation. For energies

E > VB, crejq(E) — /i(R.B;b)/fi crc(E), where crc(E) is the geometrical classical fusion cross

section proportional l.o E~l; therefore, in this energy range cr)q{E) decreases with respect

to crc(E). This behavior of the equivalent local calculations in relation to the local one can

be understood if we remember that the effective mass acts on the barrier curvature huJs as

well as on the centrifugal potential. For energies below the barrier, the fusion cross section

is associated to low partial waves and the curvature redefinition predominates. For energies

above the barrier the mass redefinition corresponds to an increasing of the repulsive charac-

ter of the centrifugal potential which implies in a reduction of the fusion cross section. In

Figure 4 the fusion cross section is shown for energies around the local barrier. It is directly

seen that the results from the equivalent local calculation (dashes) are larger than the local

one (solid line) for energies below or close to the local barrier and are smaller for energies

above this one.

V. CONCLUSIONS

Starting from a Wc-yl transform of an Ilamiltonian operator describing a nuclear colliding

system, which also contains a nucleus-nucleus interaction of nonlocal exchange character,

we adopted the effeci ive mass approximation to describe the dominani contribution of those

nonlocal effects and we end up with a differential wave equation. This wave equation was

12



rewritten under the assumption that the nonlocal wave function is approximately equal

to the local wave function and, in this form, the final wave equation is a Schrodinger-

like equation with a local equivalent potential which must exhibit the main features of the

starting nonlocal potential. In order to describe all the interesting nuclear processes we have

considered at the total nuclear potential to include an optical term, although supposing that

the only nonlocal contribution arises from the real part of the potential, being the imaginary

part introduced to simulate the absorption. The energy independent nonlocal potential gives

rise to an equivalent local potential which has an explicit energy dependence.

The numerical results for the elastic scattering cross section (160 -f *°Ni system) show

that, due to the nonlocal effects, there is a shift of flux from the elastic to the fusion channel

for low partial waves and energies below the barrier. The enhancement of the tunnelling, as

compared to the local calculations, confirms results obtained by a previous nonlocal fusion

model [2,3]. For energies above the barrier the equivalent local calculations give, due to the

enhancement of the centrifugal potential, results which are smaller than the local ones.

The effective mass approximation used in this work is valid only for energies around the

local barrier height. It is worth stressing that the full calculation, with no restriction for

the energy, must start from a Schrodinger integro-differential equation, constructed out of

the Hamiltonian with the complete nonlocal term without any additional assumption. That

equation is much more complicated than the present approximated version and it must be

numerically solved so as to give the results of interest. For heavy-ion collisions, the solution

to that equation must be obtained with accurate numerical methods to avoid convergence

problems [15].
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VIII. FIGURE CAPTIONS

Figure 1: The behavior of the effective equivalent local potential for the 18O4-6OA^t system

in the external (a) and internal (b) interaction region at the bombarding energies: 35 MeV

(dashed lines), 39 MeV (pointed lines) and 42 MeV (dash-pointed lines). For comparison

purposes, the solid lines in the Figure represent the results of calculations considering the

local potential.

Figure 2: The predicted elastic scattering angular distributions at E ^ ^ = 35 MeV for

the 16O -f 60yVi system considering the local potential (solid line) and equivalent local one

(dashed line) in the effective mass approach.

Figure 3: The calculated phase shift ($i) and modulus (| Si |) of the S matrix as function

of the orbital angular momentum for the elastic scattering process for 16O + ^Ni at the

subbarrier energy of 35 MeV, considering the local (solid lines) and the equivalent local

(dashed lines) potentials.

Figure 4: The predicted fusion cross section excitation functions at barrier energies for

the 16O + mNi system, considering the local (solid lines) and the equivalent local (dashed

lines) potentials.
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