
FR9701307

Production cTenergie
(hydraulique, thermique
et nucleaire)

REALISATION D'UN MODELE DE TURBULENCE AU
SECOND ORDRE EN 3D DANS LE CODE AUX ELEMENTS
FINIS N3S

IMPLEMENTATION OF SECOND MOMENT CLOSURE
TURBULENCE MODEL FOR INCOMPRESSIBLE FLOWS IN
THE INDUSTRIAL FINITE ELEMENT CODE N3S

96NB00123

Direction des Etudes et Recherches



Direction des Etudes et Recherches

SERVICE APPLICATIONS DE L'ELECTRICITE ET ENVTRONNEMENT
De"partement Laboratoire National d'Hydraulique

Decembre 1995

POTG.
LAURENCE D.
RHARIF N.-E.
LEALDESOUSAL.
COMPE C.

REALISATION D'UN MODELE DE TURBULENCE
AU SECOND ORDRE EN 3D DANS LE CODE AUX
ELEMENTS FINIS N3S

IMPLEMENTATION OF SECOND MOMENT
CLOSURE TURBULENCE MODEL FOR
INCOMPRESSIBLE FLOWS IN THE INDUSTRIAL
FINITE ELEMENT CODE N3S

Pages: 15 96NB00123

Diffusion: J.-M. Lecoeuvre
EDF-DER
Service IPN. D6partement SID
1, avenue du General-de-Gaulle
92141 Clamart Cedex

© Copyright EDF1996

ISSN 1161-0611



SYNTHESE:

Cette note traite de l'introduction d'un modele de turbulence au second moment
(modele des contraintes de Reynolds) dans un code industriel aux e'le'ments finis N3S
mis au point a Electricity de France.

La re*alisation nume*rique du modele dans le N3S sera de*taiU6e en 2D et 3D. On
donne certains details concernant les calculs aux e'le'ments finis et les me'thodes de
resolution. On donnera ensuite des resultats y compris une comparaison entre le
modele standard k-epsilon, le modele R.S.M. et les donn6es exp6rimentales pour un
c as test.
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EXECUTIVE SUMMARY:

This paper deals with the introduction of a second moment closure turbulence
model (Reynolds Stress Model) in an industrial finite element code, N3S, developed at
Electricity de France.

The numerical implementation of the model in N3S will be detailed in 2D and
3D. Some details are given concerning finite element computations and solvers. Then,
some results will be given, including a comparison between standard k-e model,
R.S.M. model and experimental data for some test case.
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Implementation of 3D Second Moment Closure
Turbulence Model for incompressible flows in the

Finite Element Code N3S.

G. Pot1, D. Laurence1, N.-E. Rharif1, L. Leal De Sousa1, C. Compe2

1 EDFIDERIAEEILNH, 6, quai Watier, 78400 Chatou, FRANCE
2 SIMULOG, 1 rue James Joule, 78182 St Quentin en Yvelines, FRANCE

Introduction

The "Direction des Etudes et Recherches" of EDF has been working since
1982 on N3S, a 3D finite element (F.E.) code for simulating turbulent
incompressible [1], dilatabie [2] or compressible flows [3], including
eventually free surface effects [4] and moving domain [5]. This code has been
developed under quality assurance procedures, and is used for many
industrial applications (internal flows [6], external flows [7], turbomachinery
[8], thermal problems [9]).
Nowadays, better predictions are needed for the more and more complex
turbulent flows which are studied (see [6] for example). So, second moment
closure models are now a good answer to these industrial requirements, in a
part because of the recent increasing power of computers.
This work presents the implementation of such a model in N3S, based on the
work of Launder, Reece and Rodi [10], on the experience of using this model
in finite volume codes developed at EDF [11], and on the implementation
which has already been done in 2D in 1994 [12].

1. Presentation of the equations and of (";«/ - £) model

1.1. General presentation of the problem

The equations governing the fluid motion in a regular open bounded subset Cl
of RN (N = 2 or 3) and over a time interval [0,T] are the Reynolds-averaged
Navier-Stokes equations:



dt J dXj p d d

(capital letters represent mean values, small letters fluctuations and O a
statistical average. Utp,p, and v are the mean velocity, pressure, density
and viscosity respectively)
Many applied computations of turbulent flows still use the eddy viscosity
model:

£
Eddy viscosity is defined as: v, = CM —, where k = -MM- is the turbulent
kinetic energy, and z its dissipation. They are modelled by transport
equations with on the right hand side production, destruction and diffusive
transport respectively:

^ (3)

De £
^ = j(c£lP-ce2e) + de (4)

For some flows of the thermal convection type, we assume that density
variations with temperature 9 are small enough to be taken into account with
the Boussinesq approximation. The energy equation gives the evolution of the
temperature 9 which satisfies a convection diffusion equation. It is also
possible to take into account more important thermal effects which lead to
consider Navier-Stokes problem with varying density p. This modelling is
operational in the code today [6].

1.2. The (wj-e) model

The standard second moment closure (see [13], [14]) is expressed as :
DuJTj _

Dt V YU iJ V K J

No approximation is made for the transport term or the production term Pjj,
dissipation is assumed to be isotropic at high Reynolds number, £•• = 2. £ g..,

where e is obtained by the transport equation :

(6)



The turbulent transport dy has a minor contribution to the budget and is
modelled by a gradient diffusion term, so much of the modelling effort is
devoted to the pressure-strain correlation which is modelled by an algebraic
expression, function of stresses and velocity gradients.

The simplest linear model or "Isotropization of production" is:
<b.. = 0.. +6.. +<b..wYij Yij\ Yij2 Yij

<t>ij2=-c2

(7)

(8)

(9)

A wall reflection term is added to account for pressure reflection at solid walls
[15]:

f 1
(0*m2nicnm5ij - J te (10)

where 1 is a turbulent caracteristic length, y the normal distance to the wall, ni
the component of the normal to the wall.

The following values of the constant are chosen :

cs
0.22

ce
0.18

Cei
1.44

C£2
1.90

Cl

1.8
C2

0.6

C l

0.5

C2

3.3

We stress again that the production term Py is exact:

. . — ~UkU: (11)

This is an important issue in the case of streamline curvature, body forces
(rotation or buoyancy) and when distortion is not restricted to simple shear.
In a plan compression like impinging flows the normal stresses make the
following contribution to the production :

p• = _ M ' _ _ V _ = ( / ~U1) —
dx dy dx '

This term is generally overestimated by far, when using the k-e model which

yields:
dx J



2. Implementation in finite element code N3S

2.1. Time discretization

Time discretization of scalar equations of convection diffusion plus source
terms as well as Navier-Stokes equations is done obtained by a fractional step
scheme. The convection step is processed by a characteristics method and the
diffusion or Stokes steps thanks to an implicit Euler scheme.
Convection step : the k^-order characteristics scheme consists in computing
an approximation at time tn+1 in [0,T] of the total derivative of any scalar
quantity C (Ui, ujuj, e, e) with the help of a k th-order backward
differentiation scheme integrated along the characteristics curve defined on the
time interval [tn"k+1, tn + 1] .
Diffusion and Stokes step : we can now compute O + 1 which denotes an
approximation at time tn+1 by solving a diffusion problem (or a Stokes
problem for velocity U and pressure p) by a classical k^-order centered
differentiation scheme. The coupled diffusion plus source terms step on Ux,
uiUj, e will be detailed after.
A theoretical analysis of the whole scheme has been done in [16]. In N3S
code, the lst-order and 2nd-order schemes have been implemented for the k-e
model.

2.2. Treatment of the coupling diffusion plus source terms step

The numerical difficulties of SMC associated with replacing the stabilizing

turbulent diffusion term, v, ——'- in the momentum equation by an explicit
d

source term , — ~ - L , has certainly delayed the progress from eddy viscosity
dxj

to SMC in engineering codes.

It is only the production term in the stress equation (involving velocity
gradients) that introduces a coupling between adjacent momentum nodes.
This coupling must be preserved by an implicit discretization similar to that of
the pressure-velocity coupling in the Navier-Stokes equation

Let 5Ui, 5UiUj, Se, 5p be the increments of all variables between time steps n
and n+1, i.e. # / . = U;+l - U; ; we define also the "diffused velocity" 8Uf.
All variables at time step n are known, the increments are given by :

At 3XJ P



(explicit) (implicit)

At ij V V 3 ij
2

+6Pjj + Sty; + Sdij—8e 8jj (13)

On the right hand side of Eq. 13 the first line is the explicit balance of the
stress equation, and the second line is the implicit contribution of the
increments which is discretized as follows:

ij * j

~=-~~ P (15)

where the deviator of the Reynolds stress tensor is defined by
_ j

= uiuj---unun8ij = k aih and it's anisotropy tensor by
2

aij=(uiuj/k--8ij) .

Eq. 14 will ensure the velocity-stress coupling. Eq. 15 allows for inter-stress
coupling while Eq. 16 is a diffusion operator which naturally must be implicit
to ensure spacial coupling. Other terms coming from the linearization (but that
do not contribute to the stability) are left out (e.g. the increment associated
with the diffusion coefficient in Eq. 16).

The mean velocity increment and the pressure increment are obtained at the
last stage of the scheme by using a Chorin-Temam algorithm [18], which
ensure the incompressibility:

At dxi ( 1 7 )

(U?)

2.3. Space discretization

The finite element method is based on a classical weak formulation on the
stationnary problem obtain after the advection step. The unstructured meshes



use triangles or tetrahedra with a mixed formulation for the velocity and the
pressure so as to get the Stokes problem well posed.
In order to satisfy the Brezzi-Babuska condition, the elements available in the
N3S code are P1-P2 or Pl-isoP2 elements. In most industrial cases, we use
the Pl-isoP2 element (linear discretization for the velocity on each
subelement). The velocity mass-matrix can be mass-lumped without
diminishing the global spatial precision. This leads to more simple
calculations, particularly in the case of varying density.

2.4. Finite element calculation

One important part of the time in standard F. E. code is needed for F.E.
calculation — obtained with Gauss formula numerical integration —, and
assembling of the different matrices (varying in time with the eddy viscosity)
and r.h.s. In N3S, only triangle in 2D and tetrahedron in 3D are kept. These
elements, named simplicial elements, have interesting properties which allow
us to compute the elementary terms (matrix and r.h.s.) by hand; for example,
the mass-matrix of linear triangle is directly obtained by :

1 u =
12

(analog in 3D)

where S is the surface of the element.
Based on this idea, we have developed a formal pre-processor adapted for all
elementary matrix and r.h.s. calculations, PREFN3S. For one type of matrix
or r.h.s., all the elementary terms are then computed in a single loop whose
length is the total number of elements — this loop is fully vectorized on a
CRAY supercomputer—.
For example, we give after the computational time on a CRAY Y-MP for a
diffusion matrix calculation (806 217 non zero terms, the mesh is composed
of 70 000 tetrahedra with 100 000 velocity nodes)

Method
Elementary calculation

Gauss
18.4 s

PREFN3S
0.17s

Speed-up
108

2.5. Boundary conditions

Boundary conditions depend on the type of boundary which is to be dealt
with:
- for the inlet r^ of the Q fluid domain, forced constrained conditions
(Dirichlet) are used on all the variables;
- for the outlet rout of the Q fluid domain, normal stress calculated by using
pressure at previous time step for the velocity and vanishing flux conditions
(homogeneous Neumann) for all other quantities are used;
- for walls rw a modelling based on the analysis of the boundary layer on a
flat plate is used. For velocity, the normal component satisfies an
impermeability condition (u.n = 0, where n is the exterior normal to the



wall). This condition is completed by a friction condition on the tangential
stress (cr.t = - p u2, where u* is computed with the so-called logarithmic
law). Concerning.the turbulent quantities M/W/, e , we can express each of it
by using the friction velocity u*. In a local frame related to the wall, this
condition can be written as follows:

U\U\ 0

0 0 W3W3.

5.1
-1 .
0.

-1 .
1.
0.

0.
0.
2.1 J

2.6. Solvers

2.6.1. After the space discretization, we obtain for the Eq. 12 to Eq. 16 a
non symetrical linear system. This system is solved by a conjugate residual
method which is efficient for non-symmetric linear systems and easy to
implement. Let Y be a vector comprising all increments of variables at all
nodes ; then, the system to solve is:

jY-B +A.Y (18)

where Bn is the explicit balances and A.Y the coupling of increments.
Assembly of the very large matrix A would be complex and time-consuming
(time-dependent coefficients). But this is not necessary since a conjugate
residual algorithm is applied to Eq. 18. This is an iterative procedure; let the

approximate solution at iteration k be known : Yk - (SU'ySUiUj ,8e ) .
It is then simple to compute the residual Rk :

At
(improvement of matrix vector product needed for A.Yk have been done by
using sophisticated storage mode [17]).
The next iteration is defined by Yk+1 = a Y k + p Yk*! where the scalars a and
b are computed as functions of scalar products of Rk , R^1 and Yk. a and p
are optimized so that Rk+1 will be minimal.
Finally, with the this incremental formulation and conjugate residual it is easy
to switch from linear to more sophisticated models.
2.6.2. The space discretization of pressure-continuity step (Eq. 17) leads to
a symmetrical matrical system :

MB1

LB 0J

SU

L SP J
-JO (20)

where M is the mass-matrix, B the divergence-matrix, B l the gradient-matrix.
If we mass-lump the mass-matrix and eliminate the velocity in Eq. 20, we
obtain the equivalent system :



-[BM"1Bt][5P]= [S] (21)

M = -[M-1Bt][SP]=[S] (22)
In this case, the laplacian like pressure matrix [BM^B1] can be easily built. It
can be solved either by a classical Preconditioned Conjugate Gradient
algorithm, or a direct solver by using a complete Cholesky factorization. An
efficient sparse Cholesky factorization scheme has been especially developped
[19], which provides a significant reduction of the total CPU time needed for
solving the pressure-continuity step, and gives a divergence of the velocity
field close to zero.

3. A 2D application : flow around cylinders

We consider here a flow inside a tube bundle (ERCOFTACAAHR test case,
1993 [20]). After the first odd rows of tubes the flow becomes periodic and
the computation can be reduced to a minimal inter-tube spacing using
symmetries and periodic inlet-outlet conditions (see fig. 1). Though the
numerical approach to this important problem of cross-flow in a tube bank
seems feasible, the k-e model does not permit to replace experimental studies.
The mean flow pattern is easily reproduced because it is dominated by inertia
and pressure forces when the gaps are narrower or equal to the tube
diameter.This flow is interesting because periodicity makes it free of inlet
conditions.

symmetry symmetry

I r
periodicity j \ ^ wall / periodicity

wall \ | / wall
l • svmmetrv /symmetry

Xr line along which experimental profile
has been investigated

Figure 1 : computational domain for the flow in a staggered tube bundle

The level of turbulence depends only on equilibrium between production P^
and dissipation e. The former term along the impinging axis is modeled in the

k-e approach by P^ = 4vt

dx

— , but it is exact in the RSM



Thus Pk£ is always positive and becoming very large near the stagnation point
whereas PRij.e stays null whatever the rate of strain as long as the turbulence
stays isotropic. By integration the k-e model gives an over-estimation of k by
100% ! The standard Ry-e though still gives some positive production
because the axial fluctuation is larger than the longitudinal one while the
experiment curiously exhibits the opposite. On the whole, in opposition to the
k-e the standard Ry-e model gives an under-estimation of k and a good
prediction of the shear stresses (fig. 2).
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Figure 2: vertical profile of Reynolds stress Rn at section Xr
— : N3S computation k-epsilon model, o : experiment,

— : N3S computation Rjj-epsilon model.

Further improvement can be obtained by using a simple modification of the e
equation:

i^+u — = c £p c & C — (k Tfrrrr —\
dt 3xk

 e k k £ dxv \ £
UkUj

In anisotropic flows Launder et al. [21] suggest a dependence of the e
equation constants in terms of the anisotropy tensor invariants :

= 1 r.- - 1.92

A2 = aki,

/ k - f d i j ) ,

A3 = ajk akm
9

A = 1 - g (A2 - A3)

On fig. 3 we see a very significant improvement on turbulence level at section
Xr using this modification of the of the e equation.
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Figure 3 : vertical profile of turbulent kinetic energy at section Xr
— : N3S computation k-epsilon model, o : experiment,

— : N3S computation Rij-eDsilon model.
oo compuiauon K.-cpsuon inuuci, u ; expcm
— : N3S computation Ry-epsilon model,

- —: N3S computation Ry-epsilon model with modification on e equation.

4. 3D applications

Some three dimensional application will be presented at the conference :
• validation of the implementation on the turbulent channel flow,
• developing flow in a curved rectangular duct [22].

5 Conclusion

In this paper, the feasability to implement in a finite element code a turbulent
model such as Ry-e model has been presented. One important result is that
the efficient algorithm which is used can extend easily to more sophisticated
Rij-e model such as so-called "cubic" models. Now, coupling with
temperature are being developed.
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