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Abstract

Transport processes and resultant entropy production in magnetically con-

fined plasmas are studied in detail for toroidally rotating systems with electro-

static turbulence. A new gyrokinetic equation is derived for rotating plasmas

with large flow velocities on the order of the ion thermal speed. Neoclas-

sical and anomalous transport of particles, energy, and toroidal momentum

are systematically formulated from the ensemble-averaged kinetic equation

with the gyrokinetic equation. As a conjugate pair of the thermodynamic

force and the transport flux, the shear of the toroidal flow, which is caused

by the radial electric field shear, and the toroidal viscosity enter both the

neoclassical and anomalous entropy production. The interaction between the

fluctuations and the sheared toroidal flow is self-consistently described by the

gyrokinetic equation containing the flow shear as the thermodynamic force

and by the toroidal momentum balance equation including the anomalous
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viscosity. Effects of the toroidal flow shear on the toroidal ion temperature

gradient driven modes are investigated. Linear and quasilinear analyses of

the modes show that the toroidal flow shear decreases the growth rates and

reduces the anomalous toroidal viscosity.

Keywords: rotating plasma, anomalous transport, neoclassical transport, entropy

production, ion temperature gradient driven modes



I. INTRODUCTION

In most of magnetically confined toroidal plasmas, the observed particle and heat fluxes

across the magnetic flux surfaces are dominated by the turbulent or anomalous transport,1

which greatly exceed the predictions of the neoclassical transport theory.2~4 However, in

some operational regions of tokamak plasmas such as high-confinement modes (H-modes)5

and reversed shear configurations,6 there have been observed transport barriers with sig-

nificant reduction of anomalous transport. Generally, large radial electric field shear (or

sheared flow) is considered as a cause of such reduction of the transport level. Determi-

nation of profiles of the radial electric fields or the sheared flows requires relevant analysis

of the momentum balance equations. Since the viscosity involved in the neoclassical trans-

port gives a significant contribution in the momentum balance, we should consider both the

neoclassical and anomalous transport processes simultaneously in order to investigate the

interaction of the sheared flow and the turbulent fluctuations.

In our previous works,7'8 the neoclassical and anomalous transport are formulated in the

synthesized framework, although that theory treats the E x B flow velocity as on the order

of the diamagnetic drift velocity. In the present work, our theory is extended to that for

the rotating plasma with large flow velocities on the order of the ion thermal speed. Then,

it is not valid to use conventional drift-kinetic and gyrokinetic equations,9"15 in which the

flow velocities are assumed to be O(6vri). Here vn = (2Tt/m,)1/2 denotes the ion thermal

velocity, 6 = pi/L the drift ordering parameter, p{ = vn/^ti the ion thermal gyroradius, and

L the equilibrium scale length. Hazeltine and Ware derived the drift-kinetic equation for

the plasma with large flows on the order of the ion thermal speed.16 That equation has a

complicated structure including the gyroviscosity term although it reduces to a simplified

form in the case of the toroidally rotating axisymmetric plasma, for which the ion neoclassical

transport coefficients were obtained by Hinton and Wong17 and by Catto et al.18 Artun and

Tang19'20 derived the gyrokinetic equation in the case where the large equilibrium flows

exist. In the present work, we derive the new form of the gyrokinetic equation for the large



flow case. Our gyrokinetic equation contains the term responsible for the perpendicular

anomalous viscosity (or Reynolds stress), which is not included in the equation by Artun

and Tang. This gyrokinetic equation, which is written in a compact form for the toroidally

rotating axisymmetric system, is useful to express the anomalous transport and the resultant

anomalous entropy production. It is emphasized that, in the rotating plasma, the shear of

the toroidal flow or the radial electric field shear enters both the neoclassical and anomalous

transport equations as an additional thermodynamic force, and that the products of the

toroidal flow shear and the conjugate neoclassical and anomalous toroidal viscous fluxes

make significant contributions to the total entropy production. These contributions of the

toroidal flow shear and viscosities are considered as higher-order small quantities in 6 by

conventional treatments. The turbulent fluctuations and the resultant anomalous transport

are influenced by the flow shear or the radial electric field shear contained as the additional

thermodynamic force in the gyrokinetic equation.

Taking account of all the neoclassical and anomalous transport processes, we obtain

balance equations for the particles, energy, toroidal momentum, entropy, and the fluctuation

amplitude. Since the toroidal momentum is directly related to the radial electric field, the

toroidal momentum balance equation describes the temporal evolution of the radial electric

field. Through the anomalous viscosity term in the toroidal momentum balance equation,

the fluctuations affect the flow and the associated radial electric field as a reaction to the

sheared flow effect on the fluctuations. Thus, our extended theory gives a self-consistent

description of the interaction between the fluctuations and the sheared flow based on the

rigorous statistical kinetic foundation.

As in our previous works,7'8 let us start from an ensemble-averaged kinetic equation for

species a:

V/« + =- (E + -y x BV ^ = (C.\ + Va + Ia (1)
dt mn V ca

where Ca is a collision term, la is a term representing the effects of external sources such as

neutral beam injection, and Va is a fluctuation-particle interaction term defined by



m« \ d * /ens

E = -V0 (2)

Here (-)ens denotes the ensemble average and we divided the distribution function (the elec-

tric field) into the ensemble-averaged part fa (E, 4>) and the fluctuating part fa (E, 0).

Throughout this paper, the magnetic fluctuations B are not considered although general-

ization to the case with the magnetic fluctuations is straightforward. The source term la is

assumed to be a quantity of O(<52).17 Then we should note that the linearized drift-kinetic

equation and the gyrokinetic equation are not affected by la. Thus the neoclassical and

anomalous transport equations are not changed by the source term, although the balance

equations of particles, energy, and momentum derived from Eq.(l), which are O(62), involve

source terms caused by la.

In deriving the drift-kinetic and gyrokinetic equations, the perturbative expansion in the

drift-ordering parameter 6 is utilized. When we apply this expansion procedure to the system

with the large flow on the order of the ion thermal velocity, it is useful to observe particles'

gyromotion from the moving frame with that flow velocity Vo. Hereafter we consider only

axisymmetric systems, for which the magnetic field is given by

B = J(#)VC + VCx V* (3)

where £ is the toroidal angle, $ represents the poloidal flux, and /(#) = RBT- Hinton and

Wong17 showed that, in the axisymmetric systems, the poloidal flow decays in a few transit

or collision times and that the lowest-order flow velocity Vo is in the toroidal direction and

is derived from Eo + Vo x B/c = 0 as

Vo = VoC Vo = RVC = -/fc*0 (*) (4)

where $o(#) denotes the lowest-order electrostatic potential in S and Eo = -V$o =

. We should note that the toroidal angular velocity V^ = —c% is directly given by



the radial electric field and is a flux-surface quantity. The lowest-order electrostatic poten-

tial is written as <£_i in the paper by Hinton and Wong17 although it is denoted by $0 in

the present work since we follow the Littlejohn's drift ordering rule21 to regard the electric

charge e (instead of $) as the parameter of O(6~1): e — e_i. As in the work by Hinton and

Wong,17 let us introduce the phase space variables (x7, e, /i, £) which are defined in terms

of the spatial coordinates x in the laboratory frame and the velocity v' = v - Vo in the

moving frame as

1 rna(v' )2 v'
x' = x, e = ~ma(v')2 + Ea, / / ^ a^J-J , -k - eicos£ + e2sin£ (5)

Z AD VJ_

where (ei,e2,b = B/B) are unit vectors which forms a right-handed orthogonal system at

each point, and v' = v[|b + v'± with vj = v' • b. In the definition of the energy variable e,

Ea is given by

Ea = ea^i - -maVg (6)

where <li = $i - ( ^ I ) ! ^ O(6)] is the poloidal-angle-dependent part of the electrostatic

potential. The magnetic flux surface average is denoted by (•). It is shown that e and fi

are conserved along the lowest-order guiding center orbit: (de/di)Q = (dfi/dt)Q = 0 where
7 = § d£/2ir represents the gyrophase average. The guiding center velocity is defined by

= d (yt x h

Vda = It \n7~
x B ) ' b b + ~ l

+ maV0 • W o + mav[|b • VV0 + mav[Vo • Vb] (7)

where we should note that the centrifugal force —maV0 • VV0 = maR(V^)2VR and the

Coriolis force —raa^|b • VV0 — m ^ V o • Vb = 2mav
/uV('h x (VR x £) contribute to the

guiding center drift velocity.

Applying the same procedure as in Ref.8 to Eq.(l), we obtain the double-averaged kinetic

equation over the statistical ensemble and the gyrophase angle f which is valid up to O(62)

and is written as



Va - £/<2) (8)

where T and T denote the average and oscillating parts with respect to the gyrophase angle

£, respectively, and the differential operator C is defined by

at

Here and hereafter, the spatial gradient operator V is taken with (e,/i,£) fixed. The

gyrophase-dependent parts of the first and second-order distribution functions are given

by

= J?+~fi + J? (10)

where the integration constants related to /* d£ are uniquely determined by the conditions

fd) _ f(2) _ n

Ja = Ja — U.

The lowest-order solution of Eq.(8) is the Maxwellian distribution function which is

written as
2 / m(v')2\

where the temperature Ta = Ta(ty) and Na = A^a(^) are flux-surface functions although

generally the density na depends on the poloidal angle 9 through Ha and is given by

(12)

The charge neutrality £ a e a n a = 0 imposes the constraints on <li and Na. For plasmas

consisting of electrons and a single species of ions with charge e* = Z{e, we have17

Te
 l 2(ZiTe

= JV.(»)exp (-mi(V^(R)) (13)



where rae/rai(<C 1) is neglected. It is emphasized that the density na and the temperature

Ta as well as the toroidal (angular) velocity V^ should be specified for the lowest-order de-

scription of the rotating plasma. In the first-order in 6, Eq.(8) reduces to the linearized

drift-kinetic equation as shown in Sec.Ill, the solution of which gives the neoclassical trans-

port. The second-order part of Eq.(8) describes behavior of the distribution function in the

transport time scale ~ 8~2L/VTO. in which the density, the temperature and the toroidal

velocity vary due to the transport processes.

The anomalous transport fluxes are defined by the solution of the new gyrokinetic equa-

tion in Sec.IV, and the shear flow effects on the anomalous transport due to the ion temper-

ature gradient driven modes are investigated as an example in Sec.V. In the next section,

we find balance equations of the particles, energy, toroidal momentum, and entropy for the

rotating plasma.

II. BALANCE EQUATIONS OF PARTICLES, ENERGY, TOROIDAL

MOMENTUM, AND ENTROPY

Here, equations describing temporal evolutions of the particle density, energy, toroidal

momentum and entropy are given in the magnetic-surface-averaged forms. The collision op-

erator Ca as well as the fluctuation-particle interaction operator Va in the ensemble-averaged

kinetic equation (1) conserves the particle number. Then, taking the zero-th moment and

the magnetic surface average of the kinetic equation, we obtain the particle density equation:

+ ( V )dt +

where V = 2'K§d6yfg and ^g = (V* • V0 x VC)"1 = 1/B°. The surface-averaged radial

particle flux is denoted by Va = (Fa • V#).

The surfaced-averaged energy balance equation is written as



' \ dt I

(15)

where pa = naTa is the pressure, qa the surface-averaged radial heat flux, IIa the surface-

averaged toroidal viscosity (or the radial flux of the toroidal angular momentum), and Ê A^ =

—c^dA/dt the inductive electric field. The first-order flow velocity uai = W||aib + uj.ai is

incompressible (V • uai — 0) and its perpendicular component is driven by the pressure

gradient, the first-order radial electric field, and the centrifugal force as

x {—Vpa + eaV$! - ma(V<)2RVR) . (16)
eaB \na )

Taking the flux surface average and species summation of toroidal velocity moment of

the kinetic equation, the equation, which determines the temporal evolution of the toroidal

angular velocity V ,̂ is obtained as

n.) = ( / Sv maV<la) (17)

where the first and second terms in the left-hand side represent the time derivative of the

total toroidal angular momentum and the divergence of the total toroidal angular momentum

flux, respectively. In the right-hand side of Eq.(17), the torque by the external sources such

as neutral beam injection is given, and v^ is the covariant toroidal component of the particle

velocity in the laboratory frame:

vc = RC • v = R2V< + ~v[ + RC • v'±. (18)

The transport fluxes Fa, qa, and Ila are written as

rcl i -pncl I j^H I p ( £ ) i •pa
a + la " T " i a + i a + L a

+ q?' + q" + qiB) +



= n̂ 1 + n;cl + n f + n[E) + n*nom. (19)

Here the fluxes with the superscript (E) represent the inductive-electric-field-driven parts

given by

^ • V*\ - cmaV<I / ^ - L f i 2 - (naR
2)-^) \ . (20)

These inductive-field-driven fluxes are not dissipative in that they are not involved in the en-

tropy production processes. The fluxes with the superscript 'H\ 'cl', and 'anom' are given by

the second-order gyrophase-dependent distribution functions f^, f£, and /^, respectively,

as

p#,d,anom ^ / f ^ 3 y fH,C,Ay

= ( / (TV fa ' maV(-\ • V # ) . (21)

The neoclassical fluxes F|Jd, gjd, and IlJcl are given by the first-order gyrophase-averaged

distribution function, which is obtained by solving the linearized drift-kinetic equation. The

definitions of the neoclassical fluxes and their properties related to the linearized drift-kinetic

equation are shown in the next section.

Without knowledge of the solution of the linearized drift-kinetic equation, we can obtain

the transport equations relating the fluxes (T^,q^/Ta, n f ) and (I^1, qc
a

xlTa, Iia
x) to the radial

gradient thermodynamic forces (Xai,Xa2,Xv) which are flux-surface quantities defined by

Y * = _____
a l ~ Na

„ _ dTa

Xv = ~W " c W*' (22)
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The transport equations for are given by

nf

0

0

~\L hv ~\ hv 0 Xy

(23)

where the transport coefficients (LH)iV and (LH)2v are given by

frH\a _ maC2ITa / 7la

H\a _ "la (24)

which are independent of the collision frequency. Here R2B2
P — |V^|2. The fluxes Y%

and q%/Ta are shown to be rewritten in terms of the parallel gyroviscosity as T% —

™(c//ea)(B-1b • (V • vfro)) and q«/Ta = -(c//ea)((l + Ea/Ta)B~lb • (V • irf ro)>, re-

spectively. The antisymmetry of the transport matrix in Eq.(23) shows that the transport

fluxes (Ff , ^ / T a , I l f ) are nondissipative, or that they give no entropy production:

s rf ~q?xa2 + nH
axv = o.

•La

(25)

The fluxes (Pf ,q^/Ta,U^) are contained in the neoclassical fluxes defined by Hinton and

Wong17 although, in the present work, they are not included in the neoclassical fluxes, which

we define from the gyrophase-averaged distribution function in Sec.III. If the system has up-

down symmetry B{6) = B(~9) (0: a poloidal angle defined such that 9 = 0 on the plane

of reflection symmetry), we find from Eq.(24) that (LH)°V = (LH)gv = 0 and accordingly

F? = Qa = Hf — 0. Thus, the fluxes (Ff , ^ / T a , n f ) vanish in a simple approximation

assuming large aspect ratio toroids with circular cross sections.

The classical fluxes (rcJ,q£/Ta,n
cJ) the anomalous fluxes (r*nom,q*nom/Ta,n™om) are

rewritten in terms of the gyrophase-dependent part of the linearized collision operator

Ca(fai) and that of the fluctuation-particle interaction operator Va, respectively, as

irel panoml
a » L a 1

mac

11



(26)

where v'x • (#C) = -B" ' (v ' x b) • V* and

( v ^ ) : (RC)(R<)- (27)

In Appendix A, by rewriting the collisional frictions in Eq.(26) in terms of the perpendicular

flows and the gyroviscosity, the classical transport equations relating (Tc^q^/Ta,U.^) to

(Xai,Xa2,Xv) is derived and the Onsager relations for the classical transport coefficients

are shown. The classical entropy production defined kinetically in terms of fa\ and Cf is

written in the thermodynamic form as the inner product of the fluxes and the forces:

kCL{fal)\ = rdXal + i gx<a + n*Xv (28)
\ JaO I ^a

The properties of the anomalous transport and the anomalous entropy production are shown

in Sec.IV with the help of the gyrokinetic equation for the fluctuating part of the distribution

function.

The entropy per unit volume for species a is defined by

Sa~-Jd3vfa Infa (29)

of which the lowest-order expression is given by Sao = — f d3v /aoln/ao =

-na{ln[na(ma/27rTa)
3/2] - 3/2}. The temporal variation of the surface-averaged entropy

density (Sa) is described by

d

where (5^ ) = ~(Jd3v(\nfa0 + l)Xa) = (Jd3v(Sa0/na - Ea/Ta + e/Ta - 5/2)Ja) represents

the external entropy source. Here the surface-averaged radial entropy flux Jg°^ consists of

the convection and conduction parts as

12



rr1 + rf + r<£>

Q" + qiE) + 9»

where (Sa/na — Ha/Ta) is a flux surface quantity in the lowest order in S. We have redefined

the anomalous fluxes by T* = r*nom, n£ = n^nom, and

d3v faj>v . V * ) ) (32)

where the second term in the right-hand side represents the turbulent transport of the

fluctuation-particle interaction energy and ((•)) denotes a double average over the magnetic

surface and the ensemble. The surface-averaged entropy production rate (cr^1) is given by

< O = «') + «d) + < O + ^<Q«> + s - K i • F.i> (33)
•La -La

where Qa = / d3v \ma(v' — uai)
2Ca(fa) and Fai = f dzv mav' Ca(fa) represent the col-

lisional heat and momentum generation rates, respectively. The surface-averaged entropy

production rates (<7acl) and (&£) due to the neoclassical and anomalous transport processes

are given in Sec.Ill and Sec.IV, respectively. The second law of thermodynamics is written

by

- « ^ > + <<C'> + <"«>) > o. (34)

It is shown that the classical, neoclassical, and neoclassical contributions in Eq.(34) are

separately positive definite.

III. NEOCLASSICAL TRANSPORT IN TOROIDALLY ROTATING PLASMAS

In toroidally rotating axisymmetric systems, the drift-kinetic equation derived by Hazel-

tine and Ware16 reduces to

- i - / ^ (WalXal + Wa2Xa2 + WaVXv + WaEXE) (35)
•La

13



where ga is defined in terms of the first-order gyrophase-averaged distribution function fa\

as

— Sn f dl I o\ ID fo\ \
9a - Jal /aOTTT / ~E Dllj\\ TEoX^^W I " \6K))

Here fldl denotes the integral along the magnetic field line, and E^ = b • (

c^dA/dt) is the second-order parallel electric field. The thermodynamic forces

(Xai,Xa2,Xv,XE) are defined by Eq.(22) and

|iA)>
^2)1/2 • (3 7)

The parallel inductive electric field Ei ' is not included in the work by Hinton and Wong17

but it is retained by Catto et alls The functions (Wai,Wa2,WaV, WaE) are defined by

v'nB
^ (38)

In the same way as in Ref.22, the neoclassical entropy production is kinetically defined in

terms of fa\ and Cf and is rewritten in the thermodynamic form by using Eq.(35). The

surface-averaged total neoclassical entropy production is given by

r ) E ( g?xa2 + n:xv) + JEXE
a a \ aO / a ^ 1a J

(39)

where the fluxes (iy1, qZd/Ta, n;cl, JE) are defined by

n? = (J*vs.w.v), ' « s ^ | s i ; ( / ' ' ^ 4 (4°)
The neoclassical transport equations are written as

14



4-

LyyXy

(41)
6

where the transport coefficients are dependent on the radial electric field through the toroidal

angular velocity V^ = —c<3>'0. By using the self-adjointness of the linearized collision operator

and the formal solution of Eq.(35), we can prove that the neoclassical transport coefficients

satisfy the Onsager symmetry which is given by

L±(V<) = L*Z(-V<) (m,n = 1,2)

= LNM(-V<) (M,N = V,E)

(m = 1,2; M = V,E). (42)

It is noted that the transport coefficients given in Eqs.(23) and (24) satisfy the same Onsager

symmetry as Eq.(42). If the system has up-down symmetry, the neoclassical transport

coefficients are shown to be more restricted by the relations:

L±(~V<) = Lfm(V*) (m, n = 1,2)

La
mV(V<) = -L*mV(~V<) - La

Vm{V<) (m = 1,2)

= -La
Em(V<) (m = 1,2)

Lyy(V<) = Lyy(-V<)} LEE(V<) = LEE{~V<). (43)

In this case of up-down symmetry, we have Ff = q^ = n f = 0 as mentioned in Sec.II.

The sum of FJcl and Ff is written as

a + ra
H _

from which we obtain the ambipolarity

15



.(rrl + rf) = o (45)

where the charge neutrality ]Caearca = 0 and the momentum conservation by collisions

Ea^a i = 0 are used. Neither E a e a r j | c l = 0 nor £ a e a r f = 0 is valid generally without

up-down symmetry. Using the ambipolarity condition, the number of the thermodynamic

forces in the transport equations for [rjc l + r f , (gjci + q^)/TajU^d + n f , JE] is reduced

by one, although the transport coefficients in the reduced transport equations retain the

Onsager symmetry as shown in Ref.22.

Hinton and Wong17, and Catto et al18 derived the detailed expressions of the ion neo-

classical transport coefficients. We have derived the detailed expressions of the full transport

matrix including the electron-ion cross coefficients, which will be reported elsewhere. We

find that the coefficient LVE describes the inward flux of the toroidal momentum caused by

the parallel electric field, which is associated with the Ware pinch effect23 corresponding to

the coefficient L\E.

IV. GYROKINETIC EQUATION AND ANOMALOUS TRANSPORT IN

TOROIDALLY ROTATING PLASMAS

We assume that any fluctuating field F is written in the WKB (or eikonal) form:

F(t, x', e, /i, 0 = F(t, x', e,», £ k j exp (i J* kL • dx'J (46)

where the eikonal / x k ± • dxf represents the rapid variation in the directions perpendicular to

the magnetic field lines with characteristic scale lengths k^1 ~ pi. The gyrokinetic ordering

employed here for the turbulent fluctuations is written in terms of 6 = pi/L as

fa ea(j> fc|| LJ0

f T k n S ( 4 7 )

Ja ±a K±. " a

where the characteristic parallel wavelength is given by k\\ ~ L~l. When a frequency u of

the fluctuation with the perpendicular wavenumber k± ~ p~l is observed in the laboratory

frame, it contains the rapid component due to the high plasma rotation, which is written as

u-i = ki-Vo ~ S~lVTi/L. The frequency uo in Eq.(47) is defined by CJQ = (LJ—U-I) ~ vn/L.

16



The fluctuating part of the distribution function is divided into the adiabatic and nona-

diabatic parts as

^ ^ / a o + ha(kL)e>L^ (48)

where La(k±) = kj_ • (v' x b)/Qa. Appendix B shows that the nonadiabatic part of the

distribution function satisfies the following nonlinear gyrokinetic equation:

-xr + (Vo + v.ib) • V + zkj. • vda

faO [wal(k±)X^1 + Wa2(k±)X*2 + Wav(kL)X*V

lie-iLa(^)CL ^ ( k i ) ] ( 49 )

where d/d*0 = e-iuJ-lt{dldt)eiu-xt = d/d* + «u;_i, and J0(V) is the zeroth-order Bessel

function of 7' = k'±v'±/fla. In the right-hand side of Eq.(49), we have defined the forces

(Xai,Xa2,XaV,XaT) as

A __

and the fluctuating functions (wai,wa2,wav,WO,T) as

x) = ea Jo(7) ( ^ + V « ' V )

Here, the last term in the definition of wav is not contained in the gyrokinetic equation

by Artun and Tang19'20 but needed to derive the anomalous viscosity which reduces to the

Reynolds stress in the fluid limit [see Eqs.(58) and (59)].

In the same way as in Ref.8, the contribution from the turbulent fluctuations to the

entropy balance is represented by

17



(In fa + 1
\ / /

(52)
V'dV

where the surface-averaged radial anomalous entropy flux is given by

5a l _ r r > / i - a " ' y tfSa ~a

and the surface-averaged anomalous entropy production rate is written in the thermody-

namic form as

( ) TfX* + ±-q*X& + U$X*V + Q*XaT. (54)
•*• a

The anomalous fluxes (T^q^/Ta,Il^,Q^) conjugate to the forces (X^UX^X^V,X^) are

given by the correlations between ha and (u)ai, wa2,wav,waT) as

d3^/i:(kiHT(k±)\y (55)
kjL / /k± / /

The heating term due to the fluctuation-particle interaction operator Va in Eq.(15) is

rewritten in the stationary turbulent states by

tf -n]+Qt (56)]

We find from Eqs.(15), (19), (32) and (56) that not q™om but q£ should be used as a radial

anomalous heat flux in the energy balance equation, and that the fluctuations transfer the

energy to the particles of species a through the two terms ~eaTlnom(d(^i)/d^) and Q«.

Using the charge neutrality condition £ a eana = 0 (ha = J d?v fa) or the Poisson's equation

V • E = 4?r S a eaha for the self-consistent fluctuations, we have the ambipolarity of the

anomalous particle fluxes £ a eaY* — 0 and the cancellation of the total anomalous heat

transfer T>aQa — 0, which shows that the self-consistent fluctuations cause no net heating

of the total particles but result in the anomalous heat exchange between different species of

particles. We obtain the balance equation for the fluctuation amplitude as

18



Yh'(k)-i'^CL [k(k)"^]^ (57)

Thus, in the stationary turbulent states, the anomalous entropy production driven by the

turbulent transport equals the collisional dissipation of the fluctuating distribution func-

tion, which results in the positive definiteness of the total anomalous entropy production:

ZaTa(<jA) = - E a ( ( / ^ ^ E k x ^ ( k i ) e - ^ ( k - ) C f [ha(kL)eiL^])) > 0. The Onsager

symmetry for the quasilinear anomalous transport equations is described in Appendix C.

Compared to the conventional gyrokinetic equation9"15, our gyrokinetic equation (49)

contains the flow shear X*v as an additional thermodynamic force and the function way

related to the anomalous viscosity. It is instructive to derive the Hasegawa-Mima equation24

from Eq.(49) and examine how the flow shear and the anomalous viscosity enter it. Consid-

ering that a collisionless plasma consists of adiabatic electrons and a single species of ions

with charge e* = Z,-e and low temperature Ti <C Te (k^pi < 1), and assuming that the ion

nonadiabatic distribution function has the form hi ~ /;oft?ad/nn we obtain from Eq.(49)

with the charge neutrality condition the generalized Hasegawa-Mima equation:

[(l + klpl) ( ± + V0 • v) + iu. + ik± • C^V x ( |

= k r f E [b • (k'x x k'l)] [{klf - (fc'J2] e<t>f^ e<Pf1] (58)

where cs = (ZiTjmi)1'2, ps = cs/Qi, u* = kx • u*, and u* = (Te/Ti)(cb x VV/eB)[Xa +

(-1 + Si/Ti)Xi2 + miR2VcXv]. The last term in the left-hand of Eq.(58) determines the

exchange of energy between the fluctuating E x B flows and the background flow Vo. To

see this, we derive the energy balance equation from Eq.(58) as

= - £ n,-m,-(vJ.(k±)v£.(kJ.))eM : (Wo) (59)

where A^e = Te/(4irnee
2)l/2 is the electron Debye length, and VEO*-±) = —i(c/B)4>(k±_)kL x

b is the E x B drift velocity due to the electrostatic fluctuations. Here we have used
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the relation (k ± k x ) : (RC)(V*)XV = [(k± x b)(kj. x b)] : (VV0). The right-hand

side of Eq.(59) represents the energy transfer from the background sheared flow to the

fluctuations through the Reynolds stress multiplied by the flow shear. In this case,

the anomalous ion viscosity Uf is rewritten in terms of the Reynolds stress as Uf ~

V. EFFECTS OF SHEARED TOROIDAL FLOW ON ION TEMPERATURE

GRADIENT DRIVEN MODES

Here we use the sheared slab geometry to consider the ion temperature gradient (ITG)

driven modes localized in the bad curvature region of the large-aspect-ratio system. Let

us assume that the plasma is collisionless and consists of adiabatic electrons and a single

species of ions with charge e, = Zie. Using the charge neutrality and the linearized version

of the gyrokinetic equation (49) with the approximations |kj_ • Vdi/vo\ <C 1, \k\\Vri/uJo\ < 1

(LJ0 ~ u — u-i), and k±_pt < 1 , we obtain the following linear eigenmode equation:

[dx2 u + K LJ {u + K)2 L2u2 v ' y v ;

where bs = kgp2 (hom. the poloidal wavenumber), LJ = cuo/u*e, u*e = kecTe/(eBLN), and

LN = —(d\nNe/dr)~l. The radial distance from the mode rational surface normalized by

p9 is denoted by x = (r — rs)/p3 (r3: the minor radius of the mode rational surface), and

the magnetic shear length is defined by La ™ Rq/s with the safety factor q and the shear

parameter 5 ~ r\d\nq/dr\. Other parameters in Eq.(60) are defined by

R

L2
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where r ™ Ti/(ZiTe), rji ~ LN/LTi, and LTi = —(dlnTi/dr)'1. In Eq.(60), the parameters

K and G destabilize the ITG modes. Especially, the parameter G, which contains the

toroidal curvature term 2LN/R, causes the toroidal ITG modes. From Eq.(61), we find

that G is modified by the terms resulting from the centrifugal force and the Coriolis force

due to the toroidal rotation. The parameter S represents the effects of the sheared toroidal

flow, and LE = ~(d\nV^ / dr)~l — —(d\nEr/dr)~l denotes the gradient scale length for the

toroidal flow (or for the radial electric field).

The linear eigenmode equation (60) is easily solved to give the dispersion relation:

s
u + K Co (CJ + AT)2 u; L

and the corresponding eigenfunction:

1/2 1 r i L
const x Hn

_iL», (» = o,l,2,...) (62)
u L

where Hn is the Hermite function of order n. If we put G = a — 0, Eq.(62) reduces to the

dispersion relation obtained by Dong and Horton for the slab ITG modes in the sheared

flow.26

Now, let us consider the simple cases where 6S, a, and (2n + 1)LN/LS are negligibly

small, and K > 1 » G is satisfied. If there is no sheared flow E = 0, we have from Eq.(62)

the linear growth rate of the toroidal ITG mode: Im(d>) ~ (KG)1/2 for KG > 1. When

the sheared flow is large enough to satisfy S > A'2/4, we obtain the linear growth rate of

the sheared flow driven instability: Im(o;) ~ E1/2. We find that the stability condition is

approximately given by K{1 + 2(ATG)1/2] < S < A'2/4, which is rewritten by

2AT1/2[1 + 2(ATG)1/2]1/2 < ^ ^ < K. (64)
LE CS

From this estimation, the stability window is expected to appear more clearly when K » 1

is well satisfied. In order to have large K, hot ion temperature r = Tt/(ZtTe) > 1 or large

ion temperature gradient 77, > 1 is required.

Figure 1 shows the normalized linear growth rates lm(u) = lm(u)/uj^€ obtained from

Eq.(62) as functions of the flow shear parameter (LN/LE)(VO/CS) for K ~ 5,8,11 with
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no magnetic shear LN/L3 = 0. Here and hereafter, we put G = 0.1, keps = 0.1, and

a — 0. It is found that the increase of K broadens the width of the stability window but

heightens the strength of the flow shear required for the stabilization, which is expected from

the approximate stability condition (64). (Figure 1 recalls the effects of the radial electric

field shear on the resistive interchange modes,25 which have similar shear dependence of

the linear growth rates with the stability window.) The real and imaginary parts of the

normalized eigenfrequency u = uo/ume for K = 8 are given as functions of (LN/LE)(Vo/c3)

in Figs.2(a) and (b), respectively, where the cases with different values of magnetic shear

LN/LS = 0,0.01,0.05,0.1 are shown. As the flow shear increases, the real frequency has the

sign of the ion diamagnetic frequency and its absolute value increases. The reduction of the

growth rates by the flow shear becomes weaker for stronger magnetic shear.

Using the linearized gyrokinetic equation for the response of the distribution function to

the electrostatic fluctuations, we can obtain quasilinearly the anomalous ion radial heat flux

and the anomalous ion toroidal viscosity, which are given by

QlT ~ RBP ~ UtXt dr

n m nC ~~ R2B ~ n*m«^t ^ f

where the contributions from the non-diagonal parts of the anomalous transport coefficients

are neglected by using the approximations |kj_ • vdi/o;o| < 1 and |fc||VTt/<̂ o| < 1- The

anomalous ion thermal diffusivity \A and the anomalous ion toroidal momentum diffusivity

HA in Eq.(65) are given by

Xi - 2^' ' ft ™ es T2 ' ^ p p

where ky and u denote the representative wavenumber in the energy containing range of the

fluctuation spectrum and the corresponding eigenfrequency, respectively.

If we use the mixing length treatment to estimate the potential fluctuation amplitude

as e\<j>\/Te ~ (k^L)'1 with the characteristic wavenumber k± ~ ky and the ion pressure

gradient scale length L ~ LN/(1 + ty), we have
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2 . , cTe ps )

\kyP,\ p|* • (67)

[In the case where the flow shear is the dominant destabilizing source, we should take account

of Vo/LE to estimate the fluctuation level as in Ref.27.] The anomalous transport coefficients

given by Eq.(67) depend on the flow shear through the linear response factor Im(u)/\u\2,

which is shown as a function of {LN/LE)(VO/C3) in Fig.3 using the same parameters as in

Fig.2. We see that the decrease of the growth rate Im(a>) together with the increase of \u\

results in the abrupt cutoff of the anomalous transport coefficients for the flow shear (or the

radial electric field shear) greater than a critical value.

The dispersion relation obtained by Dong and Horton26 using the kinetic integral equa-

tion predicts the critical value of the radial electric field shear for stabilization smaller than

the results of our dispersion relation Eq.(62) obtained in the limit of low wavenumbers and

high phase velocities. Their kinetic dispersion relation also shows that the smaller magnetic

shear is favorable for the stability window as shown here. The present transport analysis

demonstrates the relationship between the energy and momentum transport in the presence

of drift wave fluctuations in an axisymmetric toroidal plasma.

VI. CONCLUSIONS AND DISCUSSION

In this work, the synthesized theory of neoclassical and anomalous transport7'8 is gen-

eralized to that for the rotating turbulent plasma with large flow velocities on the order of

the ion thermal speed. Taking account of all transport processes, i.e., classical, neoclassical

and anomalous transport processes, we have obtained balance equations for the particles,

energy, toroidal momentum (or radial electric field), entropy, and the fluctuation amplitude,

which are given by Eqs.(14), (15), (17), (30), and (57), respectively. We also have given

the rigorous expressions which define the classical, neoclassical, and anomalous transport

fluxes of the particles, energy, and toroidal momentum. Nonequilibrium thermodynamic

properties such as the entropy production rate, the conjugate pairs of the fluxes and forces,
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and the transport equations with the Onsager symmetry are established from the basic ki-

netic equations as the first principle. The drift kinetic equation and the new gyrokinetic

equation for the rotating plasma are used to formulate the neoclassical and anomalous fluxes

which are connected to the conjugate thermodynamic forces by the corresponding transport

equations.

In the presence of the high-speed toroidal flows, the shear of the toroidal flow (or the

radial electric field shear) enters all the classical, neoclassical, and anomalous transport

equations as an additional thermodynamic force, and accordingly influences the transport

fluxes and the fluctuation level. On the other hand, through the anomalous viscosity term

in the toroidal momentum balance equation, the fluctuations affect the flow or the radial

electric field as a reaction to the sheared flow effect on the fluctuations. Thus, a self-

consistent description of the interaction between the fluctuations and the sheared flow is

given.

Our gyrokinetic equation for the rotating plasma contains the new sheared flow driving

term, from which the perpendicular anomalous viscosity is defined kinetically. We have

derived the generalized Hasegawa-Mima equation from the gyrokinetic equation, and found

that the kinetically defined anomalous viscosity reduces to the Reynolds stress in the fluid

limit.

We have examined effects of the toroidal flow shear on the toroidal ITG modes by using

the approximate dispersion relation derived from the gyrokinetic equation. It is found that

there exists a stability window in the flow shear parameter space when the parameter K [see

Eq.(61)] is large (or when Ti/Te > 1 or 77, = LN/LTi > 1). As K increases, the width of the

stability window is broadened and the threshold value of the flow shear is heightened. The

flow shear stabilization is relatively stronger for the case of weak magnetic shear. We have

given the quasilinear anomalous diffusivities for the heat and toroidal momentum transport

using the linear eigenfrequencies and the mixing length argument. The anomalous toroidal

momentum diffusivity is proportional to the anomalous thermal diffusivity and they de-

creases as the flow shear increases. In the improved confinement of the JT-60U takamak,28
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the internal transport barrier (ITB) with the steep ion temperature gradient is formed in

the region where the gradient of the toroidal flow is steep, the magnetic shear is weak, and

Ti > Te. These ITB formation conditions are in qualitative agreement with our results on

the stabilization of the toroidal ITG modes by the sheared toroidal flow. In the stabilized

region, there still remain the neoclassical fluxes which are presented in Sec.III.
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APPENDIX A: CLASSICAL TRANSPORT EQUATIONS FOR TOROIDALLY

ROTATING PLASMAS

The gyrophase-dependent part of the distribution function is of the order 6, and is written

as

f - f ma

Ja\ — JaOlfT
•La

where the perpendicular flows and the gyroviscosity are given by

nanLa= [d3vfalv'± = —TJ eat

x b + ^ n a u l a
T

(v»)(V«) + (V* x b)(V* x b) + 2/{b(V* x b) + (V* x b)b}]. (A2)

Using Eq.(Al), the collisional frictions are related to u i a , qj.a, and ir&TO by
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Jd3v CZ 1
,'\2(ma(v')2 _ 5\

. V 2T O 2)

lab lab
'11 ~»12

lab lab
~"'21 *22

Uj.6

5 V Pb Tb

vV - (A3)

where the coefficients /jj are the same ones as denned in Ref.3 and Ref.22, and (f-6 are denned

by

d3v {v' • (A4)

The self-adjointness of the linearized collision operator gives the symmetry properties of the

coefficients:

jab jba jab iba
ljk — lkji lv — lv •

From Eqs.(26) and (A2), we obtain the classical transport equations as

(A5)

{LA)\VXV

,cl

T
J-a

(A6)

where the classical transport coefficients are given by

1 0

eaehB
2

lab lab

lab lab
toi *22l21

1 =*•

0 1

a
2V

a
VI

/ rc\\a
V ^ )V2

1 0

/ab

b
l

From Eqs.(A5) and (A7), we obtain the Onsager symmetry for the classical transport coef-

ficients which is written as
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(m n — 1 2)

(L^viV^) =-(L^yi-V^) = (Lc%m(V() (m = l,2)

(I cVv(V c) = (id)vK(-Vc) (A8)

which has the same form as Eq.(43). Equation (A8) is valid even without up-down symmetry

since the classical transport is a spatially local process. The momentum conservation by

collisions assures the intrinsic ambipolarity of the classical particle fluxes £ a €aTa
l = 0, which

reduces the number of the independent thermodynamic forces in the classical transport

equations by one. As shown in Ref.22, the reduced classical transport equations retain the

Onsager symmetry.

APPENDIX B: DERIVATION OF GYROKINETIC EQUATION FOR

TOROIDALLY ROTATING PLASMAS

The derivation of the gyrokinetic equation (49) for rotating plasmas with the toroidal

flow velocity Vo — O(vra) is briefly explained in this appendix. Subtracting the ensemble-

averaged kinetic equation (1) from the original non-ensemble-averaged one gives the equation

for the fluctuating distribution fa as

— [ E + - v x B ] \ fa- CL(L) = -—E • - ^ — — - Va (Bl)
ma \ c ) dv\ a ma dv

where the magnetic fluctuations are not considered. Let us assume that the ensemble-average

part and the fluctuating part of the distribution function are expanded in terms of 6 = pa/L

as fa — fao + fa\ -\ and fa = fai + fa2 H • The lowest-order part of Eq.(Bl) in 6 is

written for the fluctuations in the WKB form of Eq.(46) as

F d .. ... _ d
dt.x T

(B2)

where d/dt-i is used to describe the rapid temporal variation with the characteristic fre-

quencies in the order of 6~lVTalL ~ Qa. From the average part and the oscillating part of
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Eq.(B2) with respect to the gyrophase £, we find that /ai(k^) ex exp(—i

and that

aO

(CJ_I ~ kj_-V0)

(B3)

which gives Eq.(48). From the O(S) part of Eq.(Bl), we have the equation for the second-

order fluctuating function /a2 as

si
j\r , . V ' — O -—-

Pi
— —O p i L » ( k - L ) _ -

(B4)

where

= - -5r + (vo + v ' ) - V - — V ^ i - r - T (h
I Cftn Tf) (I'M I \
L " u J

r <-» *-» "

= _£_ + (v0 + v') • V - — V^i • — faO

ma raa

'i)^-£(/.«))- (B5)

The solvability condition for Eq.(B4) is written by

= 0. (B6)

After lengthy calculations, the first three terms in the left-hand side of Eq.(B6) are written

as

= - ^ + (v»+"iib)-v + ! k ± • vdc
ha(k±)

J lit
(B7)

where ha is regarded as a function of (t0, x', e, //; kj.) [see Eqs.(5) and (46)] and the definitions

in Eqs.(50) and (51) are used. Finally, the gyrokinetic equation (49) is obtained from

Eqs.(B6) and (B7).
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APPENDIX C: ONSAGER SYMMETRY OF QUASILINEAR ANOMALOUS

TRANSPORT EQUATIONS

Here we assume that the spectra of the electrostatic fluctuations </>(kj_) are given a priori

and that the nonlinear term in the gyrokinetic equation (49) is negligible. Then, using the

definitions in Eq.(55) with the solution of the linearized gyrokinetic equation, we obtain the

quasilinear anomalous transport equations:

QA

( T A\ab ( f A\ab
\ L hi \L )\2)\2

A\ab
)IV

A\ab
J )\T

(LA)ffv
(LA)ff2

(LA)ffT
( j A\ab I T A\ab ( T A\ab ( j A\ab
yij fTX v /7'2 v )TV \ )TT

(Cl)

Here the anomalous transport coefficients {LA)fa (r,s = 1,2,V,T) are functional of the

fluctuation spectra, and they also contains the equilibrium fields B and Vo as parameters:

In the same way as in Ref.8, we can show that the quasilinear anomalous transport coeffi-

cients satisfy the following Onsager symmetry:

T.(LA)tJB,V0, {4>(t)}\ = -B, -Vo, { # -

Ta(L
A)%M[B, Vo , {4>(t)}] = - -B, -Vo, { # -

(m,n = 1,2)

= l , 2 ;M = V,T) (C3)

where </>(—t) represents the fluctuation spectra obtained by the time reversal of the original

spectra <j>{t).
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FIGURES

FIG. 1. The normalized linear growth rates Im(a>) = Im(u)/u*e from Eq.(62) as function of the

flow shear parameter (LN/LE)(VQ/C3) for K = 5,8,11 with no magnetic shear L^jLa = 0. Here

G = 0.1, keps =0.1, and a — 0. The increase of K broadens the width of the stability window but

heightens the strength of the flow shear required for the stabilization.

FIG. 2. The real part (a) and the imaginary part (b) of the normalized eigenfrequency for K — 8

are given as functions of the flow shear parameter (LM/LE){VQ/CS). The cases with different values

of magnetic shear L^/Ls = 0,0.01,0.05,0.1 are shown. The values of G, kep3, and a are the same

as in Fig.l. As the flow shear increases, the real frequency has the sign of the ion diamagnetic

frequency and its absolute value increases. The reduction of the growth rates by the flow shear

becomes weaker for stronger magnetic shear.

FIG. 3. The linear response factor Im(cD)/|o;|2 as a function of the flow shear parameter

(LN/LE){VQ/CS). The same parameters as in Fig.2 are used.
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