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Abstract

A randon field Potts model is used to establish the spatial relationship
between the nanoscale distribution of charged chemical defects and nanoscale
polar domains for the perovskite-based relaxor materials lead magnesium nio-
bate (PMN) and lead scandium tantalate (PST). The random fields are not
set stochastically but are determined initially by the distribution of B-site
cations (Mg,Nb) or (Sc,Ta) generated by Monte Carlo NNNI-model simula-
tions for the chemical defects. An appropriate random field Potts model is
derived and algorithms developed for a 2D lattice. It is shown that the local
fields are strongly correlated with the chemical domain walls and that polar
nanodomains tend to nucleate about the latter. The evolution of the polar
domains as a function of decreasing temperature is simulated for the two
cases of PMN and PST. The dynamics of the polar clusters is also discussed.
The results are used in an accompanying paper (Qian and Bursill, Inter. J.
Mod. Phys. B, xx, xxxx-xxxx 1996) in order to predict the temperature and
frequency dependence of the dielectric response of these two relaxors.
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1. Introduction

In refs.1"4 we studied the chemical domain textures of lead scandium
tantalate (PST) and lead magnesium niobate (PMN) using the combination
of high-resolution transmission electron microscopy (HRTEM) and Monte
Carlo methods and an extended Next Nearest Neighbour Ising model anal-
ysis. Atomic structural models for B-site cation distributions of the ABO3
perovskite related structures were proposed and confirmed by comparison
with the experimental HRTEM images. Based on these atomic models we
now seek to establish the relationship between the nanoscale distribution of
charged chemical delects and the nanoscale polar domain textures and their
spatial and temporal fluctuations as a function of temperature. In this paper
the influence of the chemical defects on the formation and dynamics of polar
domains is studied. Firstly, some statistical theories of structural phase tran-
sition are critically reviewed and some non-periodic factors or randomness
are introduced into the theory to allow the relaxor system to be discussed.
Secondly, a random field Potts model for perovskite relaxor systems is pro-
posed. The random fields are not set stochastically but are determined by
the distribution of the B-site cations. An approximate method to calculate
the random fields is proposed. Thirdly, the algorithms and procedures to
conduct Monte Carlo simulations on this model and the results of simula-
tions on a 2D lattice are presented. Finally discussions of the dynamics of the
clusters and directions for further work on a three-dimensional Potts model
complete this paper. In the accompanying paper5 the dielectric permittivity
and dissipation factor of the typical relaxors PMN and PST are predicted
as a function of both temperature and frequency, which results are in good
agreement with the experimental measurements.

2. Some statistical theories of structural phase transitions

We first give a brief description of some statistical theories of structural
phase transitions as originally developed for simple, translationally invariant
ferroelectrics, i.e. these have almost perfect structural order. To investigate
disordered systems, some randomness is introduced into the formalism to
allow the relaxor systems to be discussed. Short introductions to spin glass
theory, random field theory and percolation theory are also given in this
section.



(a) Model Hamil tonian

The starting point of a statistical theory is a simple model Hamiltonian.
Its value is well established in solid state physics. The basic model Hamilto-
nian which describes structural phase transitions takes advantage of the fact
that such transitions are often associated with the rearrangement of only
a few atoms in the unit cell, whereas the positions of the other atoms are
relatively undisturbed. Thus for a simple model it seems essential to take
account only of these particular coordinates while treating the rest of the
crystal lattice as a heat bath. In this manner, a model Hamiltonian can be
written6

where TTJ and £/ are the generalised momentum and displacement respec-
tively of unit cell /; V/(<f) is the local potential function, it can be anything
from quasi-harmonic to deep double-well form. We write V/(£/) rather than
V(£i) here to allow some random systems such as relaxor solutions to be
approached. Besides the randomness imposed on the local potential function
Vi(£i), the interaction parameter ;»//' niay also have a random distribution.

This model Hamiltonian is of great value for its generality and simplic-
ity. There are plenty of applications on ferroelectrics that start with the
Hamiltonian Eq. (1). For example, it has been applied to study the defect-
density dependences of Curie temperatures7'8. On the other hand, by the
rather drastic approximation of excluding all local modes except that one
deemed to characterise the transition, use of Eq. (1) in its basic form pre-
cludes any discussion of coupling to other modes. In particular the coupling
to acoustic modes and to elastic strains is absent. Nevertheless the model
Hamiltonian Eq. (1) is readily embellished to allow for such coupling and the
basic single-mode theory can be expanded to describe these phenomena.

The potential function in Eq. (1) is made up of both local terms Vj(£/)
and inter-cell interaction term r//<£(£/'. The absence of either would render
the Hamiltonian exactly soluble at least in principle. Thus for U|/'£/£/' = 0 the
problem reduces to one of non-interacting localised motion, while for V/(£/) =
0 or Vj(£j) of harmonic form and translational invariance the Hamiltonian can
be diagonalized in terms of running waves (phonons).

The competition between local-mode and running-wave motion is a not
uncommon feature of many-bod)' dynamics, and there are two obvious meth-
ods of attacking the problem. One is to use the running waves, or non-
interacting phonons, as zeroth-order basis states and to represent local anhar-
monicity in terms of phonon-phonon interactions which can be statistically



approximated in some way to allow diagonalization in terms of 'renormalised'
phonons. The other is to approximate statistically the interaction potential
vwZltl' m some manner which reduces the many-body Hamiltonian Eq. (1) to
non-interaction cell form. Looked at from the former standpoint structural
transitions are caused by lattice anharmonicities; from the latter viewpoint
they are precipitated by inter-cell forces. Both pictures are informative. But
in relaxor systems, none of the above approximations are quite valid. The
events in relaxors seem to happen in a mesoscopic scale. They cannot be
described by either local model or phonon.

(b) Mean-field theory and the soft-mode concept

Within the mean-field approximation, the Hamiltonian Eq. (1) is reduced
to a non-interacting form. We consider a representative cell / and, in particu-
lar, those local-model co-ordinates 7r/, £/ which describe the phase transition
of interest, replacing all other cells by their thermally averaged states. Thus
in Eq. (1) we replace operators £;<, for all /' ^ /, by their thermal averages
(£/>) which are to be determined se!f-consistently.

For a disordered system, we can take another approximation by decom-
posing the local potential function into two parts, one with translational
invariance, the other without,

vj(6) = v(eo-fc,e/ (2)
where V(£i) is the contribution of the periodic part of crystal, and —/ij£j is the
contribution of randomly distributed impurities, chemical disorder, etc. Here
only the linear term of £/ is included and the high order terms are neglected.
We can recognise that the linear term is the contribution of random fields hi.

Now we can define a mean-field Hamiltonian for the /th cell in the form

W<(mf) = ^r,2 + V(&)-A /
e / /& (3)

where

We have included a term describing the introduction of a uniform static field
h. This field in general is an internal field and may differ from a corresponding
externally applied field if long-range (e.g. dipolar) forces are included in VUL
( However, if we assume needle-shaped macroscopic specimens with field
parallel to the long axis, the difference vanishes and we can refer to h as an
applied field without ambiguity.) The interactions have been replaced by an



effective field of magnitude J2i' <'/c (£/')• ^n ^ m s w a y ^n e many-body problem
has been reduced to one of an ensemble of independent single-ion oscillators.

If hf is distributed randomly over different unit cells, unit cell / will not
be a good representative of all the other cells. Then we have two distinct
kinds of averages to perform: the usual 'thermal average' and the average
over the distribution of random parameters. How to calculate the average is
one of the key statistical problems in spin glass theories.

On the other hand, if h/ is independent of unit cell, i.e., the system has
translational in variance, we can use familiar statistical results for the thermal
averages. For example, some numerical results have been given by Lines9 for
a local potential with simple quaitic stabilising anharmonicity

V(t,) = faffi + A& (4)
where U>Q and A are both positive constants. A transition to an ordered phase
is found at finite temperature if v(0) > U>Q (V(0) = Yivvw)- It is always of
second order for potentials given by Eq. (4) and a Curie temperature can be
given in terms of parameters A, ^ and v(Q). The static uniform susceptibility
x(0) is found to be of limiting Curie-Weiss form as T —* Tc with

> =IJ(T-TC), T>TC

and
v(0)-' =20(TC-T), T <TC

The factor of 2 difference between the constants of the paraelectric phase
and the ferroelectric phase is familiar from the thermodynamic theory of
ferroelectricity.

The physical picture is one of competition between a local constraint
(WQ) favouring a high-symmetry phase with (£)o = 0 and an interaction field
(u(0)) preferring an ordered pluvse. For values OOQ/V(0) > 1 the interaction
is too weak to overcome the local constraint at any temperature and the
high-symmetry phase remains stable right down to absolute zero. When
U>Q/I>(0) < 1 the ordered phase is stable at low temperatures but is destroyed
by the thermally induced disorder as the temperature is raised.

Phase-transition dynamics can also be discussed within mean field the-
ory by studying the response of the mean-field equilibrium state to a time-
dependent external influence. The procedure is similar to the static case.
First, the behaviour of the single-eel] displacement coordinate & is consid-
ered in the absence of intercell force's. A single cell response of a damped-
harmonic-oscillator has the form

n2M " v : (5)



where Q.s is a resonance frequency in the absence of damping and F is a
damping constant. Such a form is often an excellent approximation for single-
well local potentials. Then, the intercell interactions are introduced in a
mean-field manner and the collective susceptibility is introduced through
Fourier transforms. It can be shown that the static susceptibility will diverge
at a temperature, and this divergence is associated with a soft mode.

Note that the above arguments are only valid for systems with transla-
tional invariance. For relaxor systems the translational symmetry does not
exist so the above discussion cannot be applied. If we still use the language of
soft modes, the promising picture of the general dynamics is perhaps one of a
marginally softening lattice mode which, on softening, interacts increasingly
with the defects. This interaction would produce a frequency-dependent re-
laxation which has the effect of slowing and eventually stopping the lattice
mode softening. However, the discussion in this framework no longer has any
advantage and some other framework has to be used.

(c) Deep double well limit and the Ising model

If the potential V(£/) (Eq. 2) has a form of deep double wells with negli-
gible tunnelling field only two degenerate eigenstates per cell enter the sta-
tistical problem; the generalized coordinate £/ can be described by a dipole
moment O\ flipping between the two equivalent orientations. In this limit the
mean time of two successive dippings is orders of magnitude larger than the
time scale of atomic vibrations in the solid, so the phonons can be reason-
ably well approximated as a heat bath, as far as the flippings are concerned.
Hence, the first sum of Eq. (1) will not appear explicitly in the model Hamil-
tonian. The potential V(£i) acts as a constraint and the kinetic energy is
absorbed into the thermal bath. All the dynamic effects of the resulting
model Hamiltonian are then due to the interactions with the surrounding
thermal bath which produce thermal hopping and ensure equilibrium in the
steady state. Now, we only need be concerned about the second sum in
Eq. (1), i.e., the interactions between the lattice cells. Thus, we approach an
Ising situation with model Ilamiltonian

- E <h + h>) (6)
where hi is the local field (see Eq. 2), h is the applied field, and o\ can be
considered to be the dipole moment of the /th cell.

Generally, the interaction parameter vu> is of unknown range and is di-
rectionally dependent. Even if we assume that the bilinear formalism is ap-
plicable (in general this potential can be quite complicated and perhaps not
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even expressible as a sum of pairwise interactions), the complications of the
vw make structural transition theory more difficult than that of conventional
magnetic models.

For the case where hi — 0 and vu> is of translational invariance and
takes a simple nearest-neighbour-only form, one- and two-dimensional models
are exactly soluble, the latter being one of the rare many-body problems
which is both exactly soluble and exhibits a phase transition. Even in three
dimensions the use of high- and low- temperature series expansion techniques
has enabled the thermodynamic singularities near Tc to be quantitatively
explored with great precision.

When translational invariance is destroyed as a result of compositional
fluctuations in solid solutions, the interactions vw between cells as well as
the local field /?./ may have a random distribution. Therefore, the behaviours
of these systems become extremely complicated.

(d) Spin glass, orientational glass and random field

If the hi at an}' site are comparable to or larger than vw, then disorder
will prevail at any temperature, since every dipolar moment tends to align
with the local random field. When the hi are much smaller than vu>, we have
two typical models as follows

• orientational glass model : hi <C vu> and vu> distributed randomly;
both ferro- and antil'erro-type interactions are possible.

• random field model : /// C vw and the interaction vw is predomi-
nately of ferro- or antifeno-1 ype.

Although orientational glasses are not simply analogous to spin glasses, most
of the theoretical results of spin glass theory can be applied to orientational
glasses. Reference may be made to Hochli et al11 for experimental evidence
and to the review of Binder and Reger12 lor the theory of orientational glasses.
We can get a basic picture of polar glasses by examining the spin glass concept
here (see e.g. monograph of Fischer and Hertz13). The simplest definition
of spin glass is that it is a collection of spins whose low-temperature state is
frozen and disordered, rather than the uniform or periodic patterns we are
accustomed to finding in conventional magnets. The frozen disorder means
a state where the local spontaneous magnetisation m; = (Si) at a given site
/ is nonzero, though the average magnetisation M = N~lYLimli ^ w e u ^
any 'staggered' magnetisation MK — N~l J2i e~'Kr'rni, vanishes. It appears
that, in order to produce such a state, two ingredients are necessary : there
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must be competition among the different interactions between moments, in
the sense that no single configuration of the spins is uniquely favoured by all
the interactions (this is commonly called 'frustration'), and these interactions
must be at least partially random. These facts suggest that the spin glass
state is intrinsically different from conventional forms of order and requires
new formal concepts to describe it. Some useful concepts among others
are broken ergodicity, new definition of order parameters, many-time-scale
dynamics, etc.

Note that the polar glass model proposed by Viehland et al.13 for PMN
may have a different content to t he above glass model. The basic elements of
that model were the polar clusters rather than the unit cells. From the point
of view of statistical mechanics, their model was established on the rescaled
lattice of PMN by the linear size of the polar clusters. The source of the
randomness of the interactions among the polar clusters was not clarified in
the model.

The randomness of the interactions between cells in a random field model
is less than in a polar glass model, so the second case is closer to an ordi-
nary structural phase transition. According to the work of Imry and Ma14,
random fields may play a role to destroy the second-order phase transition
and stabilise the domain states on mesoscopic length scales. The basic idea
is that the energy gain of a reversed domain favoured by the direction of a
mesoscopic fluctuation of the random fields will compensate the energy loss
due to the interface between the reversed domain and its bulk surrounding.
This was the model that Klcenianii15 applied to PMN.

(e) Introduction to percolation theory

Few theoretical techniques are available for dealing with severely disor-
dered systems; percolation theory is one of the nicest of these techniques (see
e.g. Zallen16 or StaufFer1'). It provides a well-defined, transparent and intu-
itively satisfying model for spatially random processes, and can be applied to
a broad range of physical phenomena. Most interestingly percolation models
present sharp phase transitions at which long-range connectivity suddenly
appears.

Percolation theory deals with the interconnections of elements in a sys-
tem. There are two basic types of percolation processes: bond percolation
and site percolation. A ferromagnetic crystal which is diluted by random
substitution of non-magnetic for magnetic ions is a good example of site per-
colation. Let us look at the character of the system at 0A", when the dilution
1 — p is varied (p is the fraction of magnetic ions). At T — OK, the pairwise



coupling between two neighbouring magnetic atoms is certain, i.e., their spins
must be parallel, so that the undiluted pure system is a ferromagnet with all
spins parallel and all magnetic ions in the same cluster and contributing to
the macroscopic magnetization M. In other words, two neighboured spins
are always connected by a bond and surely belong to the same cluster. When
p decreases, with the addition of nonmagnetic ions, M also decreases. When
p falls below pc, the site-percolation threshold for the lattice, M vanishes.
All of the magnetic ions now occur in finite clusters. Although within each
cluster all spins are coupled, the separate clusters can independently reorient
so that the net magnetization cancels out on a macroscopic scale.

Thermal phase transitions in an Ising system can be viewed as bond
percolation. At zero temperature, the parallel alignment of adjacent spins
is mandated by the nearest-neighbour exchange coupling. When we "turn
on" the temperature to a finite value, the nonvanishing Boltzmann factor
exp(-JfkT) permits the occurrence of low energy configurations in which
a few spins are flipped. The complement of the Boltzmann factor 1 —
exp(—J/kT), which is a function of temperature T, plays the part of the
bond-probability p. Eventually, at very high temperature (kT <C J ) , ad-
jacent spins decouple completely as the Boltzmann factor approaches unity
and the exchange-induced bias in favour of parallel spins disappears. In be-
tween, at critical temperature Tc, which is of order J/k, the solid ceases to
be a ferromagnet.

While the connection between site percolation and variable-composition
magnet alloys is really quite dose, the analogy between bond-percolation and
the thermodynamic ferromagnetic/paramagnetic (F/P) transition is looser.
There are very strong correlations between spins in the F/P transition. A
non-correlated bond-percolation process can not exactly describe the be-
haviour of correlated spins. For example, while the interaction (or "bond-
probability") between two adjacent parallel spins is p = 1 — exp(-JfkT),
it should be zero for two anti-parallel spins. Thus the percolation prob-
lem in an Ising model should be both bond- and site-related. Some more
complicated correlated percolation models are needed for this purpose. The
Fortuin-Kasteleyn transformation18 maps a Potts model into a bond-site cor-
related percolation problem. It has been used to construct cluster algorithms
for Monte Carlo simulation of (lie Potts model and the Ising model. This
will be discussed in detail below.



3. A random field Pot ts model for relaxors

It has been shown that the local polarization (Pa ^ 0) in PMN exists
for temperatures far above the permittivity maximum Tm

19'20. There are
certainly more than two orientations for local polarization in any known
relaxor, so the Ising model is not a suitable description for these systems.
The most likely orientations of local polarization for PMN and PST can be 8
(111) directions, 12 (110) directions and 6 (100) directions of the cubic Pm3m
cell. For concreteness in the discussion, we simply assume here that the local
polarization takes the 8 (111) directions. Considering the experimental21'22

and theoretical23 evidence, this may be the actual case for PMN and PST.
However the results drawn in this section will not depend significantly on
this assumption.

In the light of the deep double-well limit (Sec.2(c)), we assume the po-
tential V(£i) has an eight-well form with each well located in one of the
(111) directions of the Pm3m cell. As indicated in Sec.2(c), the parameter
vui which describes the interaction between two unit cells may have a very
complicated form. As for PMN and PST nanoscale polar domains have been
observed in a large temperature range, so the interactions should be predom-
inantly ferroelectric, at least in short range. For simplicity we only take into
account the interactions between nearest neighbours and assume Vu> takes
the form of Potts model2'1:

vu,(ji<Ti> = -J8(<n,av) (7)

where
S((Ti,vt') = 1 if 07 = ai> , .

= 0 if ox±ov
 K)

Thus, we have
n=-JYl6(a,a') + Y2hlal (9)

w /
This is actually a random field Potts model.

When the state of Potts model is equal to 2, Potts model is equivalent
to the zero-field Ising model which has been solved exactly by Onsager25.
There are some other special cases where Potts model can be exactly solved.
But for systems with dimension higher than 2, there is no exact solution.
However, Monte Carlo simulations can give some interesting results for this
model.

Srolovitz and Scott26 have initially applied four-state (scalar) Potts mod-
els and four-state clock model (vector Potts models) on ferroelectrics. Their
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models are two-dimensional. The}' analysed the vertex topography for an-
tiphase boundaries (APBs) and showed that in barium sodium niobate the
vertices are all fourfold and thus are describable not by a four-state scalar
Potts model but by a clock model.

It is worthwhile to indicate that we do not intend to deal with the genuine
ferroelectric phase transition here. We ignore the ferroelectric and ferroelastic
distortions in our models. Hence our model will not give any displacive
characteristics of the systems. For PMN and PST-def2 that is not a problem,
because the low temperature phases remain cubic macroscopically.

Usually, random fields hi are set randomly site by site, i.e., there is no
correlation even between nearest neighbours. This is not a realistic represen-
tation of the relaxor systems. Instead the random fields should be determined
by the distribution of B-site cat ions in perovskite relaxors. In refs.3'4 we have
analysed the frozen structural states of PMN and PST. Here we propose a
simple model to set up the random fields at A-sites, starting from the distri-
bution of the B-site cations.

Fig 1 shows an A-site cation (Pb2+) surrounded by eight B-site cations
(Mg2+ and Nb5+). It experiences a local electric field due to the non-
symmetrical distribution of Mg2+ and Nb5+ ions on the eight corners of
the cubic unit cell. The electric field acting on Pb2+ can be determined by
vector summation of the components in four pairs of cubic diagonal direc-
tions. If the pair of cations at the cubic diagonal positions are the same, the
electric field in this direction will be zero. For simplicity the contribution
of the cations beyond next nearest neighbours is not considered here, which
should not influence significantly the overall characteristics of the distribu-
tion of random fields. This model can be formalized as below for computer
simulations.

The configuration of the B-site cations can be described by a matrix
B(i,j,k) where i, j and h arc the position index of lattice cells. B(i,j,k)
takes a value either f, for Nbr>+ , or —2, for Mg2+. Eight B-sites B(i,j,k),
B(i + l,j,k), (B(i,j + 1,A). •••, B(i + l , j + l,fc + 1) form a cubic cell.
The local electric field at the centre of the cubic cell (i.e. A-site) can be
determined by four components in (111) directions:

B(i + lJ + l,k + l) - B(iJ,k)

El, E2, E3 and £4 can have different values, 3 for Nb-Mg pairs, 0 for Nb-
Nb or Mg-Mg pairs and —'.] for Mg-Nb pairs. Here we are only concerned
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with the relative strength. Assuming the local electric field at the A-site is
E(i,j,k), we have its three components

{
Ev{i,j, k) = El + E2-E3-E4 (11)
E:(i,j, k) = El + £2 + £3 + E4

Again, they are relative strength. Eqs. (10) and (11) are not limited to PMN.
They can be applied to any complex perovskite-type structures, e.g. PST.

It is easy to understand that the local field on the boundary of Bl-rich
or B2-rich clusters should be very strong, whereas it should be relatively
weak inside the clusters. In PMN due to the existence of negatively charged
(Pb2MgNbO6)a~ clusters (1:1 ordering with doubled unit cell) and positively
charged (PbNbOa)1+ clusters' the strength of the electric field may fluctuate
from place to place. Let us consider the local electric fields experienced by
the lead cations. The electric fields in the centers of (Pb2MgNbOe)1~ clusters
or (PbNbOa)1"1" clusters will be very weak because the Pb2 + ions have local
environment with cubic symmetry. On the other hand, the electric fields on
the boundaries of the charged clusters may be expected to be much stronger.

Upon establishment of the relationship between the frozen distribution
of the B-site cations and random fields, we can now use the random field
Potts model to simulate the influence of the chemical domain texture on the
formation and dynamics of the polar domains.

4. Monte Carlo Simulations

In refs.2"4 we used a spin-exchange algorithm to simulate the ordering
process of a binary solid solution. To simulate a ferromagnetic or ferroelec-
tric phase transition, one needs to use spin-flip algorithms. Those commonly
used are the Metropolis single spin-flip algorithm. However, conventional
Metropolis algorithms face the difficulty of critical slowing down as the crit-
ical temperature is approached. Among many algorithms proposed to over-
come the critical slowing down problem, Swendsen-Wang and Wolff cluster
algorithms are widely used. In addition, one may expect that the cluster
concept used in the algorithms have some relationship with the so-called su-
perparaelectric polar clusters2'. Hence, we will use cluster algorithms in the
simulations.

(a) Algorithms and simulation procedures

(i) Swendsen-Wang Cluster algorithms
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Swendsen and Wang28 apply the Fortuin-Kasteleyn (FK) transformation18

directly to the spin configurations, to construct a new Monte Carlo algorithm.
The FK transformation consists of replacing each interaction between the
spins on two sites by either a "bond" (requiring the spins on these two sites
to be identical) with a probability p — 1 — exp(—J/kT), or "no-bond" with
a probability 1 — p. This transformation is performed on all interactions
leaving only configurations of bonds forming clusters. All spins on a given
cluster must have the same value, but the value is independent of the spins
on any other cluster. This problem, with both spins and bonds present, is
known as "site-bond percolation".

The probability distribution of configurations in a Potts model can be
written as

i 2 , - 1 ) , (12)

where K{= JjksT) is the coupling strength; <r,- = 1,2, ••• ,q; the sum runs
over nearest neighbour pairs; Z is the partition function. A SW Monte Carlo
move consists of two steps: the first step transforms a Potts configuration to
a bond configuration; the second transforms back from bond to a new Potts
configuration.

• step 1: Create a bond, ntl = 1, between neighbours site i and j stochas-
tically with a probability /> = 1 — e~h, if ai = crj. No bond will be
present otherwise, the bond variable sets to n,j = 0.

• step 2: Identify clusters as sets of sites connected by bonds, or isolated
sites. Two sites are said to be in the same cluster if there is a connected
path of bonds joining them. Each cluster is assigned a new Potts value
chosen with equal probability among 1 to q. The Potts variable a' now
takes the value of the cluster it belongs to. By erasing the bonds, we
are left with a new Potts configuration. The new configuration can
differ substantially from the original one, since large clusters can be
changed in a single step.

The algorithm is highly ergodic, since every state can be reached from
any other state in one move with a non-zero probability. The steps 1 and 2
leave the probability distribution Kq. (10) invariant.

(ii) Wolff cluster algorithm

The SW algorithm has been modified and generalized by Wolff29 in the
form of a single-cluster method. The essential idea is to choose randomly
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a site i and consider only the cluster around that site. The neighbours
of the chosen center site are included as a member of the cluster with the
same probability as that in SW. This process continues until no more new
sites are generated, i.e., the perimeter of the cluster is reached. The Wolff
single-cluster algorithm is more efficient than the SW algorithm in higher
dimensions.

(iii) Algorithm for random field Potts model

To apply cluster algorithms to the random field Potts model one has to
find a scheme to take into account the random fields. Dotsenko, Selke and
Talapov30 have proposed a method for a random Ising model. Independently
of30, we generalized their method for our random field Potts model. One
may construct clusters the same way as in SW or Wolff algorithm and flip
the cluster according a probability determined by the local random fields:

exp(hc • crJkT) .
Vc - ^ T; rpp: , (13;

where

K = £ h,, (14)
tec

C denotes the cluster, h, is the random field at site i, aq takes all the Potts
orientations and ac is the orientation of the cluster.

Simulations can start with the setting-up of the random fields from the
B-site cations. The atomistic models obtained by use of NNNI and eNNNI
models3'4 are first used to set. up the distribution of the B-site cations. Then
the random fields on the A-sites are calculated according to the method we
proposed above. After that we ignore the existence of the B-site cations
and oxygens and are only concerned with the random fields and the dipole
moments on A-sites. Finally the Potts values for each A-site are initialized
and the standard Monte Carlo procedures are followed to conduct the sim-
ulations. The Potts values can be initialized either randomly to simulate
the cooling processes, or with a single polar domain to simulate the heating
processes after a field-cooling process.

4. Simulation results

(a) Calculation of the local electric fields

As a first step the simulations are performed on a 2D square lattice up to
size 100 x 100. Fig. 2 shows the lattice occupied by A-site dipolar moments

14



and B-site cations Bl and B2, which is similar to the structure of PMN in 3D.
The ratio of the B-site cations Bl and B2 is 1:2. The charges of Bl and B2 are
set to be —2 and 1 respectively. A-sites are occupied by dipolar moments with
4 possible orientations in the diagonal directions. These dipolar moments
represent the shift of Pb+ 2 relative to the 0~2 and B-site cations in PMN.

Figs. 3 show two kinds of B-site cation distributions with 1:2 ratio of
Bl and B2 and the calculated x and y components of local electric fields at
the A-sites (Eix and Eiy). The 1:2 ratio of Bl and B2 is similar to that of
PMN in 3D. Fig. 3 (a) is a completely random distribution while (b) and
(c) are the corresponding Eix and Eiy distributions respectively. Fig. 3 (d)
is a configuration obtained from the Monte Carlo simulation of the extended
NNNI model (see ref/1) and (e) and (f) are the E{x and Eiy distributions
respectively. In Fig. 3 (a) and (d) Bl and B2 ions are shown by black and
white squares respectively. One can easily see in (d) the 1:1 ordering clusters
of Bl and B2 (chess board patterns) and the B2-clusters (white regions),
which is the typical case for PMN in 3D. The average linear size of these
clusters is about 15 x 15 unit cells. In Fig. 3 (b), (c), (e) and (f) black (solid
squares) represents positive direction, white means zero and grey (crosses)
means negative. These local electric fields are calculated with the method
proposed in Sec. 3(b). It is shown that the local field distribution (b and c)
due to a complete random H-site distribution (a) is also random, virtually
site by site. However, if B-site 1:1 ordering occurs the local field distribution
generated by the B-site distribution (d) is not random site by site; the local
field inside a 1:1 ordering cluster or a B2-cluster is close to zero and the the
local field on the boundary of these two clusters is very strong. Hence, the
local fields are correlated in direction and strength, with a correlation length
similar to that of the size of 1:1 ordering clusters.

Figs. 4 simulate two cases in PST where the B-site ratio is set to be
1:1. Fig. 4 (a) is a configuration with average size of 1:1 ordering cluster
15, which is chosen to simulate the typical PST-d specimen3, (b) and (c) are
respectively the local electric field distributions E\x and E\y corresponding to
(a). The scale of the chemical domains in Fig. 4 (a) is similar to that in Fig. 3
(d), but the distributions of their local electric fields are somewhat different.
In Figs. 3 (e) and (f) one can easily find regions where strong electric field
in positive or negative dominate, but in Figs. 4 (b) and (e) the sites with
strong positive local field are always compensated by the neighboured sites
with strong negative local field. The reason for that is that the 1:1 ordering
chemical domains in Fig. 3 (d) are charged whereas those in Fig. 4 (a) are
neutral. This may underline the different behaviours of PMN and PST-d.
Fig. 4 (d) is a configuration with significant long scale anti-phase boundaries,
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(e) and (f) are the E^. and Eiy due to B-site cation distribution (d). It is
shown clearly that the local electric fields are concentrated on the anti-phase
boundaries.

(b) Evolution of polar domain textures

Now we come to the simulation of the Potts model. For convenience of
description, we can rewrite Eq. (9) as

H = -J1£i6(<T,*) + k1Ell*l. (15)
ir /

If <J; and 7; are taken to be dimensionless, then both J and h have units
of energy, where J describes the strength of the interaction between two
moments and h corresponds to the strength of the random fields.

Fig. 5 shows the polarization P as a function of the reduced temperature
kT/J for a pure two-dimensional 1-st ate Potts model (h = 0). A sharp phase
transition occurs at kl'/J ~ 0.9. A single domain forms rapidly when the
temperature is decreased below this point.

When h > 0 a random field stabilized domain state will appear. In this
case the global polarization P is no longer a good parameter to describe the
behaviour of the system. Theoretically the global polarization will stay zero
for the domain state because all the possible variants of domains have same
probability. So the a.verage size of the polar cluster is chosen as a parameter
for the nanodomain state. Fig 6 shows the average size s of the polar clusters
as a function of the reduced temperature kT/J, where h/J is taken to be 0,
0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and 1.0 respectively. The local electric distribution
(Figs. 3 (e,f)) calculated from a H-site cation distribution (Fig. 3 (d)) is used
for 7; in Eq. (15). For the given distribution of the random fields 71 the
strength h determines the final size of the frozen domains. When h = 0
the average size should diverge at a certain temperature, for a system with
infinite size, but it saturates at 10000 in a system with size 100 x 100. Hence
the results for small h (say, h < 0.5) is strongly influenced by the finite size
effect, where the final frozen domain size becomes comparable to the system
size; the average size s may be subject to significant fluctuations from sample
to sample. Fortunately the case we are interested in here is where the size of
the frozen polar domains is comparable to that of the chemical domains. In
this case, the size of the frozen domains is much smaller than 10000.

Fig. 7 is the enlarged figure for the case of h/J — 1 in Fig. 6. The
frozen polar domain size at low temperature is about 15 x 15 unit cells in 2D
which corresponds closely to the size of the chemical domains. Fig. 8(a-f)
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are snap-shots of the polar moment configurations in the simulation process
when h/J = 1. They show the evolution of the polar domain textures when
the temperature is decreased : (a.) is the initial random configuration, the
dipolar moments are totally decoupled; (b) kT/J = 1.0, the average size
5 = 8; (c) kT/J = 0.8, * = 25; (d) kT/J = 0.6, s = 97; (e) kT/J = 0.3,
s = 205; (f) k,TIJ = 0.2, .s = 206. The coupling of dipolar moments starts
at kT/J ~ 1.0. It becomes significant in the temperature range kT/J = 0.7
- 0.9; note that the average size increases rapidly. When kT/J < 0.4, the
system is frozen into a domain state, the domain textures virtually remain
unchanged.

(c) Relationship between chemical domains and polar domains

Fig. 9 shows a comparison between the chemical domain texture and
different polar configurations of the frozen polar state at kT/J = 0.3 for
different values of h/J (refer to Fig. 6) : (a) is the B-site cation distribution
used for calculation of the local electric field on A-site (see Fig. 3 (d)-(f));
(b) h/J = 5; (c) h/J = 2; (d) h/J = 1; (e) h/J = 0.8; (f) h/J = 0.6.
When h > 2 the polar configuration is controlled predominately by the local
field; one can find the correspondences between chemical domain textures and
polar domain textures (Fig. 9 (b) and (c)). Increasing h/J will not change
the polar configuration. The boundaries of chemical domains act as nuclei of
the polar domains. When /;././ is decreased the average size of frozen polar
domains at low temperature increases and the relationship between chemical
domain textures and polar domain textures becomes less obvious. One can
only find the correspondence in some regions(Fig. 9 (d) and (e)). This may
be the case for PMN in :5D. When h/J < 0.6 the average size of the frozen
polar domains becomes much larger than that of chemical domains and direct
correspondence between the chemical domains and polar domains disappears
(Fig. 8(f)). This may correspond to the case for PST-d in 3D.

5. Discussion

(a) Dynamics of the clusters

One may relate the cluster flipping in cluster algorithms to the "super-
paraelectric polar nanodomains'1 in relaxor systems and give to them some
microscopic explanations. The cluster used here is basically a statistical con-
cept, it reflects the interaction of the dipole moments. Each cluster is totally
independent of others due to the special way of identifying the clusters. The
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cluster size is temperature and time dependent; the atoms within the cluster
move together in the lifetimes of the cluster. We can refer to these clusters as
dynamical. Due to the elTect of the "correlated random field", some clusters
may have very long lifetimes and also very compact geometry so that they
can be regarded as polar nanodomains. These nanodomains have very slow
dynamics because they tend to align their polarizations with the local field,
so they can be classified as frozen. More complete discussions about the
dynamical and frozen polar domains are given in the accompanying paper5,
where we go on to predict, the frequency dependence of the dielectric response
of PMN and PST.

In general, the "time" associated with the Monte Carlo steps is not related
to the physical time by which a real system evolves. The Markov chain
generated by the Metropolis method or SW algorithm just represents an
ensemble of the system in thermodynamic equilibrium. However, in some
cases, the connection between the Monte Carlo time and the physical time
is certain. In the case of the NNNI model, we have connected the Markov
chain generated by the Metropolis method to the actual time evolution of
the diffusion of atoms in the lattice.

In the SW or Wolff algorithms the probability for a cluster to flip to the
other orientations is always 1/7/ and independent of the size of the cluster.
In a realistic dynamical system, there exist energy barriers between any two
orientations of the clusters. These energy barriers should be proportional to
the size of the clusters. A flipping cluster must gain energy from the thermal
bath to overcome the energy barrier. The larger clusters need to wait for
longer time to have a chance to flip. Hence, the SW and Wolff cluster algo-
rithms are not suitable to investigate the dynamical properties of the system.
To make the cluster algorithm more realistic, one can introduce a parameter
0 so that the flipping probability of a cluster is exp(—0sJ/kt). The algorithm
remains ergodic and the probability distribution remains invariant if 6 takes a
finite value. One can easily recognise that OJ represents the depth of wells in
our deep wells model. It did not appear explicitly in the model Hamiltonian
Eq. (9), because it does not influence the thermal equilibrium distribution
as long as it is finite. However, it does influence the dynamical properties
of a system. The introduction of 0 will allow the stochastic dynamics of the
algorithm to be closer to the realistic dynamical process but less efficient in
studying the equilibrium characteristics. In the Metropolis algorithm, 6 will
be absorbed by the constant factor T which can be chosen arbitrarily. Re-
cently an efficient method for slow dynamical system has been proposed31,
it may also be a good algorithm for the random field Potts model.
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(b) Directions for further work

The simulation results on 2D lattices have shown that the microscopic
model proposed in this chapter has promising potential for the study of the
relaxor system. We are at present using the results of the present simulations
to calculate the bright- and dark-field HRTEM images of very thin specimens
of PMN and PST, where the 2D approximation should be valid. Thus we
expect to be able to develop electron optical techniques which will allow
both the chemical na.nodoma.in textures as well as the polar nanodomain
textures to be extracted from the FIR.TEM by further development of our
image processing methods {c.f. re I'.32.

In the scheme of the Potts model and Monte Carlo simulation methods
presented above, a more realistic simulation for relaxor PMN and PST may
be conducted for 3D. This study should lead to a good understanding of the
relationship between chemical domain textures and polar domain textures. In
principle, all the zero-field and non zero-field cooling and/or heating processes
can be simulated. One may also be able to extract domain size distribution
functions n(s), directly from the simulations. (At present these are assumed
to be Gaussian, without, any proof, in ref.5. Ideally, the simulations should
be conducted on a system with reasonably large size L x L x L, say L =
200. However, these simulations will consume extremely long CPU times
even on a very high performance computer, due to the slow dynamics of the
metastable domain states33. The simulations described above for 2D lattices
were conducted on four IBM RISC 6000 workstations. One may need to use
a supercomputer or find some more efficient algorithms to do the simulations
for 3D.
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Figure Captions

Figure 1.
Diagram illustrating a Pb2 + ion in the center experiences a local electrical
field due to the non-symmetrical distribution of Mg2+ and Nb5+ on the eight
corners of cubic unit cell.
Figure 2.
Diagram illustrating the 2D lattice used in the random field Potts model
simulations, which is similar to the structure of PMN in 3D.
Figure 3.
Two kinds of B-site cation distribution with 1:2 ratio of Bl and B2 ((a) and
(d)) and the calculated x ((b) and (e)) and y ((c) and (f)) components of
local electric fields. See text for details.
Figure 4.
Two kinds of B-site cation distribution with 1:1 ratio of Bl and B2 ((a) and
(d)) and the calculated x ((b) and (e)) and y ((c) and (f)) components of
local electric fields. See text, lor details.
Figure 5.
The polarization P as a function oi the temperature kT/J for pure Potts
model. A sharp ferroelectric phase transition occurs at kT/J ~ 0.9.
Figure 6.
The average size s of the polar clusters as a function of the temperature
kT/J, where h/J is taken to be 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and 1.0 respec-
tively.
Figure 7.
Enlarged figure for the case of h/J — 1 in Fig. 5. The average size of the
frozen polar domains in low temperature is similar to that of the chemical
domains.
Figure 8.
The snap-shots of polar moment configurations in the simulation process
when h/J = 1, which show the evolution of the polar domain textures when
the temperature is decreased.
Figure 9.
Comparison between chemical domain texture and different polar configura-
tions in frozen polar state at kT/J — 0.3 for different value of h/J.
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Figure 0.1: Diagram illustrating a Pb2 + ion in the center experiences a local elec-

trical field due to the non-symmetrical distribution of Mg2+ and Nb5+ on the eight

corners of cubic unit cell.
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Figure 0.2: Diagram illustating the 2D lattice used in the random field Potts model

simulations, which is similar to the structure of PMN in 3D.
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Figure 0>3: Two kinds of 8-^He cation distribution with 1:2 ratio of Bl %&d B2

((a) and (d)) and the calculated x ((b) arjd (e)) and y ((c) a»d (f)) components of

local elftcric fieids. See text for details.
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ecri^ fields, See text for details.



1

0.9

0,8

0,7

0.6

as

0,3

0,2

0.1

0.2 0.3 0.4 0.5 0,6 0.7 0.8 0,9 1 1.1 1.2

Figure 0,1k The polarisation P as a function of the temperature kT/J for pure
Potts model. A sharp ferroelectric phase transition occurs hi kT/J ~ 0,9,

10000 ^»»«w '̂>w*«**wt«

sooo
7000

SOO0 p 0 0 6 8 3 0 8 0 " 0 1

4000 '
& &. A A A. & A * A. A. A

3000

1000

% . •

* * X

hAJ * 0 <>
0.2 *
0,3 «
0.4 *
0.5 -
0.$ *
0.8 *

0.2 0.3 0,4 0.S 0-6 0.7 0.8 0,9 1 1.1 12

Figure 0.6: The average ssxe s of the polar ciusiers as a function of the teruperaiure
kT/J, where h/J is taken to be 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and 1.0 respectively.



250

200

0,2 0.3 0,4 0.5 0.S 0.7 0,8 0-9 1,1 1.2

Figure 0.7: Enlarged figure for the case of /;/,/ ~~ I m Fig. 4.5, The average siz

of the frosen polar don>ains In low temperature is? similar to that of the chemica

clornairis.

27



Figure 0.8: The snap-shots of polar moment configurations in the «rrm!&iion pro-

cess when h/J — L which show the evolution of the polar domain textures when

the temper&iare is decreased.



Figure 0.0: Comparison between chemical domain texture, and different, polar con-

figurations in the frozen polar *i...ue at- kTjJ ~ 0.3 for <liifer«nt valuer of hiJ.


