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Abstract
The influence of the random field effects originating from charged chem-

ical defects and nano-domain textures on the formation and dynamics of
polar clusters is analyzed. The spatial distribution of the local fields is not
totally random but contains some correlations in direction and strength. Po-
lar clusters are classified to be dynamic or frozen according to their dynamic
characteristics in the random fields. The relaxation formula of a dipolar
moment in an anisotropic double-well potential is deduced. Two percola-
tion models are introduced, one to account for frustration effects associated
with multiple orientations of polar clusters, which results in a broad diffuse
dielectric response and the second to account for the case whereby there
may be a phase transition to a ferroelectric state. The dielectric permit-
tivity and dissipation factor of the typical relaxors lead magnesium niobate
and lead scandium tantalate are predicted as a function of both temperature
and frequency, which results are in good agreement with the experimental
measurements.

1. Introduction

Relaxor ferroelectrics exhibit the following typical characteristics1'2: a
significant frequency-dependence of the peak permittivity; a ferroelectric re-
sponse under high electric fields at lower temperature; but no macroscopic
spontaneous polarization and anisotropy in the zero-field-cooled state. We



take PbMgi/sNb2/3 (PMN) as an example in our discussion, because it is the
archetype relaxor. It has been shown that PMN has a compositionally disor-
dered structure characterised by nanometer scale 1:1 ordering of Mg2+ and
Nbs+ on the B-sites of the perovskite structure ABO33'4. Presumably this
charge distribution generates local electric fields with more or less random
direction and dispersive strength. Cross1'2 suggested that this nano-meter
scale chemical structure will limit the size of polar moments so that their
orientations may be thermally agitated and hence exhibit super-paraelectric
characteristics. Viehland et. al. 5~9 proposed that a polar glass state will de-
velop among the clusters and used the Vogel-Fulcher relationship successfully
in explaining the experimental results on the dielectric relaxation. Westphal
and Kleemann10'11 proposed that it is the random-fields due to the disordered
distribution of the B-site cations that stabilize the nano-domain state rather
than the development of a polar glassy state.

Recently the present authors12"14 have studied the chemical nano-domain
structures and textures of Pb(Sc1/2Tai/2)O3 (PST) and PMN with high reso-
lution TEM and computer simulations. Atomic models for the distribution of
B-site cations were proposed, based upon the results of extended Next Near-
est Neighbour Ising model simulations. These models were used to analyse
high-resolution transmission electron microscopy (HRTEM) observations of
the chemical domain strucxtures of PST and PMN12"13, thus providing re-
alistic atomic models for these complex disordered systems for the first time
since their discovery by Smolenskii and Isupov15. Based on these models we
may also obtain some detailed information on the statistical distribution of
the domain size for different methods of specimen preparation.

In this paper, we develop a phenomenological theory of the dielectric re-
sponse of PMN and PST, based on a new understanding of the role of charged
chemical defects and the existence of more or less random dipolar fields as-
sociated with these inhomogeneities. In Sec. 2 the influence of the random
fields, originated from charged chemical nano-domains, on the formation and
dynamics of polar clusters is further analyzed. Two kinds of polar clusters
are assumed. The scaling behaviours of these clusters and their relation to
the the frozen chemical nano-domain texture and structures are discussed.
Two kinds of competing percolations are proposed. One corresponds to the
formation of a nanodomain state, the second leads to a ferroelectric phase
transition.

In Sec. 3 relaxational behaviour of a polar moment in an anisotropic
double-well potential is analyzed. This analysis is aimed at understanding
the influence of random fields on the relaxation of the polar clusters. The
polar moment can be either a polarized unit cell or a polar cluster. A gen-



eral expression for the relaxation of a polar moment in a biassed local field
and formulae for the calculation of dielectric response of relaxors are then
deduced.

In Sec. 4 the dielectric response of PST and PMN is calculated as a func-
tion of temperature and frequency and compared with experimental results,
under some assumptions about the size distribution of the polar clusters and
the relaxation time.

2. Random fields and polar clusters

Our analysis16'17 of the relationship between the chemical defect struc-
tures and the resulting electric field distributions showed very clearly that
the spatial distribution of the local (random) fields is not totally random
but contains some correlations in direction and strength. Thus Figs. l(a,d)
show e.g. two B-site cation distributions for a 1:1 ratio of Bl and B2. Cal-
culated x- and y-components of the local electric fields are shown as Figs.l
(b,e) and (c,f) respectively, based on a Potts model simulation of the po-
lar domain structures. The predominant chemical defects are domain walls,
there are also a lower density of "point" and "line defects" within the chem-
ical domains12"14. Thus the local electric fields tend to be much stronger
at the chemical domain walls than is the case inside the domains. The lo-
cal biassed electric field at such boundaries would be expected to strongly
influence the formation and dynamics of polar clusters. We may consider
these boundaries as extended defects with finite dimensions. We will refer
to them here simply as defect-centers. The defect-centers in PMN should
have a diameter approximately equal to the correlation length £c/iem f°r 1;1
ordering of Mg2+ and Nb5+. Similarly, for the case of PST, the sizes have
diameter approximately equal to the correlation length (chem f°r 1:1 order-
ing of Sc3+ and Ta5+. The reader is referred to refs.12"14 for details of the
chemical domain structures and to ref.15'16 for details of the simulations of
the spatial relationships between the chemical and polar domain textures in
PMN.

(a) Dynamical and frozen clusters

Now we examine the influence of these correlated local fields on the for-
mation and dynamics of the polar clusters and nanodomains. It has been
shown that the local polarization (P? ^ 0) exists for temperatures far above
the temperature of the permittivity maximum Tm

18'19. It has also been shown
that the global symmetry of the low temperature phase of PMN remains cu-



bic even when the temperature was decreased down to 5K20 which means no
condensation of soft modes or long range lattice distortions and/or cation dis-
placements occur for PMN. Hence, it is appropriate to describe the dielectric
behaviour with an ensemble of interactive dipolar moments. Locally polar
regions occur at low temperature (5K); these appear to have rhombohedral
structure. One may assume that the dipolar moments take orientations along
the eight (111) directions of the cubic Pm3m cell.

At high temperature (T ^> Tm), these dipolar moments are completely
decoupled. As the temperature is decreased, some correlation among the
dipolar moments will develop, i.e. polar clusters will form. Due to the
presence of the compositionally induced local fields, the behaviours of the
polar clusters will differ from point to point. A polar cluster controlled by a
defect-center (chemical domain wall) will have a strong tendency to have po-
larization lined up along the direction of the local electric field. In the other
regions the local polar clusters may experience almost zero bias field, hence
they can continue flipping, virtually unhindered, exhibiting superparaelec-
tric characteristics. Thus, we may distinguish essentially two kind of polar
clusters at a given temperature, according to their dynamical characteristics.
One type is essentially static, or at least relatively very low frequency, say
1-100 Hz, determined by the strength of the local field. We refer to these as
frozen polar domains (FPD). Note that the existence of FPDs requires large
random fields. The size of the FPDs is also determined by the correlation in
direction of the random fields.

The second type of defect center is essentially dynamical, fluctuating over
symmetrically and/or energetically equivalent polarization domain states.
We refer to the latter as dynamical polar domains (DPD). In general, through-
out some finite temperature range we may expect that there will be a mixture
of FPDs and DPDs. Of course the proportions of FPDs and DPDs should
vary systematically with temperature.

Assuming the polar correlation length at temperature T is ^P(T) unit
cells, then the number of unit cells involved in a dynamical polar cluster
with average size is

s«v(T) = <g(T). (1)

An alternative expression for the average size of the frozen polar clusters may
be derived as follows. Assume defect-centers act as nuclei for the formation
of frozen clusters. At higher temperature, iP{T) is much smaller than ^eTO ,
hence the average size of the frozen polar clusters can be written as

»f{T) = CkemUT) • (2)

As the temperature is decreased, while £c/iem remains constant, £P(T) will



increase. The volume fraction of FPDs cj(T) will increase, and the space
for dynamical polar clusters will decrease. If we assume the density of the
defect-centers CQ is a constant independent of temperature, then c/(T) can
be expressed as

(3)

(b) Two kinds of competing percolation processes

At a certain temperature Tj, the polar correlation length will become
comparable to the chemical correlation length, i.e.,

If at this temperature T\ the fraction of FPDs c/(3\) is equal to or exceeds the
percolation threshold at which the frozen polar clusters contact each other,
forming a "percolation" cluster, a frustration will happen among the FPDs
oriented along eight different (111) directions. Note that we assume eight
(111) directions are activated for concreteness; in fact both the number and
direction of local polar domains may be temperature dependent. Actually
the analysis here and the results obtained so far are not dependent on this
assumption. When this frustration occurs, the space for the dynamical polar
domains is limited so that the polar correlation length (P{T) will stabilize
at £chem and a ferroelectric phase transition will never happen in a zero-field
process. The system will finally freeze to a so-called random field stabilized
domain state (Kleemann11). This may be just the case for PMN; T\ cor-
responds to the frezinsg temperature (T/)7'8. This type of percolation may
not be detected in dielectric response measurements, because FPDs give no
dispersive contribution to the dielectric response.

If the volume fraction of the FPDs cj(T) is still very small at temperature
Ti, the polar correlations can develop further. The DPDs will compete with
FPDs for space. Finally, the polar interaction may win the competition by
forming a percolated polar cluster at a temperature Tc. Thus percolation oc-
curs when all the DPDs plus 1/8 of the FPDs reach a percolation threshold.
All the DPDs in the percolated cluster may then achieve the same polariza-
tion orientation as that of one set of FPDs. This percolation may actually be
able to initiate the ferroelectric phase transition in the sense that macroscopic
polar or ferroelectric domains form. The polar interaction may gain energy
by forming larger compact polar domains and finally overcome the influence
of the local random fields. Such large percolated clusters will then freeze out
at the percolation threshold. Thus the dielectric response will have a sharp



drop at that point. This may be the case for disordered Pb(Sc1//2Ta1/2)O321'22

and Pb(Sc1/2Nb1/2)C)3 which undergo spontaneous transformations from re-
laxor to ferroelectric states22'23.

3. Relaxation of a polar moment in an anisotropic double-well

To predict a macroscopic property of a complex system, it is always de-
sirable to simplify the many-body problem into a single-body problem in the
style of Landau theory or mean field theory. As indicated in previous chap-
ters, relaxors exhibit "super-paraelectric" characteristics which underlie the
extremely high dielectric permittivity of relaxors. It is natural to choose these
polar nanodomains as basic elements to calculate the macroscopic properties.
However, the polar nanodomains are not really independent, interaction must
occur among them when the temperature is decreased. Then we still have a
many-body problem with these interacting nanodomains. Cluster concepts,
which we adopted in refs.16'17, avoid the interaction problem. Theee are de-
fined within a bond-site correlated percolation problem. Due to the special
way used to identify the clusters, each cluster has no interaction with the
others. These clusters may have fractal geometry rather than the compact
form of polar nanodomains. We can treat each cluster as a single polar mo-
ment completely decoupled from the remaining clusters of the system and
calculate its contribution to the macroscopic property and then add them
together to get the macroscopic property of the whole system.

To begin to understand the influence of random fields on the relaxation
of the polar clusters, we first examine a simple case of a moment p in an
anisotropic double-well potential (see Fig. 2). A weak electric field E is
applied.

Suppose that the probabilities for the moment to be oriented in the two
orientations are fa and fa respectively at a given time and that the proba-
bility of a moment flip from orientation 1 to orientation 2 in time St is
while the probability of the reverse process is w2i6t. Then

f dfa/dt = -wl24>i + w2ifa
| dfa/dt =

In equilibrium d<f>i/dt = dfa/dt — 0; therefore we must have

<j>i/fa — w2i/wi2.

However, in equilibrium fa and fa must satisfy the Boltzmann distribution,
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so

{ <j>2 = Aexp(-F2/kT)exp(~pE/kT)

where A is a constant and k is the Boltzmann constant. Hence, we can take

1 Wi2 =

\ w21 = (l/2ro)exp(F2/kT)exp(pE/kT)

If pE/kT < 1, Eqs. (4) become

f dfa/dt = -
\ dfa/dt -

where we have taken

n =roexp(Fi/kT) and r2 = r0exp{F2/kT) , (6)

where T0 is a characteristic time of the thermal agitation related to the Debye
frequency. Ti and T% are the two characteristic relaxational times of the
anisotropic double wells The 'net' probability for a moment to be oriented
up (orientation 1) is (p = <f>\ — <j>2. Noting that <j)\ + fa = 1, from Eqs. (5) we
have

dip Ti —To T\ + T2 pE Ti + T2 Ti — T2

_JL = -1 i 1 ±L j— i (n '
dt 2T\T2 2T\T2 kT 2TJT2 2TXT2

If E varies with time as Eoexp(iuji) and assuming the above equation has
solution

if ~ ^ cn exp(inujt)
n

we obtain

- T 2

c0 =
+ T 2 '

(pEo\

Neglecting the n > 1 terms of exp(mu;£), we have the solution

n~r2 pE 1
Ti + r2 "*" kT (n + r2)2/4riT2 + »w(ri + r2)/2 k ;

When Ti = T2, this becomes the familiar Debye relaxation form

pE 1
tp = kT 1 + iur
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If the origin of the anisotropy is coming from the local random field Ej,
we can write Fi = Fo + Fa and F2 = FQ — Fa, where

Fa = p • E , , (9)

and FQ is the well depth. If p represents the dipolar moment of a polar
cluster, FQ should be proportional to the cluster size s. Thus, we write

Fo = sg0 , (10)

where g0 is the energy barrier between two adjacent orientations of the local
polarization of a unit cell. Substituting Eqs. (6) into Eq. (7), we find that (p
takes the form

cosh~2(Fa/kT)
c o s h { F a / k T ) •

This is the general expression for the relaxation of a dipolar moment in an
anisotropic double-well potential.

If the dielectric behaviour of a system can be described by a large number
of independent polar clusters with dipolar moments pi (i = 1,2,3,..., Np), the
polarization of the system is then

where N is the total number of unit cells in the system and VQ is the volume
of the unit cell. The complex permittivity can be written

X(l» = 2>, (12)
i

where \i is the contribution of the moment p8- to the total permittivity of the
system; thus

( S \ cosh-'jF/kT)
Xt \NeovokTJ l + iuT0exp(F0/kT)/cosh(Fa/kT) '

where e0 is the vacuum dielectric constant. If Fa/kT < 1, we have

)
NeovokTJ l + vvTOexp(F0/kT)'



Here we refer to the dynamical polar clusters or DPDs. This kind of polar
cluster or domain will give the most significant contribution to the dielectric
response. If Fa/kT >> 1, then \i ~ 0? which means the moment is almost
fixed by the local bias field and this case gives little contribution to the per-
mittivity. The relaxational time T\ is much larger than r2; T\ is the dominant
characteristic relaxation time. This corresponds to the frozen polar clusters
or FPDs.

In relaxor PMN or PST, there exist eight possible orientations under the
assumption of rhombohedral symmetry. The result for x% is similar to that
of a double-well potential. In the case Ej ~ 0, and assuming the flipping
only occurs between two adjacent orientations, we have

This differs from Eq. (5.14) by just a factor 1/3. Further details of the
derivation are given in the Appendix.

4. Calculation of Dielectric Permittivity

In this section we use the model and formulae developed in the above
two sections to calculate the permittivity of PMN and PST. The dispersive
and relaxational behaviours of the dielectric permittivity of PMN and PST
can be attributed to the size dispersion and relaxation of the dynamic polar
clusters. The average size $av(T) of the clusters is temperature dependent.
The interactions among the polarised unit cells have already been taken into
account in sav{T). Hence we may treat the polar clusters as independent of
each other.

(a) Cluster Size and Correlation Length

The average size sav(T) of dynamical clusters can be expressed in term
of polar fluctuation correlations (Eq. (1)). For a genuine ferroelectric phase
transition, the polar correlation length will diverge as Tc is approached. It
usually takes the form

£P(T) ~(T- Tc)-" (16)

The situation in relaxors is different. For example, the correlation length
in PMN becomes nearly temperature independent as the temperature is
decreased24'25. The simulation results in ref.16'17 also show this tendency
in systems with correlated random fields. It will be helpful if we have an
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analytical expression for the correlation length as a function of temperature.
Fig. 3 shows the neutron diffraction results for PMN and the fitting curve
using

M ^ L ^ M [ + tanh[0(i _ T/TO)]} . (17)

The fitting parameters are: low temperature correlation length £p(0) = 21.1
nm, high temperature correlation length £p(oo) = 3.8 nm, To = 300 K, and
0 = 3. To is the temperature at which significant correlation of the local
polar moments starts to develop. Between temperature TQ and the freezing
temperature T/6, PMN exhibits typical relaxational behaviour.

Disordered PST and PSN exhibit a so-called spontaneous relaxor to fer-
roelectric phase transition. They first show typical relaxor behaviour when
temperature is decreased, but a spontaneous polarization appears at tem-
perature Tc. Hence the correlation length for disordered PST and PSN may
take the form of a combination of Eq. (16) and Eq. (17), i.e. the correlation
length takes the form of Eq. (16) when T > Ti, and it takes the form of
Eq. (17) when T < Ti.

(b) Static permittivity of PMN

First we consider the static permittivity, i.e. take u> = 0 in Eq. (13).
Then we have

= __A 1 {v*\
Xl NeovokT cosh2(Fa/kT) ' K }

Note that the factor 1/ cosh2(Fa/kT) will decrease sharply when FajkT in-
creases; it equals 0.42 when Fa/kT = 1 and it becomes 0.07 when FajkT — 2.
Hence, we use the simple model discussed in Sec. 2(a) and just distinguish
two kinds of clusters, dynamic and frozen, according to the value of Fa.
For example, if Fa/kT > 1 the cluster is classified as FPD and Xi — 0j if
Fa/kT < 1 the cluster is DPD and Xi = p2/(Ne0v0kT).

Eq. (3) gives the volume fraction of FPDs, Cf(T), at temperature T.
Let Cjo = Co^chemi then C/(T) — CfO£p(T). The number of dynamical polar
clusters with size sav(T) in the system is then (1 — c^p(T))Njsav(T). For
a polar cluster with size sav(T), the dipolar moment is p — sav(T)po, where
po is the dipolar moment of the local polarization of a unit cell. Thus, the
static permittivity of the system can be written

Xs(T) = A0V—
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where

A - Pl

We have added a 1/3 factor in AQ because Eq. (15) is preferable to Eq. (14)
for a system with eight orientations like PMN. Substituting Eqs. (1) and
(17) into Eq. (19), we calculate Xs{T) of PMN as a function of temperature.
Fig. 4 shows the result; we have taken c/0 = l/£P(0) = 0.019, the unit cell
parameter a0 — 0.4 nm, and po = 3.0 x 10~30 Cm so that AQ — 380 K.

The temperature dependence of the static permittivity of PMN (Fig. 4)
can be well explained by the percolation model proposed in Sec. 2(b). The
FPDs will give little contribution to the permittivity x»CO ^ *^e applied
electric field is very weak. When the percolation threshold of the FPDS
is approached, FPDs will dominate the space and the volume proportion
of the DPDs undergoes a sharp decrease. Finally, the system will freeze
into a polar domain state. The average size of the frozen polar domains is
predetermined by the parameter cj0 which reflects the frozen structure of the
chemical nanodomains of the B-site cations and other defects.

(c) Dynamic Permi t t iv i ty

Because the relaxational time of a dynamic polar cluster is also related
to its size, we need to consider the size distribution of the DPDs at a tem-
perature T. The cluster-size distribution is typically expressed as a discrete
function n(s) = Ns(s)/Nt, defined at s = 1,2,3,4,..., where Ns(s) is the
number of clusters with size s and Nt is the total number of sites. In our
problem Nt is the total number of unit cells occupied by the dynamic clus-
ters. Hence, Nt ~ N(l — CfO£p(T)), which means we will not consider the
contribution of the FPDs to the permittivity (in weak applied field).

The probability to find a site to be in a cluster with size s is sn(s). We
assume without proof that sn(s) has the Gaussian distribution,

sn(s) = - i = - exp(~{s - sav)
2/2a2) . (20)

\/27TCT

This assumption is justified for a relaxor system because the average domain
size is nanoscale in the temperature range of interest, far away from a site-
bond percolation threshold (i.e. a ferroelectric transition). The question
of suitable cluster distributions was investigated by Chamberlin26"28 in his
"dynamically coupled domain" theory. In the temperature range of interest,
sav{T) ^> 1. If we take a suitable value for cr, Ns(s) will actually be 0 when
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s < 0. Hence, the following conditions are satisfied:

N ,00

X > n ( 5 ) ~ / [sn(s)]ds = l , (21)
s__l J—00

and
x^ 2 / \ / r „ / M J /oo\

« O flO I C I / v j 1 I C Y\ I C M C fi O ^^™ G I f / I

— 1 °°
As a further assumption we let a — ̂ ysavj where 7 is a constant which

will be one of the adjustable parameters in later calculations. Fig. 5 shows
the size distributions of PMN at temperature 450 K, 400 K and 350 K when
7 = 0.33.

The contribution of a dynamical cluster with size s and dipolar moment
to the complex permittivity can be written as

From Eq. (15) we have

(? ) 1 + KW) (23)

and
j'iT us]~ (4°) j* i£«n?(WZV/r_

where 6 = go/k. We can obtain the permittivity of the system by adding
the contributions of all the DPDs. The number of DPDs with size s is
iV(l — Cfo£p(T))n(s), hence we have

sn(s)sds

for the real component of permittivity and

X(T^)^AO Jt TH^2exp(26,/r) ' (26)

for the imaginary permittivity of the system respectively. It is interested
to note that the above results (Eq. 25 and Eq. 26) are essentially the same
formulae as given by Chamberlin in his congenial work on ferromagnetic
materials26"28.
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(d) Results for PMN

Substituting Eqs. (1), (17), and (20) into Eqs. (25) and (26), we can
calculate the real and imaginary permittivity of PMN. Fig. 5 (a) and (b) show
respectively the calculated results for permittivity and dissipation factor of
PMN as a function of temperature at frequencies Ik, 10k, 100k, 1M Hz. We
have taken AQ = 380, c/0 = 0.019 as before, b = 0.1K and r0 = 10~12s.
For polar clusters with diameter 5 nm (s = 1953), the activation energy
Fo = sg0 = skb = 0.015 eV.

The calculated permittivity and dissipation factor in Fig. 5 are in good
agreement with the experimental measurements (see for example, Fig. l(a)
and (b) of Ye and Schmid29 and Fig. l(a) of Viehland et al7. Note that we did
not adjust the parameters of Eq. (17) in our calculations. Actually we only
made some adjustment on AQ and b and 7. By modifying the parameters of
Eq. (17) or just using £P(T) as a parameter and employing more sophisticated
procedures, one may expect to be able to quantitatively fit the experimental
measurements of the dielectric permittivity and dissipation factor.

(e) Results for disordered PST

For disordered PST (PST-d) the variation of correlation length with tem-
perature is assumed to take a form of combination of Eq. (16) and Eq. (17).
The relaxor behaviour begins to be significant around temperature 320 K
and the relaxor-ferroelectric phase transition temperature is Tc = 269K22.
Hence the polar correlation length of PST-d is assumed to be

p (T\ - / 29-55 + 23-04 tanh[3.2(l - T/320)] if T > 300K , ,
ip[ > " \ 3.9(T - 269)-1 if T < 300K [ }

which is graphed in Fig. 6. Fig. 7 shows the calculated results for the per-
mittivity as a function of temperature at frequencies 100, Ik 10K, 100k and
1M Hz respectively. The results are at least qualitatively in agreement with
experimental results (see for example Fig. 4 of ref.22). The calculated result
for PST is not as good as for PMN, which is mainly due to the rough assump-
tion applied for £p(T). Using £P(T) as a fitting parameter one may expect to
obtain curves which quantitatively agree with experimental results.
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5. Discussion

The phenomenological theory presented in this paper covers the whole
temperature range of interest in a unified form. The leading relaxation time
of the polar cluster fluctuation is t = rQ&xp[sav{T)golkT)] at a temperature
T. When T is significantly above Tmax, sav(T) varies very slowly with temper-
ature and thus the dielectric relaxation is Debye-like30. In the temperature
region around Tm% sav(T) changes quickly with temperature, which results a
non-Debye relaxation. Due to the effect of the random fields originated from
nanoscale chemical defects, sav(T) will stabilize at a certain stage when the
temperature is decreased and hence a random-field stabilized domain state
forms, as predicted by Kleemann11.
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Appendix
Consider a polar system with eight possible orientations along the (111)

directions of the cubic Pm3m cell. Suppose that the probabilities for a mo-
ment to be oriented in one of the orientations i is fc at a given time and that
a moment flip from orientation i to orientation j has a probability WijSt. A
weak external field E — Eg exp(itot) is applied along one of the orientations
(say, orientation 1). Assume the flippings of the polar moments occur only
via the nearest orientations, i.e. 1 to 3, 5, 7; 2 to 1, 6, 8; 4 to 2, 5, 7; 5 to
1, 4, 8; 6 to 2, 3, 7; 7 to 1, 4, 6; and 8 to 2, 3, 5 respectively. If one assigns
indices to the orientations as shown in Fig. 9, then one can write

d(f>i/dt =
d(f>2/dt =
d<f>3/dt = — (lV3i + W-36 + W38)<^3 + f>1301 + ™6S<f>6 4"

dfa/dt = -(w42 + W45 + W4l)<!>4 "f
d<j>sjdt = —(W51 + IV54 + W58)4>5 +
dfa/dt = ~{w62 + W63 + W67)<f><3 +
d<f>7/dt = -(w7i + w74 + w7e)fa + W\-t<fri 'V w474>4 + w67<l>&
d(f>s/dt = —(UJ§2 + WS3 + Wss)<f>8 + W28<f>2

Considering the equilibrium condition of the Boltzmann distribution, one can
assume

Wij = — exp(-pi • E/kT)

~ ±-(1-Pi-E/kT) (29)

where T,J are the characteristic times. This can be written as

Tij = TOexp(-Fij/kT)

where Fjj is the energy barrier from orientation i to orientation j . In the
case of Ei ~ 0, the lattice has cubic symmetry and all the Fij between two
nearest orientations will be the same, so one has r,j = r = Toexp(Fo/kT).
The flipping probabilities Wij can then be written as to,-, where Wi = (1 —
pE/kT)/T, W2 = (1 4- pE/kT)/r, w3 = ws = w7 = (1 - PE/3kT)/r and
w4 = WQ — ws = (1 + pE/3kT)/r. The 'net' probability for a moment to be
oriented in the direction of the applied electric field is

17



From Eqs 28 one obtains

dtpz , pE
(30)

where the condition X^Li <f>i — 1 has been used. The solution of Eq. 5.30 is
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Figure Captions

Figure 1.
Two kinds of B-site cation distributions with 1:1 ratio of Bl to B2 (a,d) and
the calculated x (b,e) and y (c,f) components of the local electric fields. Note
that the field is strongest at the chemical domain walls.
Figure 2.
Diagram illustrating an anisotropic double-well potential with two different
depths of well Ft and F2.

Correlation length of ferroelectric fluctuations as a function of temperature,
experimental data and curve fitting with Eq. (13).
Figure 4.
Static Permittivity of PMN as a function of temperature as calculated from
Eq. (15).
Figure 5.
Diagram illustrating the proposed Gaussian distribution of the size of dy-
namic polar clusters at temperatures 450 K, 400 K and 350 K respectively.
Figure 6.
Calculated dielectric permittivity (a) and dissipation factor (b) versus tem-
perature at frequencies of IK, 10K, 100K and 1M Hz for PMN.
Figure 7.
Assumed polar correlation length of disordered PST as a function of temper-
ature.
Figure 8.
Calculated dielectric permittivity versus temperature at frequencies of 100,
IK, 10K, 100K and 1M Hz for PST.
Figure 9.
Diagrams shows the eight possible polar orientations of the Pm3m cubic cell
and the numbering used in the appendix.
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Figure 0.1: Two kinds of B-site cation distribution with 1:1 ratio of Bl and B2

((a) and (d)) and the calculated x ((b) and (e)) and y ((c) and (f)) components of

local elecric fields. See text for details.
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Figure 0.2: Diagram illustrating an anisotropic double-well potential with two

different depths of well Fi and F2.
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Figure 0.3: Correlation length of ferroelectric fluctuation as a function of temper-

ature, experimental data and fitting curve with Eq.
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Figure 0.4: Static Permittivity of PMN as a function of temperature as calculated

from Eq. (19).
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Figure 0.5: Diagram illustrating the proposed Gaussian distribution of the size of

dynamic polar clusters at temperatures 450 K, 400 K and 350 K respectively.
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Figure 0.6: Calculated dielectric permittivity (a) and dissipation factor (b) versus

temperature at frequencies of IK, 10K, 100K and 1M Hz for PMN.
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Figure 0.7: Assumed polar correlation length of disordered PST as a function of

temperature.
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Figure 0.8: Calculated dielectric permittivity versus temperature at frequencies of

100, IK, 10K, 100K and 1M Hz for PST.



Figure 0.9: Diagrams shows the eight possible polar orientations of the Pm3m

cubic cell and the numbering used in the appendix.
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