ISSN 1425-7351

RAPORTY IChTJ. SERIA B nr 8/96

WSTĘPNA OCENA BŁĘDÓW MIERNIKA KONCENTRACJI PRODUKTÓW ROZPADU RADONU W POWIETRZU

Bronisław Machaj

INSTYTUT CHEMII I TECHNIKI JĄDROWEJ INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY

WARSZAWA

VOL 28112

ZESPÓŁ REDAKCYJNY

dr Wiktor Smułek, Ewa Godlewska, Sylwester Wojtas

WYDAWCA

Instytut Chemii i Techniki Jądrowej ul. Dorodna 16, 03-195 Warszawa tel.: (0-22) 11 06 56; telex: 813027 ichtj pl: fax: (0-22) 11 15 32; e-mail: sekdyrn@orange.ichtj.waw.pl

Symbol UKD: 721.3 Symbol INIS: D22 Słowa kluczowe: RADON, BŁĘDY MIERNIKA

Raport został wydany w postaci otrzymanej od Autora

Wstępna ocena błędów miernika koncentracji produktów rozpadu radonu w powietrzu

Wykorzystując opracowany wcześniej komputerowy program symulacji osadzania na filtrze powietrza produktów rozpadu radonu: Po-218, Pb-214, Bi-214 (Po-214) i obliczania zmian aktywności w funkcji czasu dokonano oszacowania błędów metody pomiaru aktywności sumarycznego promieniowania alfa Po-218+Po-214 w trzech interwałach czasu. Dodatkowo dokonano porównania błędów metody pomiaru aktywności alfa Po-218+Po-214 w trzech, dwu i jednym interwale czasu. Przeprowadzono ponadto kilka prób pomiaru aktywności alfa produktów rozpadu radonu w różnych interwałach czasowych i oszacowania ich błędów.

Preliminary assessment of errors of radon daughters concentration in air

Employing an earlier elaborated computer program for simulation of depositing radon decay products: Po-214, Pb-214, Bi-214 (Po-214) on air filter and for computing variation of their activity against time, an assessment of errors was carried out of a methods employing measurement of Po-218+Po-214 alpha activity in three time intervals. Additionally errors of the methods measuring Po-218+Po-214 alpha activity in three, two and one time intervals, were assessed. A few attempts were also made to measure the alpha activity in different time intervals and to assess their measuring errors.

SPIS TREŚCI

1. WPROWADZENIE	-
2. METODA SYMULACJI TRZYPUNKTOWEJ	-
3. OCENA BŁĘDÓW STATYSTYCZNYCH	10
4. PORÓWNANIE WYBRANYCH METOD	12
4.1. POMIAR TRZYPUNKTOWY AKTYWNOŚCI ALFA [2,7]	13
4.2. POMLAR DWUPUNKTOWY AKTYWNOŚCI ALFA [1]	14
4.3. POMIAR JEDNOPUNKTOWY AKTYWNOŚCI ALFA [8]	16
4.4. PODSUMOWANIE PORÓWNANIA	17
5. BŁĘDY POMIARU WYBRANYCH TRZYPUNKTOWYCH METOD POMIARU	18
6. ROZWLĄZANIE UKŁADU RÓWNAŃ	18
7. WNIOSKI	19
8. LITERATURA	19

1. WPROWADZENIE

Produkowany w IChTJ od szeregu lat miernik koncentracji produktów rozpadu Rn-222 w powietrzu, pracujący na zasadzie pomiaru sumarycznego promieniowania alfa produktów rozpadu pochodzącego od Po-218 i Po-214 w dwu interwałach czasu [1], skłania do porównania miernika z innymi miernikami, oraz do poszukiwania nowych metod pomiaru i obróbki sygnału. W oparciu o opracowany wcześniej komputerowy program symulacji osadzania na filtrze produktów rozpadu radonu i obliczania zmian aktywności alfa w funkcji czasu, dokonano takiej oceny. Dodatkowo przeprowadzono kilka wyrywkowych prób symulacji pomiaru aktywności alfa Po-218+Po-214 w różnych przedziałach czasu i oszacowania błędu pomiaru.

2. METODA SYMULACJI TRZYPUNKTOWEJ

Na rys. 1-3 przedstawiono rozkład zmian aktywności produktów rozpadu radonu, gdy na filtrze powietrza w ciągu 5 min osadzany jest tylko Po-218, tylko Pb-214 lub tylko Bi-214 o koncentracji 200 rozp./min każdy (w ciągu 1 min na filtrze powietrza osadzana jest aktywność 200 rozp. w 10 porcjach po 20 rozp. każda co 1/10 min). Wykresy przedstawiają aktywności obliczone w interwałach 1- minutowych, a obliczeń dokonano wg [2].

Rys. 1. Na filtrze powietrza osadzony jest tylko Po-218.

Rys. 2. Na filtrze powietrza osadzony jest tylko Pb-214.

Rys. 3. Na filtrze osadzony jest tylko Bi-214.

Wykresy ilustrują w jakim stopniu i jak zmienia się aktywność sumaryczna Po-218+Po-214 (RaA+RaC') wywołana przez poszczególne składniki produktów rozpadu. Wyliczenia w przykładowych przedziałach czasowych 1..10 min, 11..20 min, 21..30 min dają aktywności:

Symulowana aktywność q1, q1, q3 w trzech przedziałach czasu.

RaA:RAB:RaC	110 min rozpadów	1120 min rozpadów	2130 min rozpadów
200:0:0	3691,5	1036,6	491,5
0:200:0	865,2	2916,5	3929,0
0:0:200	6622,7	6511,7	4596,8

Uwaga: interwał czasu 1..10 min oznacza aktywność zarejestrowaną w 1-ej min, 2-ej min ... 10-ej min (łącznie w interwale 10 min).

Oznacza to, że RaA ma swój udział w przedziale czasu 1..10 min równy 3691,5/200=18,456, w interwale 11..20 min równy 1036,6/200=5,183 i w przedziale 21..30 min 491,5/200=2,4575. Podobnie swoje udziały mają RaB i RaC. W tablicy poniżej podano wyliczone w ten sposób współczynniki udziału.

Współczynniki udziału RaA, RaB, RaC w poszczególnych przedziałach czasu.

RaA:RaB:RaC	110 min	1120 min	2130 min
200:0:0	18,456	5,183	2,4575
0:200:0	4,326	14,5975	19,645
0:0:200	33,1135	32,5585	22,984

Fakt ten pozwala na napisanie układu trzech równań z trzema niewiadomymi:

q1 = 18,456 A + 4,326 B + 33,1135 C, q2 = 5,183 A + 14,5975 B + 32,5585 C, q3 = 2,4575 A + 19,645 B + 22,984 C.

gdzie q₁, q₂, q₃ są aktywnościami promieniowania alfa w trzech kolejnych interwałach czasu. Mnożąc obie strony równania przez współczynnik efektywności osadzania produktów rozpadu na filtrze oraz sprawność detekcji η otrzymuje się:

(1)

 $n_{1} = 18,456 \text{ A } \eta + 4,326 \text{ B } \eta + 33,1135 \text{ C } \eta,$ (2) $n_{2} = 5,183 \text{ A } \eta + 14,5975 \text{ B } \eta + 32,5585 \text{ C } \eta,$ $n_{3} = 2,4575 \text{ A } \eta + 19,645 \text{ B } \eta + 22,984 \text{ C } \eta.$

gdzie n_1 , n_2 , n_3 są liczbami impulsów zliczonych w trzech kolejnych interwałach czasowych, zaś A = RaA B = RaB, C = RaC są nieznanymi koncentracjami produktów rozpadu. Podstawiając do równań (2) zmierzone liczby impulsów n_1 , n_2 , n_3 w trzech interwałach czasu i rozwiązując układ równań (2) można wyliczyć A, B, C. W obliczeniach laboratoryjnych liczby impulsów n_1 , n_2 , n_3 symulowano przy pomocy programu komputerowego [2], zaś równania (2) rozwiązywano przy pomocy programu obliczeniowego MATLAB. Poniżej podano wyniki symulacji i obliczeń.

RaA:RaB:RaC	1 10 min	1120 min	2130 min
200:200:200	3353,7	3140,3	2705,2
200:100:100	2230,5	1725,7	1426,3
200:100: 50	1733,8	1237,3	1081,5
200:100: 0	1237,1	748,9	736,8
200:50:50	1668,9	1018,3	786,9
200:50:0	1172,7	529,9	442,1
200:0:0	1107,3	311,0	147,4

Symulacja ilości zliczeń n_1 , n_2 , n_3 dla $\eta = 0,3$.

Wyliczona koncentracja produktów rozpadu.

RaA:RaB:RaC	RaA	RaB	RaC
200:200:200	200,01	200,01	199,98
200:100:100	199,96	99,97	100,02
200:100:50	199,98	99,99	50,00
200:100:0	199,99	100,00	0,00
200:50:50	200,00	50,1	49,99
200:50:0	199,98	50,00	0,00
200:0:0	199,95	0,02	0,02

Wyliczona koncentracja RaA, RaB, RaC z dużą dokładnością pokrywa się z koncentracją założoną (symulowaną).

3. OCENA BŁĘDÓW STATYSTYCZNYCH

Liczba zliczonych impulsów n_1 , n_2 , n_3 w równaniach (2) mierzona rzeczywistym przyrządem pomiarowym obarczona jest błędem statystycznym. Wielkość błędu statystycznego podawana przez [3] na podstawie [4, 5] określona jest zależnością:

 $s(R) = (JR)^{1/2}$

R - liczba zliczeń, J = 1,2 - 2,9 współczynnik.

Przyjmując wartość średnią współczynnika J = 2,05 obliczono odchylenie standardowe s(n₁), s(n₂), s(n₃) oraz odpowiadającą im liczbę zliczeń:

 $n_{s1} = n_1 - s(n_1),$

 $n_{s2} = n_2 - s(n_2),$

 $n_{s3} = n_3 - s(n_3).$

Podstawiając w miejsce n₁, n₂, n₃ w równaniach (2) wartości n_{s1}, n_{s2}, n_{s3} odpowiednio, obliczono wartości As, Bs, Cs oraz względne odchylenia standardowe s(A)_r = (A_s - A)/A, s(B)_r = (B_s - B)/B, s(C)_r = (C_s - C)/C. Procedurę tę ilustruje przykład dla RaA:RaB:RaC = 200:100:50. W wyniku obliczeń otrzymano:

(3)

 $n_{s1} = n_1 - s(n_1) = 1733, 8 - 59, 62 = 1674, 18,$ $n_{s2} = n_2 - s(n_2) = 1237, 3 - 50, 36 = 1186, 94,$ $n_{s3} = n_3 - s(n_3) = 1081, 5 - 47, 09 = 1034, 41.$ Koncentracja A, B, C gdy w miejsce n_1 wstawiono n_{s1} : $A_{s1} = 183, 19,$ $B_{s1} = 97, 84,$ $C_{s1} = 53, 64.$ W podobny sposób wyliczono A_{s2} , B_{s2} , C_{s2} gdy w miejsce r

W podobny sposób wyliczono A_{s2} , B_{s2} , C_{s2} gdy w miejsce n_2 wstawiono n_{s2} , oraz A_{s3} , B_{s3} , C_{s3} gdy w miejsce n_3 wstawiono n_{s3} . Wyniki obliczeń przedstawiono w tabeli poniżej.

	A _s	B _s	Cs
$n_{s1} = n_1 - s(n_1)$	183,19	97,84	53,64
$n_{s2} = n_2 - s(n_2)$	225,7	115,99	33,58
$n_{s3} = n_3 - s(n_3)$	185,05	81,27	60,78

Wartości "zmierzone" z błędem statystycznym dla: RaA:RaB:RaC = 200:150:50.

Na ich podstawie wyznaczono błędy spowodowane statystyką pomiaru zliczeń impulsów w trzech przedziałach czasu, patrz tabela poniżej.

	s(A)r (%)	s(B)r (%)	s(C)r (%)
$n_{s1} = n_1 - s(n_1)$	8,4	2,2	7,3
$n_{s2} = n_2 - s(n_2)$	12,9	16,0	33,0
$n_{s3} = n_3 - s(n_3)$	7,5	18,8	21,5
s(x) _t	17,1	24,8	40

Błędy statystyczne pomiaru dla RaA:RAB:RaC = 200:100:50.

Całkowity błąd statystyczny pomiaru poszczególnych produktów rozpadu, jak wynika z przedstawionej tabeli wynosi:

 $s(A)_t = 17,1 \%, s(B)_t = 24,4 \%,$

 $s(C)_t = 40,0 \%$.

Energia potencjalna alfa produktów rozpadu radonu zdefiniowana jest jako energia promieniowania alfa jaka wydzieli się gdy wszystkie krótkożyciowe produkty rozpadu: Po-218, Pb-214, Bi-214 rozpadną się i przekształcą się w izotop Pb-210, patrz rys. 4, i opisana jest zależnością:

$$Ep = \frac{A}{\lambda_{A}} E_{A} + \frac{B}{\lambda_{B}} E_{B} + \frac{C}{\lambda_{C}} E_{C} \qquad [MeV]$$
(4)

A, B, C - aktywność osadzonych na filtrze produktów rozpadu Po-218, Pb-214 i Bi-214 odpowiednio,

 λ_A , λ_B , λ_C - stała rozpadu Po-218, Pb-214 i Bi-214 odpowiednio, $E_A = (6,00+7,69) = 13,69 \text{ MeV},$ $E_B = 7,69 \text{ MeV},$ $E_C = 7,69 \text{ MeV}.$ Dla koncentracji produktów rozpadu RaA:RaB:RaC = 200:100:50 rozp./min równanie (4) przybierze postać:

Ep = (200/0,2228)*13,69 + (100/0,02585)*7,69 + (50/0,03482)*7,69 = 12290 + 29750 + 11040 = 53080 MeV

Rys. 4. Szereg rozpadu promieniotwórczego Rn-222 i jego krótkożyciowych produktów rozpadu [6].

Odchylenie standardowe s(Ep) wynikające z odchylenia standardowego s(A)r = 0,171, s(B)r = 0,248, s(C)r = 0,4 wynosi: s(Ep) = [s(Ep)A² + s(Ep)B² + s(Ep)C²]^{1/2} = 8851 MeV, s(Ep)A = s(A)r (A/ λ_A) E_A = 0,171*12290 = 2101 MeV, s(Ep)B = s(B)r (B/ λ_B) E_B = 0,248*29750 = 7378 MeV, s(Ep)C = s(C)r (C/ λ_C) E_C = 0,4*11040 = 4416 MeV. Względne całkowite odchylenie standardowe s(Ep)t energii potencjalnej alfa wynosi: s(Ep)t = s(Ep)/Ep = 8851/53080 = 16,6 %.

4. PORÓWNANIE WYBRANYCH METOD

Do porównania wybrano metody:

- pomiaru aktywności promieniowania alfa w trzech przedziałach czasu [7],

- pomiaru aktywności promieniowania alfa w dwu przedziałach czasu [1],

- pomiaru aktywności promieniowania alfa w jednym przedziale czasu [2,8].

We wszystkich przypadkach porównania dokonano przy czasie osadzania produktów rozpadu na filtrze w czasie T = 5 min i sprawności osadzania na filtrze i detekcji promieniowania $\eta = 0.3$. Błąd standardowy wynikający ze statystyki zliczania impulsów

sprawdzano tylko dla jednego stopnia nierównowagi promieniotwórczej RaA:RaB:RaC = 200 : 100 : 50.

4.1. Pomiar trzypunktowy aktywności alfa [2,7] Obliczenia wg wzorów Thomasa [7]

W czasie T = 5 min osadzane są na filtrze produkty rozpadu radonu, następnie mierzona jest sumaryczna aktywność Po-218+Po-214 (RaA+RaC') w przedziałach czasu t1 = 2..5 min, t2 = 6..20 min i t3 = 21..30 min po zakończeniu osadzania produktów rozpadu na filtrze. Koncentracja produktów rozpadu i energia potencjalna, dla sprawności detekcji $\eta = 0.3$, wyliczana jest z zależności [2]:

$$RaA = \frac{1}{vE} (6,19618 n_1 - 3,00752 n_2 + 2,84348 n_3) [Bq/m^3]$$
(5)

$$RaB = \frac{1}{vE} (0,06815 n_1 - 0,77227 n_2 + 1,82693 n_3) [Bq/m^3]$$
(5)

$$RaC = \frac{1}{vE} (1,82693 n_1 - 1,24526 n_2 + 1,41195 n_3) [Bq/m^3]$$
(5)

$$Ep = \frac{1}{1000 v} (0,28357 A - 0,13726 B + 0,10089 C) [WL]$$
v - przepływ powietrza przez filtr [L/min],
E - sprawność detekcji,

A, B, C - koncentracia RaA, RaB, RaC odpowiednio,

 $WL = 1.3 * 10^5 MeV/L$ - working level.

n₁, n₂, n₃ - liczba zliczeń w przedziale czasu t1, t2 i t3 odpowiednio.

Dokonując symulacji aktywności promieniowania alfa w funkcji czasu oraz liczby zliczeń n_1 , n_2 , n_3 w sposób opisany poprzednio, otrzymano dla RaA:RaB:RaC = 200:100:50 oraz sprawności detekcji $\eta = 0,3$ następujące liczby zliczeń:

 $n_1 = 522,4$ imp - w interwale t1, $n_2 = 1637,6$ imp - w interwale t2,

 $n_2 = 1057,0$ mp - w intervale t2,

 $n_3 = 946,4 \text{ imp}$ - w interwale t3.

Wyliczona na tej podstawie koncentracja RaA, RaB, RaC i Ep wg wzorów (5) dla E=0,3 i v=1 wynosi:

 $RaA = 3341 Bg/m^3$ co odpowiada 200,5 rozp./min dla 200 rozp./min/L osadzanych na filtrze 11 11 $RaB = 1666 Bq/m^3$ " 99,96 rozp./min dla 100 rozp./min/L $RaC = 837.6 Bg/m^3$ " 11 50,25 rozp./min dla 50 rozp./min/L Ep = 0.408 WL. Liczba zliczeń pomniejszona o odchylenie standardowe: $n_{s1} = n_1 - s(n_1) = 489,7,$ $n_{s2} = n_2 - s(n_2) = 1579,6,$ $n_{s3} = n_3 - s(n_3) = 901,9$ oraz całkowite względne odchylenie standardowe: $s(A)_t = 29.1 \%$ $s(B)_t = 18,5\%$ $s(C)_{t} = 43,0 \%$ $s(Ep)_t = 15,3 \%$.

Obliczenia wg metody opisanej w rozdz. 2 i 3

Dla takich samych interwałów czasowych i takich samych symulowanych liczb zliczeń:

 $n_1 = 522,4 \text{ imp}$ - w interwale t1,

 $n_2 = 1637,6 \text{ imp}$ - w interwale t2,

 $n_3 = 946,4 \text{ imp}$ - w interwale t3.

w sposób opisany w rozdz. 2 i 3 dokonano obliczeń koncentracji produktów rozpadu wykorzystując rów (2). Dla RaA:RaB:RaC = 200:100:50 otrzymano:

RaA = 199,98 rozp./min,

RaB = 99,99 rozp./min,

RaC = 50,00 rozp./min.

Ep = 0,408 WL - gdy w czasie 1 min na filtrze osadzana jest aktywność produktów rozpadu RaA:RaB:RaC = 200:100:50 rozp. od próbki powietrza 1 L.

Względny całkowity błąd statystyczny wyliczony wynosi:

 $s(A)_t = 28,4 \%,$ $s(B)_t = 16,2 \%,$ $s(C)_t = 40,0 \%,$

 $s(Ep)_t = 13,9\%$.

Z przeprowadzonych obliczeń wynika, że w obu przypadkach uzyskano porównywalną dokładność pomiaru, przy czym błędami dominującymi są błędy statystyczne.

4.2. Pomiar dwupunktowy aktywności alfa [1]

Jest to szybka metoda pomiaru koncentracji produktów rozpadu i energii potencjalnej alfa (cały cykl pomiarowy łącznie z czasem pompownia powietrza przez filtr trwa 15 min) pozwalająca na wyznaczenie koncentracji Po-218 i energii potencjalnej alfa. Na filtrze powietrza w ciągu 5 min osadzane są produkty rozpadu, a następnie w czasie t1 = 7..9 min włącznie i t2 = 13..15 min włącznie od momentu rozpoczęcia pompowania powietrza przez filtr mierzona jest aktywność promieniowania alfa Po-218 + Po-214. W publikacji [9] na podstawie [1, 10] podano wzory pozwalające na wyliczenie również koncentracji Pb-214 i Bi-214:

$$RaA = \frac{118}{Ev} (n_1 - n_2) 10^{-10} [Ci/m^3],$$
(6)

$$RaB = \frac{300}{Ev} n_2 10^{-11} [Ci/m^3],$$

$$\operatorname{RaC} = \frac{1}{\operatorname{Ev}} (597 \, \mathrm{n}_2 - 244 \, \mathrm{n}_1) \, 10^{-11} \, [\operatorname{Ci}/\mathrm{m}^3],$$

$$Ep = \frac{400}{Ev} n_2 \quad [MeV/L].$$

E - sprawność detekcji w %,

v - przepływ powietrza przez filtr, L/min,

 n_1 , n_2 - liczba zliczonych impulsów w czasie t1 i t2 odpowiednio.

Symulowana liczba zliczonych impulsów n_1 , n_2 przy sprawności detekcji $\eta = 0,3$ (E = 30%), wyliczone koncentracje produktów rozpadu oraz wynikające błędy metody podano poniżej.

RaA:RaB:RaC	Ep	nı	n2
200:200:200	0,89178	1213,4	962,5
200:100:100	0,49314	768,4	532,5
200:100:50	0,40822	579,0	378,8
200:100:0	0,32328	389,6	225,2
200:5050	0,29384	545,9	317,5
200:50:0	0,2089	356,5	163,8
200:0:0	0,0945	323,4	102,5

Liczba zliczonych impulsów w czasie t1 = 7..9 min i t2 = 13..15 min.

Ep - energia potencjalna alfa produktów rozpadu osadzanych na filtrze w ciągu 1 min. $1Ep = 1,3*10^5 \text{ MeV}.$

Wyliczone koncentracje produktów rozpadu wg równań (6).

RaA:RaB:RaC	RaA	RaB	RaC	Ep
200:200:200	219,17	213,67	206,12	0,4993
200:100:100	205,99	118,22	96,51	0,54615
200:100:50	174,8	84,10	62,80	0,3885
200:100:0	143,55	49,99	29,14	0,23097
200:50:50	199,4	70,49	41,69	0,3256
200:50:0	168,26	36,36	7,99	0,168
200:0:0	192,89	22,75	-13,11	0,1051

Względne błędy wynikające z metody pomiaru.

RaA:RaA:RaC	RaA (%)	RaB (%)	RaC (%)	Ep (%)
200:200:200	+9,5	+6,8	+3,1	-44
200:100:100	+3	+18,2	-3,5	+10,7
200:100:50	-12,6	-16	+25,6	-4,8
200:100:0	-28,2	-50	-	-28,6
200:50:50	-0,3	+40,9	+16,6	+10,8
200:50:0	-15,9	-27,3	-	-19,6
200:0:0	-3,6	-	-	+11,2
s(x) _m	14,8	33,3	17,8	24.2

s(x)_m - odchylenie standardowe pomiaru (w trakcie pomiarów stopień nierównowagi promieniotwórczej jest przypadkowy i nieznany).

Błędy statystyczne dla RaA:RaB:RaC = 200:100:50 wynikające ze statystyki pomiaru n_1 i n_2 przedstawiono niżej.

Błędy statystyczne.

	s(RaA) (%)	s(RaB) (%)	s(RaC) (%)	s(Ep) (%)
nl-s(nl)	17,2	0,0	9,9	0,0
n2-s(n2)	13,9	7,3	20	7,3
s(x) _s	22,1	7,3	22,3	7,3

s(x)_s - całkowity błąd statystyczny.

Zestawienie błędów metody i błędów statystycznych.

Rodzaj błędu	RaA (%)	RaB (%)	RaC (%)	Ер (%)
metoda	14,8	33,3	17,8	24,2
statystyka	22,1	7,3	22,3	7,3
s(x) _t	26	31,3	27,1	23,6

Traktując błąd metody i błąd statystyczny jako błędy przypadkowe (przy pomiarze nieznany jest stopień nierównowagi promieniotwórczej RaA:RaB:RaC) wyliczono błąd sumaryczny który podano w ostatnim wierszu tablicy jako $s(x)_t$ (błędy dodano geometrycznie). Obliczenia wskazujA na znaczne błędy wywołane niedoskonałością metody oraz na błędy statystyczne, które są jednak mniejsze niż w przypadku pomiaru trzypunktowego. Jest to zgodne z oczekiwaniami mniej bowiem czynników obarczonych błędem statystycznym wpływa na błąd całkowity.

4.3. Pomiar jednopunktowy aktywności alfa [8]

Metoda przewiduje alternatywne pomiary w jednym z trzech interwałów czasu 21-40 min, 41- 60 min lub 21- 60 min. Poniżej podano symulowane wartości zliczonych impulsów w tych przedziałach przy sprawności detekcji promieniowania $\eta = 0,3$, pochodzących od sumarycznego promieniowania alfa Po-218+Po-214. Metoda wykorzystywana jest do pomiaru energii potencjalnej alfa. Stałość stosunku liczby zliczeń w przedziale czasu do energii potencjalnej jest więc miarą dokładności metody.

RaA:RaB:RaC	Ep	21- 40 min	21- 60 min	41 - 60 min
200:200:200	0,89178	5088,7	8992,7	3804,0
200:100:100	0,49314	2690,7	4732,9	2042,2
200:100:50	0,40822	2102,5	3851,7	1749,2
200:100:0	0,32328	1514,4	2970,5	1456,1
200:50:50	0,29384	1491,6	2653,0	1161,4
200:50:0	0,2089	903,5	1771,8	868,3
200:0:0	0,0945	292,6	573,1	280,5

Symulowane liczby zliczeń impulsów i energia potencjalna produktów rozpadu.

Ep - energia potencjalna alfa produktów rozpadu osadzanych na filtrze w ciągu 1 min. $1Ep = 1,3*10^5$ MeV.

RaA:RaB:RaC	21- 40 min	21- 60 min	41 - 60 min
200:200:200	5706,6	10084,7	4265,9
200:100:100	5454,8	9597,5	4141,2
200:100:50	5150,4	9435,4	4284,9
200:100:0	4684,5	6404,7	4782,5
200:50:50	5076,2	9028,7	3952,5
200:50:0	4325,0	8481,6	4156,5
200:0:0	3096,3	6064,6	2968,3
$(n/Ep)_{sred} \pm s(n/Ep)$ $\pm s(n/Ep) \%$	4784,8±874,6 ±18.2 %	8441,9±1590,0 ±18,8 %	4078,8±552,5 ±13,5 %

Stosunek liczby zliczeń do energii potencjalnej alfa produktów rozpadu: n/Ep.

Wartość odchylenia standardowego s(n/Ep) w ostatnim wierszu tablicy charakteryzuje błąd metody pomiaru energii potencjalnej. Błąd statystyczny metody równy odchyleniu standardowemu ilości zliczonych impulsów dla RaA:RaB:RaC = 200:100:50 wynosi:

s(Ep) = 3,1 % dla t = 21-40 min,

s(Ep) = 2,3 % dla t = 21-60 min,

s(Ep) = 3,4 % dla t = 41-60 min.

4.4. Podsumowanie porównania

Metoda	Rodz. błędu	RaA (%)	RaB (%)	RaC (%)	Ep (%)
Trzypunkt [2]	metody	<1,0	<1,0	<1,0	<1,0
	statystyki	29,1	18,5	43,0	15,3
	suma geom.	<29,12	<18,52	<43,01	<15,33
Dwupunkt [1]	metody	14,8	33,3	17,8	24,2
	statystyki	22,1	7,3	22,3	7,3
	suma geom.	26,6	34,1	28,5	25,3
Jednopunkt [8] 41-60 min.	metody	-	-	-	13,5
	statystyki		-	-	3,4
	suma geom.	-	_	-	13,9

- W podsumowaniu (tablica wyżej) potraktowano błędy metody jako błędy przypadkowe, wychodząc z założenia że stan nierównowagi promieniotwórczej pomiędzy produktami rozpadu radonu jest zmienny i nieznany.
- Przyjęto bardzo szeroki zakres zmian nierównowagi promieniotwórczej, co oznacza że w praktyce błędy metody dla mniejszych zmian RaA:RaB:RaC mogą być mniejsze.
- Zwracają uwagę duże błędy pomiaru wynikające ze statystyki zliczania impulsów. Zgodnie z oczekiwaniami są one największe dla trzypunktowej metody pomiaru aktywności promieniowania alfa (najwięcej składników obarczonych błędem statystycznym) i najmniejsze dla pomiaru jednopunktowego.
- Wypadkowy błąd pomiaru energii potencjalnej alfa metody dwupunktowej w stosunku do metody trzypunktowej pomiaru jest około 65% większy, koncentracji RaA i RaC jest mniejszy, a koncentracji RaB większy.

5. BŁĘDY POMIARU WYBRANYCH TRZYPUNKTOWYCH METOD POMIARU

Celem sprawdzenia przydatności opisanej w rozdz. 2 i 3 trzypunktowej metody pomiaru produktów rozpadu radonu przeprowadzono symulacje i obliczenia dla kilku wybranych kombinacji interwałów czasu pomiaru aktywności promieniowania alfa Po-218+Po-214. We wszystkich omawianych przypadkach obliczeń dokonano dla: $\eta = 0,3$ sprawności detekcji, a błędy statystyczne szacowano tylko przy RaA:RaB:RaC = 200:100:50.

• t1 = 1-7 min, t2 = 8-22 min, t3 = 23-30 min - interwały czasowe pomiaru,

T = 5 min - czas osadzania produktów rozpadu na filtrze.Dla RaA:RaB:RaC = 200:100:50 symulowana liczba zliczeń impulsów wynosi: n1 = 1211,4 imp, n2 = 1980,4 imp, n3 = 860,4 imp. Wyliczona z równań (2) koncentracja produktów rozpadu i błąd statystyczny wynosi: RaA = 197 rozp./min s(RaA) = 14,8 %, RaB = 99,5 rozp./min s(RaB) = 23,2 %, RaC = 50,7 rozp./min s(RaC) = 35,1 %.

 t1 = 1 - 10 min, t2 = 11 - 24 min, t3 = 25 - 30 min - interwały czasowe pomiaru, T = 5 min - czas osadzania produktów rozpadu na filtrze
 Dla RaA : RaB : RaC = 200:100:50 symulowane liczba zliczeń impulsów wynosza:

tl = 1 - 10 min, t2 = 11 - 20 min, t3 = 21 - 30 min - interwały czasowe pomiaru T = 1 min - czas osadzania produktów rozpadu na filtrze
Dla RaA : RAB : RaC = 200:100:50 symulowana liczba zliczeń impulsów wynosi: n1 = 405,1 imp, n2 = 233,5 imp, n3 = 214,2 imp.
Wyliczona koncentracja produktów rozpadu i błędy statystyczne wynoszą: RaA = 200,04 rozp./min RaB = 100,02 rozp./min RaC = 49,99 rozp./min s(RaC) = 52,7 %.

6. ROZWIĄZANIE UKŁADU RÓWNAŃ

Jak wspomniano do obliczeń laboratoryjnych używano programu obliczeniowego MATLAB. Do obliczeń w mikroprocesorowym mierniku koncentracji produktów rozpadu mogą być wykorzystane wzory Cramera.

Równania (2) w postaci bardziej ogólnej mają postać:

 $n_1 = a_{11} A + a_{12} B + a_{13} C,$ $n_2 = a_{21} A + a_{22} B + a_{23} C,$ $n_3 = a_{31} A + a_{32} B + a_{33} C.$ w których nieznane A, B, C dane są wzorami:

Podobnie tworzy się wyrażenia na D_2 i D_3 przez zastąpienie drugiej i trzeciej kolumny wyznacznika D wektorem (n₁ n₂ n₃). Po wyliczeniu otrzymuje się zależności o postaci:

 $A = k_{11} n_1 + k_{12} n_2 + k_{13} n_3,$ $B = k_{21} n_1 + k_{22} n_2 + k_{23} n_3,$ $C = k_{31} n_1 + k_{32} n_2 + k_{33} n_3,$ gdzie k_{11} - k_{33} są stałymi.

7. WNIOSKI

- Metody pomiaru aktywności promieniowania alfa Po-218 + Po-214 w trzech interwałach czasu eliminują praktycznie błąd metody, obarczone są natomiast dość znacznymi błędami statystycznymi związanymi ze statystyką pomiaru trzech wartości zliczeń impulsów n₁, n₂ i n₃ w trzech przedziałach czasowych.
- Metody pomiaru aktywności promieniowania alfa Po-218 + Po214 w dwu lub jednym przedziale czasu obarczone są błędami wynikającymi z niedoskonałego dopasowania algorytmu obróbki sygnału n1, n2 ponadto błędem statystycznym wynikającym ze statystyki pomiaru n1 n2. Zgodnie z oczekiwaniami błąd statystyczny w tych przypadkach jest mniejszy niż w metodzie trzech interwałów czasowych.
- Biorąc pod uwagę zarówno błędy metody jak i błędy statystyczne, metoda dwupunktowa w stosunku do metody trzypunktowej daje około 65% większy błąd pomiaru energii potencjalnej alfa, nieco mniejszy błąd pomiaru koncentracji Po-218, wyraźnie mniejszy błąd pomiaru Bi-214 oraz większy błąd pomiaru Pb-214.
- Jeśli metodami obróbki sygnału uda się zmniejszyć wpływ statystyki liczenia impulsów w wybranych przedziałach czasowych, można wówczas doprowadzić do znacznego zwiększenia dokładności pomiaru.

8. LITERATURA

1. K.P. Markov, N.W. Rjabov, K.N. Stas. Ekspres metod ocenki radiacjonnoj opasnosti swiazanoj z naliczjem w wozduche doczernych produktow radona. Atomnaja Energia, 12, (1962) 31-319.

- 2. B. Machaj. Symulacja koncentracji produktów rozpadu Rn-222 osadzanych na filtrze. Opis programu komputerowego. Raport IChTJ seria B nr 7/96.
- 3. IAEA Safety Series No. 95. Radiation monitoring in the mining and milling of radioactive ores. IAEA, Vienna 1989.
- 4. H.F. Lucas, D.A. Woodward. Effect of long decay chains on counting statistics in the analysis of radon-222. Appl. Phys., 35 (1968) 452.
- 5. J. Foster et al. Binomial versus Poisson statistics in radiation studies. Nucl. Instr. Meth., 212 (1983) 301.
- 6. Radon and its decay products in indoor air. Eds. W.W. Nazaroff, A.V. Nero. John Willey & Sons, 1988.
- 7. J.W. Thomas. Measurement of radon daughters in air. Health Phys., 23 (1972) 783.
- 8. T. Domański, W. Chruścielewski. Metoda pomiaru niskich stężeń energii potencjalnej promieniowania alfa produktów rozpadu R-222 występujących w powietrzu kopalń. Medycyna Pracy, XXVII (1976) 29-37.
- 9. T. Domański, W. Chruścielewski. Koncepcja systemu operacyjnego nadzoru radiologicznego w zakresie skażeń radiacyjnych powierza w kopalniach. Ekspertyza wykonana na zlecenie PAA, Łódź 1992.
- 10. L.S. Ruzer. Radioaktiwnyje aerozoli. Moskwa 1968.