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Abstract

Invariant random matrix ensembles with weak confinement poten-
tials of the eigenvalues, corresponding to indeterminate moment prob-
lems, are investigated. These ensembles are characterized by the fact
that the mean density of eigenvalues tends to a continuous function
with increasing matrix dimension contrary to the usual cases where it
grows indefinitely. It is demonstrated that the standard asymptotic
formulae are not applicable in these cases and that the asymptotic
distribution of eigenvalues can deviate from the classical ones.

The model with V(z) = log?(|z|)/8 is considered in detail. It is
shown that when 8 — oo the unfolded eigenvalue distribution tends
to a limit which is different from any standard random matrix ensem-
bles but which is the same for all three symmetry classes: unitary,
orthogonal and symplectic.
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1. Random matrices ensembles are widely used for the description of sta-
tistical properties of energy levels of complex quantum systems. Although
initially they were supposed to be applied only to many-body systems with
complicated interactions like heavy nuclei (see e.g.[1]), it was later {2, 3  con-
jectured that they can be used even for low-dimensional quantum models
with the requirement that the classical motion of such systems should have
strong chaotic properties. The important feature of this conjecture consist in
suppose that, after a proper rescaling of the eigenvalues, the statistical prop-
erties of the spectrum of a generic chaotic quantum system should be close to
one of the three classical random matrix ensembles: the unitary(GUE), the
orthogonal(GOE) or the symplectic(GSE) depending only on the symmetry
of the model [1}-[5]*.

The strong argument in favor of this conjecture is the fact that many
different random matrix ensembles, at the scale of the mean level separation,
give the same level spacing distribution [4].

Considering only the case of ensembles invariant under all possible rota-
tions of the eigenvectors (compatible with the imposed symmetry), the joint
probability distribution P(M) of the matrix elements of a N x N matrix M
is defined [4] by choosing in

P(M) = C exp[-Tr(V(M))] (1)

the function V(z). Integrating (1) over the parameters related to the eigen-
vectors one can obtain the well known [4] joint probability distribution of the
eigenvalues

N
P(zy,z2,...,2n5) = Cn exp[— Z: V() I I=i — =5, (2)

1<y

where Cy is a normalization constant and v is a symmetry parameter equal
to 1,2 or 4 for GOE, GUE and GSE respectively.

In the simplest case of the unitary ensemble (y = 2) all n-point correlation
functions can be written in terms of a single function (4]

Rn(z1,...,2,) = det [Kn(zi, zj)];',jzl,2,...,n ) (3)

1For generic classically integrable models one expects that energy levels are independent
and their spacing distribution is close to the Poisson distribution [6].




where

Kn(z,y) = exp [—%V( _ —V ] Z Py (4)

and P,(z), n = 1,2,..., are polynomials orthogonal with respect to the
measure exp [—V(z)], i.e.,

/ exp [~ V()] Pa(2) P(2)dz = bum. (5)

The correlation functions for the orthogonal and the symplectic ensembles
can be expressed in terms of the so-called skew-orthogonal polynomials (4, 7].
By the Christoffel-Darboux formula (8] the kernel (4) can be rewritten as

1 1 an-— z)Pn_ - P, -

Knlery) = exp [-3V(e) - (o)) 2t | PP = Pul)BuaB)]

(6)
where a,, is the coefficient of the term z” in P,(z) (Pa(z) = apz™+ ...). Fur-
ther progress in the explicit computation of the n-point correlation function,
in the natural limit N — oo, depends on the knowledge of the asymptotic be-
haviour of the polynomials P,(z) when n — oo. In principle, Ky(z,y) and
all the other correlation functions, in particular, the average level density
pn(z) of eigenvalues

aNl

[PN(z Py_1(z) — Pn(2)Pj_y(2)]
(7)

depend on the potential and on N. The universal behaviour is only expected
in the limit N — oo and after unfolding [1]-[5], i.e., after rescaling the eigen-

values by choosing a new variable § = £(z) from the relation

pn(z) = Kn(z,z) = exp [-V(z)]

% — onie) ®)

In terms of these variables the n-point correlation functions are still given by
Eq. (3) but with Kn(z,y) replaced by the kernel

Knlz(£1),2(62))]

?N 61,62 = .
) = e omlelEr)]

(9)



It is evident that these new ¢-variables will have by construction an average
level density equal to one, from which follows the name of this procedure -
unfolding the spectrum.

The hypothesis of universal behaviour of the matrix ensembles assumes
that in these unfolded variables and in the limit N — oo the above kernel
tends to universal function

?0(51’52) — sin [W(fl - 52)]

T(f] - fz)

independent of the V(z). (The corresponding limiting functions for GOE
and GSE are given {4, 5]).

2. For many potentials this conjecture has been already verified (see e.g.
(4, 9]). In fact, there exists a simple WKB-type ansatz for the asymptotics
of orthogonal polynomials of an "arbitrary” V(z) {10] that, as it is shown in
Ref. [14], leads to the scaling limit (10). However it can be proved only for
special classes of potentials.

The main ingredient of this asymptotics is the calculation of the mean
eigenvalue density py(z) as the function which gives an extremum of the
total measure (2) of the ensemble of Nz N matrices. Consider (2) written as

(10)

P(:Dl,Zg,..., ZN) = CeXp [-——.7:(:!:1,22,...,2]\,')], (11)
where N
F(@1,22, 0 zn) = 3 V(2:) - %zm lzi — 2] (12)
i=1 i#5

Assuming py(z) to be a smooth function of z only non-zero in the interval
a < z < bone has

b b rb
Flov@) = [ p@V(e)dz = 7 [* ["pn(a)inle - o'lon(a)dedz’, (13)
with the normalization condition
b
/ p(z)dz = N. (14)

The extremal function p(z) in (13) is defined by condition §F/§p = 0 that
yields

V(e)=7 [ pn()nle ~ tldt + C, (15)
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or, by differentiation,

P Z;ﬂ:(‘—t)dt - :lr-v'(z), (16)

where the symbol P denotes the Cauchy principal value. The general solution
of this singular integral equation (often called in this context the Dyson
equation) is well known (see e.g. {12, 13]) and can be written in many different
forms. For simplicity we assume that V(z) is an even convex function and
a = —R, b= R. In this case,

R
_ N 1 dt [RE—t2_,
e R R ey MO

where the value of R has to be determined from the equation

R
1 R+t , .
- Rdt,/—R_tV(t)_N. (18)

Integrating over = one obtains the useful relation

r , _N 3:.
/ pn(z) dz’ = . arcsm(R)+
R
1 , R? —te + \/(R? - t?)(R? - z?)
;7-5—/ dtV'(t)In — (19)
If for example V(z) = kv|z|*, where k is constant, then [9, 11],
_ N z
o) = 2 F), @)
with . .
a T
f@ =1 [ ==t (21)
and

_(Ny7T T(a/2) \'°
R"‘( 2k F(a+1/2)) ‘ (22)



For the gaussian potential V(z) = 72?/2

1
p(z) = ;r—\/2N - z2, (23)
which is the famous Wigner semicircle law [4].
Knowing p(z) the asymptotics of the N** orthogonal polynomial when
N — oo can be written as follows (see e.g. [10, 11] and [14])

z) — \/ECXP[ 4G cos [N (z)}, (24)

v R% — z?
r

Ry U | z
Pn(z) = 7r/= pn(z)dz' + Earccm(ﬁ;) -7 (25)

For certain purposes it is more convenient a slightly different asymptotics
when the M** polynomial is expressed in terms of quantities connected with
the N*» molynomial. If M and N are largeand M - N < M

where

Pry(z) — \/EW cos [‘PN(:::) +(M - N) atccos(R—zN-)] . (26)

A simple physical explanation of this ansatz can be found in [14]. Assuming
its validity and taking into account that ay-;/ay — Rx/2as N — oot is
easy to compute the kernel (6) (see [14])

cos [Ex(z)] cos [Bn(y) — #(y)] — cos [En(y)] cos [Bn(z) — #(z)]
n(z — y)y/Isin[#(z)] sin[¢(y)]]
(27)

where ¢ is defined from the relation £ = Ry cos ¢(z), y = Rn cos ¢(y). Now,
assuming /Ry ~ 1 and y/Ry ~ 1 but their difference |z —~ y| < Ry, one

has
sin [{(=) — £(v)].
m(z — y)

where d¢/dz = pn(z) has the meaning (up to the shift) of the mean staircase
function. After unfolding one obtains

sin (€ — 77)

Kn(€,n) ~ , 29
) @ = sl o @l %)

5

KN(:B’ y) =

KN(za y) ~

(28)




and z(£) as above is the inverse function of ¢{(z). If we suppose that the
mean density does not change much on the scale Af ~ 1, we can conclude
that this expression coincides with (10)2.

3. All this leaves the impression that the potential V'(z) plays a secondary
role and that in the limit of large N, after unfolding, the statistical properties
of any ensemble will follow universal functions. That this is not the whole
story has been shown in Ref. [15]. In this paper, it was considered the case
of a unitary ensemble, v = 2, with a potential

V(z)=Y_ In [1 + 2¢"*! cosh(2x) + q2"+2] , (30)
n=0
where z = sinh(x) and the parameter ¢ = exp(—8) with 8 > 0. The main
reason to choose this particular form was the fact that the asymptotics of the
corresponding orthogonal polynomials, the so-called g-Hermite polynomials,
can be calculated explicitly [16]. In Ref. {15] it was then obtained that in
limit N — oo the kernel (6) tends to

6, [m(€ —7); 2]
sinh [B(¢ — 9)/2]’

047 (€ +7); 9]

K(¢&m) = C(B)UBE, Bn)O(€, 75 p) (31)

@4(6577;1’) = \/;4(2”’6;1))04(27”7”’)1
y/cosh(x) cosh(v)
w,v) = cosh (5’2—9) ’
_ B
CO= g @y

where 8;(z,p) and 84(z,p) are Jacobi’s theta functions defined as in [20, p.
921}, 6:’(2:,?) = aai(z7p)/6z1 and p = exp(—27rz/,3).

Certainly, (31) is far from the standard expectation (10). In particular
when p < 1ie. B < 27? and ¢ = 75 this kernel can be approximated by the

simple expression
B sin[x(€ —n))

2r sinh [B(€ — 7)/2]’

3These considerations are valid far from singular points of p(z). On interesting phe-
nomena near such points see [18].

Kg(é,n) = (32)




from which follows that it tends to the GUE limit (10) only when 8 — 0. This
approximate expression was used in [15] to compute the nearest-neighbour
spacing distribution and it was concluded that with increasing 3 it tends to
the Poisson distribution typical of an uncorrelated sequence of eigenvalues.

The purpose of this note is two-fold. First, we clarify why the ensemble of
Ref.[15] gives a result different from the standard one, Eq.(10). We will also
show that the potential (30) belongs to a large class of potentials for which
the usual asymptotic estimates are, strictly speaking, incorrect. Second, we
shall compute directly the level spacing distribution of the eigenvalues in the
limit 8 — oo for this and similar ensembles showing that after unfolding they
tend to a limiting distribution independent of 8 which is neither the Poisson
nor the GUE distribution.

4. Before proceeding, we need a few facts from the theory of orthogonal
polynomials [17] which are well known but apparently never used in the
present context. Let us define the moments p,, of the distribution exp [-V(z)]

fn = /exp [-V(z)]z"dz, n=1,2,..., (33)

where for simplicity we have omitted the limits of integration. Given the
function V(z) all the g, are uniquely defined. The important question, is to
know if the inverse is also true, i.e., if given all the 4, it is possible to find the
unique function V(z). If the answer to this question is positive we say that
the "moment problem” is determined, otherwise we call it indeterminate.

It is a well known result that finite limits of integration lead always to a
determined moment problem (assuming that V(z) has no singularities). For
the infinite interval there exists a simple condition that states that in order
for the moment problem

fn = /oo exp[-V(z)]z"dze, n=12,... (34)
to be determined, it is sufficient that
e R
Z /"’2n2" = oo. (35)
n=]
On the other hand for the moment problem on the semi-infinite interval

fin = /0°°exp [V(z)]z"dz, n=1,2,... (36)
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to be determined, it is sufficient that

© 1

> pat = o, (37)
n=1
If the moment problem is indeterminate then there is function f(z) orthog-
onal to all z” such that

/exp[——V(:c)] f(z)z"dz = 0, for all n. (38)

Roughly speaking one can say that slowly growing potentials lead to inde-
terminate problems. Thus, for example, the potential V(z) = k|z|™ gives a
determined moment problem only when a > 1 for the interval (—o0,+00)
and only when a > ] for an interval (0,+00). That otherwise we have an
indeterminate problem follows from the two easily proved identities

/0‘J exp (—k|z|*) cos (klz[“ tan 7r2_a) z"dz =0foralln,ifa <1, (39)
and
/w exp (—k|z|*) sin (k|z|* tanra) z"dz = 0 for all n, if a < % (40)
0

In the same way, the identity

/Do exp (—lln2 z) sin (2—7rln z) z"dz = 0 for all n (41)
0 B B

shows that the moment problems of the potential V(z) = %lnz:c is always
indeterminate.

The importance of the above-introduced notions of determined and inde-
terminate moment problems lies in the fact that these two types of models
differ by the behaviour of their mean density pn(z) of eigenvalues of corre-
sponding random matrix ensemble in the limit N — oo [17, p. 50]. In fact, a
necessary and sufficient condition for the moment problem to be determined
is that as N — oo

pn(z) — oo. (42)
If the moment problem is indeterminate, then
pn(z) < o0 (43)
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as N — oo and the density tends to a continuous function of z.

It is evident that for indeterminate problems the asymptotic behaviour
of the corresponding orthogonal polynomials cannot be described by the pre-
viously discussed method simply because formulae from [10, 11] define the
level density and other quantities as unique function of V(z). But for inde-
terminate problems there are infinite many different measures giving exactly
the same orthogonal polynomials and there is no way to choose the "correct”
one.

The difference between ensembles whose potentials give raise to a de-
termined or indeterminate moment problem can be understood from their
limits as N — oo. After unfolding, the universal behaviour is expected in
the scale of £ of order 1, but if py — 0o as N — oo the corresponding values
of the old variables z tend to zero. Therefore one is forced to consider very
small values of z and the existence of universal asymptotic formulae seems
natural. On the contrary, for indeterminate problems even after unfolding,
the corresponding values of z are of order 1 and there is no reason why the
limit should be universal.

One can conjecture that the asymptotic formula of the behaviour of the
orthogonal polynomials given in {10, 14] can be applied only for determinate
problems. Asymptotic properties of indeterminate problems can be com-
pletely different from standard expectations.

The asymptotic behaviour of the potential (30) is the following

V(z) — g1112:1:. (44)
8
Therefore, the problem considered in Ref. {15] corresponds to an indetermi-
nate moment problem and the difference between Eq. (32) and the expected
value Eq. (10) is not so surprising.
5. Nevertheless, the smooth quantities even for indeterminate problems
can be described by the usual formulae. For example, let us define the smooth
mean level density by

Aeo)= 5= [0 ple)ds. (45)

ro—-;—A.'l.'

If the interval Az includes many eigenvalues but Az <« Ry it is still possible
in some cases to prove Eq. (16) but the local mean density of states will be
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different from this value. Below we shall present the explicit calculation for a
certain model that clearly illustrates this point. In some sense, it is possible
to say that for indeterminate problems there is no separation between macro
and micro scales.

We stress that for determined problems py — 0o when N — oo assuming
that the potential V(z) does not depend on N. Sometimes one considers the
N-dependent potential in such a way that the mean density of states tends to
N-independent limit. By analogy with the Gaussian case one often defines
the measure as exp(—NV(z)) (see e.g. [14]). If it is not just rescaling of
variables it can drastically change the asymptotic behaviour of all quantities
as it corresponds to a particular limit when certain coupling constants tend
to infinity with increasing N.

A rough description of indeterminate problems can be obtained using the
above-mentioned asymptotic formulae though locally they cannot be applied.
The main feature of indeterminate systems is that their mean density tends
when N — oo to a certain function independent of N.

Let us consider the example of the potential

V(z) = 2k|z|*. (46)

From Eq. (39) it follows that is an indeterminate problem when 0 < a < 1.
In fact, to find the behaviour of 5(z) at a fixed z it is necessary to compute
the function (21) as £ — 0. When a > 1, f(0) is infinite but if 0 < a < 1,
we find® that when N — oo

a T
p k—|z|*"!tanh —.
B(z) > k(e tanh 7 (47)
Another important example is a potential of the form
1. 2
V(z) = - 1n" |z| (48)
B
that when N — oo gives
N
Ry — 2exp(Tﬂ) (49)

3Note that x [ pn (y)dy equals the argument of the nul function (39) which is orthog-
onal to all powers of 2.

-
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and 5
p(z) - B’ (50)

We stress that Eqs. (47) and (50) are approximating formulae giving only
the smooth part of the mean level density. The exact mean level density has
oscillations which are washed out by the above method (see below).

Assume for the moment that the expression (29) is valid for indetermi-
nate systems and p(z) is the limiting mean density. In most cases one is
interested in the investigation of the statistical properties of a large number
of eigenvalues. As p(z) is an integrable function, in order to obtain many
eigenvalues one is forced to consider large values of (z,y) and (§,5). Now,
the important region in the kernels is the following

z,y>1, Af=¢—n~1 (51)

and

sin(A€) - (52)
7 [2(€) — z(€ — AE)] o [2(8)] p [2(€ — AL)]

I z(¢)—z({ — Aé)— Aédz/dé = o(A€) < 1 one can neglect the higher-order
terms giving as result the limiting form (10). This condition is equivalent to

g;—f < %2—: when ¢ — oo. (53)
For example, for the model (46), p(z) ~ z®~! hence z(¢) ~ ¢ and the above
condition is fulfilled if { « 1. This means that for this model it is possible
to observe a noticeable deviation from the standard result (10) only at small
values of {. But as there is only a small fraction of eigenvalues in this region,
the asymptotics in the bulk of the spectra tends to the usual one®.

From the above condition we can infer that in order to have a non-
standard behaviour it is necessary that the second derivative of z(¢) is of
the same order as the first one, which is true if, for example,

z ~ exp(f¢), (54)

or, in other words, if p(z) ~ 1/fz. But this is exactly the case, as we have
already seen, of the square logarithmic potential and, consequently, of the

K(¢,n)=

4There is an interesting limit when a — 0 as N — oo but we shall not consider it here.
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potential which has been discussed in Ref. [15]. Indeed, if we substitute (54)
into (29) we obtain the approximate expression (32).

These simple considerations clearly show why models with the potential
growing as log’(z) are different from the other ones. It is for these models
that the statistical properties of eigenvalues deviate from the standard ones,
not only near special points, but in the bulk of the spectra.

6. It is natural to ask whether Eq.(32) is valid for all values of 8. Note
that it was obtained only when 8 < 2x2. In [15] it was noticed that with
increasing B the distribution of eigenvalues tends to the Poisson distribution
but the analysis was based on the approximate kernel (32).

We shall show that for this type of models, when § — oo, the kernel
(6) tends (after unfolding) to a limiting function which is different from
any standard ensemble but which is the same for all three symmetry types:
unitary, orthogonal and symplectic.

We start considering the potential®

V(=) = 5 log’ Jal, (55)

for which the probability distribution (2) is
.
P(zy,z3,...,2n) = Cn exp (—E X:In2 |:c,~|) Iz — =" (56)
=1 1>7

The expression of the smoothed level density suggests the convenience of
introducing the new variables ¢; connected to the z; by

z; = 2sinh(B¢), (57)
whose probability distribution can be written as follows
4 &
P(¢),...én) = Cpexp (——ﬂ— 3 1n®|2sinh ﬂ{.l)
i=1

N
I1 12sinh B¢; — 2sinh B¢, 1 2 cosh ¢;, (58)

>3] =1

S5For convenience we have introduced the symmetry parameter v in the potential (see

(2))-
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where the last term comes from the product dz; ...dzx. When 8 — oo with
¢ fixed, z;, — oo and in the difference |z; — z;| the term with the largest
modulus |{;| will dominate. Let

6] < 6] < ... < En] (59)

Then in the limit of large 8 the probability distribution tends to the simple
function

P(1,....,én) = Cn exp [ 73262 +8 Z [6nl ((n — 1)y + 1)] (60)

n=1

or
N 1
P&y .én) = l:[ 20 vas P [‘Eg(lfnl -z (61)

where o = 1/4/298. As B — oo each |£,]| is distributed as the Gaussian
random variable centered at (n — 1+ 1/4)/2 with a half-width that goes
to zero when 8 — oo. It means that condition (59) is fulfilled and the
calculations become simple. In particular, the mean level density, equaled to
the integral over all variable but one, can be written as

N-
PO =5 3 e [~5lel - €77, (62)

where £ = (n 4 1/74)/2.
In the limit 8 — oo this density tends to a sum of § functions

lNl

p(€) = Z 5(J¢ — €). (63)

Therefore, in this limit, the eigenvalues are located on a crystal lattice struc-
ture whose sites are separated by a distance of one half.

The difference between the exact mean density and its usual approxima-
tion obtained by the solution of the saddle point equation (16) is clearly seen.
Eq. (16) gives only the smoothed part of p(£), but is unable to reproduce
the prominent oscillations of (62) and (63).
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The next logical step is unfolding the spectrum with the correct density
of states given by Eq. (62). Thus, we introduce the new variable 5

dn

Ef— = p(¢£), (64)
where, as 8 — oo, p(£) can be represented as the piecewise continuous func-
tion

1 1 1 1 1 .
p(€) = 2ovar P —ﬁ(lfl - 5(” -1+ ;))2 » if [§] € In (65)

and the boundaries of the intervals I, (n = 1,2,..., N) are chosen in between

two peaks . . . . . .
“m—14-)—=<i<(n—-1+=)4 -
2(n +7) 7 < <2(n +’7)+4
(The first and the last intervals being slightly different: 0 < I, < %—}— % and

AN-1+ %) — % < Iy < .) Choosing 7(0) = 0, one concludes that in the

limit # — oo when || € I, || € J, where new intervals J, are

(66)

n—1 n

Jn < <.
5 < <3 (67)
To find the probability distribution in the coordinates 7, it is necessary to

change variables which amounts to multiply (61) by [T p='(&)

N
P(’h»---ﬂ?N) =P [ﬁl(nl)a-"agN(nN)] IIIP_I [fi(ni)] . (68)

As 7(£) is a monotonic function, the sequence of inequalities (59) transform
to
Iml < lml <... <|gn]- (69)

Therefore, with this ordering of variables the probability distribution is given
by Eq. (68). But the ordering (69) does not give any information about the
distribution of the 7; inside the intervals J,,. The only restriction are the
above inequalities.

Besides these possibilities there is a special configuration when all 7; be-
long to intervals J; with the same number i:

M EJh’hEJh--"’lNEJN- (70)
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In this case in Eq. (68) all terms cancel and one obtains

P(m,...,nv) = L. (71)

But there are many other possibilities when at least one 7, belongs to the
interval J,, and n # m. The probability of this event is proportional to

exp [—alﬁ(lfnl B S ,;;)2 + ol ~ T 2_1;)2} -
1 2
exp [—ﬁ- (2|£nl —(m+n—-2+ ;)(m - n))] . (72)

By assumption 5, € Jp,, from which it follows that £, € I, i.e.,

Zmin < |£nl < Zmaz (73)

where Zpin = (m — % + %)/2 and z;g.; = (m — % + %)/2
But in this interval the function in the exponent of (72) is always positive.
Indeed if 2 < 2 < Zmg then

{ Gnm(Tmin) =3(m—n)(m-—n-1) f m>n
¢n.m(zma:) = %(n - m)('n —m — 1) fm<n ’

bom(z) = %(2: Cm—nt2- %)(m—n) > (74)
(75)

As m,n are integers m > n (m < n) implies that m > n+1 (m <n-—1) and
Smn(z) > 0 for z € I, and n # m. (m=1 and m=N do not give additional
difficulties.) Therefore the probability that the variable 5, will be in the
interval J,, with m # n has the factor exp(—f¢nm) and tends to zero as
8 — oo.

These considerations show that the model in the limit 3 — oo after
the unfolding (65) tends to the following very simple model. Let us have
N points. The probability distribution for the n** point is uniform in the
interval J, and has the shape shown in Fig. 1. All points are uncorrelated
and the joint probability is the product of individual ones

N
PN(yl)”')yN) = Upn(yﬂ)‘ (76)
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To rewrite the n-point correlation functions in the usual form (3) note that
for all possible configurations of y,

Py(yi,---»un) = (det[8n(ym)], ) - (7)

where ¢,(z) are functions obeying ¢2(z) = pn(z) which, evidently, forms an
orthonormal system of functions

N
2

[ $n(@)dm(e)dz = bpm. (78)

According to [4] all n-point correlation functions can be written in the usual
form (3) with the kernel

N
kh’(zy y) = z_:l ¢n(z)¢n(y)' (79)

The space structure of this kernel is presented at Fig. 2. Note that this
kernel and all correlation functions do not depend only on the difference of
the coordinates and, consequently they are not translational invariant as in
the classical cases [4]. Special care must therefore be payed when defining
standard quantities, like spacing distribution, etc.

Let us consider the nearest-neighbour spacing distribution of eigenvalues.
If E(t1,t,) is the probability that there is no eigenvalue in the interval (¢,,t,)
then the spacing distribution p(t,,t;), defined as the probability that there
is one eigenvalue at ¢,,¢; + dt; and a second one at ¢;,¢, + dt; but none in
between, can be computed as [4]

_ 0%E(t,t2)
Pti,t2) = oL, (80)
In our case from (80) it follows that®
N ty
E(tnta) = [T [1- [ ma(w)dy]. (51)
n=1 i

SIt can be also rewritten as det(1 — K, ;,) where the operator K;, ., is defined in the
usual way([4]

(Kouf)o) = [ " k(=) )/ (5)dy.
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Let t; =t, ¢, =t + s and the integer part of 2t equals n
n
t=o+7 and 0 <7< 1.

When n > 0, p(t,t + s) does not depend on n and has the following form
(see Fig. 3)

0, 0<s<l1/2-71

”(t’t“):{ 2 mj2-r<s<(mil)z—r (&2

For n = —1 it has a similar form but instead of having the first jump at 3 —
it jumps at s = 1 — 7. For n < —2 it takes the form (t = —|n|/2 + 1)

0, 0<s<l1/2-71
2" mf2-1<s<(m+1)/2—-7r m=1,...,]n]-1
P(t,t+3) = 22-Inl . n|/2 -T< s <((lnl+1)/2——r ’
0, (In|+1)/2-7<s
(83)
As now the nearest neighbour spacing distribution (and other statistical
quantities) depends on two variables, a care is needed to compare them with
the standard definitions. The most natural definition of a smoothed nearest
neighbour spacing distribution is just to compute it over all possible points
of the spectrum by fixing only the distance between two levels:

B( ) Z:(:/?-—A;/z 01/2 p(n/2 4+ 1,n/2+ 7 + 8)dr
)= — .
2'11\;/2-1\;/2 01/2 dT

(84)

When N — oo, p(t,t + s) for almost all n has the form depicted on Fig. 3.
Therefore as N — oo

p(s) = 2/;5 (T, + s)dr. (85)
It gives
_ 23, 0<s< 1/2
p(s) = { 2"(n+2-3), n/2<s<(n+1)/2 n=12,.... ° (86)

On Fig. 4 we display this function together with the next-to-nearest neigh-
bour spacing distributions ;(s) which give the probability that in the interval
3, s + ds there are exactly k eigenvalues.
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Important property of this result is that statistical distribution of eigen-
values in the limit B — oo after unfolding is the same for all three classes of
symmetry: unitary, orthogonal and symplectic . In this respect it resembles
the distribution of energy levels of the 3-dimensional Anderson model near
the metal-insulator transition {19].

7. Up to now we have discussed the model with the logarithmic squared
potential (55). To relate it with the model (30) considered in [15] it is nec-
essary to investigate the behaviour of the kernel (31) when 8 — oco. For
this purpose it is convenient to transform the theta-functions in it by usual

formulae: )

PR 1z z |,
8, (z; p) = i(—ir) ’“exp(—;;)f’x(;;p),

) — - _\—1/2 _i_zi f !
bu(ai) = (i) P exp(- 2 )0 51 ),
where p = exp(in7) and p’ = exp(—in /7).
For the functions in (31) p = exp(—2#?/8) and p' = exp(~S/2).
After this transformation the kernel (31) can be rewritten in the form

(€ +n)f1(€ — 1)

k(¢,n) = C(B)Q(BE, (8T
(¢,m) = C(B)UBE, Bn) 20 o2 sinh (B(E — 7)/2) (87)
with oo .
A= 3 e(-5n+ 3 -2p)
A= ¥ (ren-Lens Lo,
g
“B)= 2
As B — o0
C(8) — exa(B/9)/2,

f2(z) — exp(—B(n +1/2 — z)?/2),
fi(z) = (-1)" exp(-B( + 1/2 - 2)*/2),
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where i = [|z|] is a value of an integer n for which the expression (n+1/2—z)?
has a minimal value

A(z) = (1/2 - {|=[})* < 1/4

(Iz] and {z} are integer and fractional parts of z).
Finally, one has

K(€m) — exp(~5 161~ il + A+ m) + AGE ) - 226) - 2AGn))).

(88)
As 0 < A < 1/4, the dominant contribution comes from the region
m m
Kl =5 +8, Inl =~ +6n, (89)
where 0 < §¢,6n < 1/2. (Note that it means that [|2£]]=[|27]].)
Simple calculation shows that in these squares
1 ifén >0
K(f”l) = { (_1)[251, if 677 <0 (90)

For all other values of £ and 7 K(£,7) = 0.

Therefore, when 8 — oo the exact kernel (31) of the model (30) tends to
approximate expression (79) of the model (55). Important point is that the
latter was obtained only after non-trivial unfolding of the spectrum (62) con-
trary to the former one for which the mean density of states is automatically
constant. But it is easy to check that for the model (30) the measure itself
has prominent oscillations of the same type as oscillations in the density of
states (62) for the model (55) and both models are equivalent.

8. To check the accuracy of the above predictions we have performed the
Monte-Carlo simulations of the joint distribution of eigenvalues (2) for the
unitary ensemble’ taking as the potential the function

1
=25
which reproduces the asymptotic behaviour of the measure (30) and is non-
singular for small values of z.

V(e) = o logX(1 +2%), (91)

"We have checked that for other ensembles one obtains the same results.
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Eigenvalues in the domain |z| < 1 will feel a quartic potential V(z) =
z*/203, those outside this region ,i.e. when |z| > 1, will be under the influence
of a weak logarithmic confining potential as was discussed above. In the later
domain eigenvalues are spread from — Ry till Ry where for large N

N
Ry ~ 2exp(—2g)

which we have verified works well for N3 > 5.

This exponential dependence of Ry with the product N3 implies a rapid
spreading of the eigenvalues into the domain |z| > 1 even for relatively small
values of N and 8.

The usual saddle-point calculation as in (50) gives that in the limit N —
oo the mean number of levels between z; and z; tends to

N(z:) — N(z1) = %'Ez log |z2] — € log |z41]], (92)
where ¢; = sign(z;).

The asymptotic independence of a smooth staircase function and density
of states of N is a typical manifestation of the indeterminate character of
this problem. Actually we have observed that for 3 > 1, N = 20 is already
close to the asymptotic value.

We stress that this equation can be applied only when z; > z,. The local
density of states will have oscillations and will deviate from the standard one
(50) obtained just by differentiation of the above expression.

In order to gain confidence in the Monte Carlo simulation it is instructive
to start by considering the simple case N = 2 where the level spacing is given
by

P(s) = K"'Af(As), (93)

where

ft) = 2 /0 ~ exp|=2V(u + 1) — 2V (u — t))du,

and

K= [)w f(t)dt, A=K Om tf(t)dt.

In Fig. 5 it is shown that Monte Carlo simulations reproduce the above ex-
pression quite well. In particular we observe that the Monte Carlo simulation
is able to reproduce, in the case B = 30, the extremely sharp peak near the
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origin. Although the figure may suggest a linear dependence of P(s) for small
values of s, careful analysis shows that, when s — 0, P(s) — k(83)s?, and
when s — oo R(s) — exp(log s/8) for B — oo.

We come now to the case of large N and Fig. 6 shows the result of calcu-
lation of the mean (over many realizations) eigenvalue density as a function
of the variable

1
£ = Elogz (94)

in which, according to the standard arguments, the mean eigenvalue density
has to be equal to 1. We observe that the mean density of states has promi-
nent oscillations and only its smoothed value equals 1. The solid line in this
figure is the theoretical curve (62) and the agreement is quite good even for
8 = 20.

The existence of such oscillations modify all correlation functions. In
Fig. 7 we present the nearest-neighbour distribution for N = 20 and g = 80
taking into account only the "first” unfolding (94). The appearance of a
crystaline structure is clearly seen. But it will disappear after the unfolding
with the correct density of states (62). In Fig. 8 shows this phenomenon for
N = 40 and the same value of 8. The solid line is our piece-wise formula
(86). As above, the agreement is very good.

We have also considered the model with the same potential as in (91)
but with z; distributed not from —oo to +oo but from 0 to +o00. It corre-
sponds not to g-Hermite but to g-Laguerre polynomials {21). Repeating all
considerations, one concludes that p(s) should have the form:

s, 0<s«l1l

p(s)=4q 2—35, 1<s<2. (95)
0, otherwise

In Fig. 9 results from numerical simulations for the nearest-neighbour spacing

distribution are compared to Eq. (95). This result means that the asymptotic

behaviour, when ¢ — 0, of g-Laguerre polynomials is quite different from

those of g-Hermite ones.
9. In conclusion we stress few points.

o There are two types of matrix ensembles invariant with respect to all
rotations corresponding to determinated and indeterminate moment
problems.
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e One can conjecture (but not prove in full generality) that for the first
class of ensembles the asymptotics of orthogonal polynomials are given
by formulae (17), (24) and, consequently, after unfolding the eigenvalue
distribution will agree with the standard results. (Strictly speaking, it
was argued only for unitary ensembles. Most probably, it is also true
for orthogonal and symplectic ensembles but here one has to consider
the asymptotics of skew-orthogonal polynomials which is a more com-
plicated problem.)

e For the second type of ensembles corresponding to indeterminate mo-
ment problems the general local asymptotics of orthogonal polynomials
cannot exist as in this case the mean eigenvalues density tends when
the matrix dimension increases to a (non-universal) function which, in
general, has a structure even on the scale of a mean distance between
two eigenvalues. But the quantities smoothed over a larger interval can
be computed by usual formulae.

e Nevertheless, the eigenvalue distribution can be close to the standard
ones even for indeterminate problems as the deviation of the exact and
smoothed mean densities can be small and only a small number of levels

will feel the difference.

e Models with a weak logarithmic potential like in Eq. (55) are one of the
best examples of large deviations from the standard situation. In such
cases the mean density has large fluctuations and tends to a series of
§-functions when the strength of the potential decreases. All limiting
correlation functions can be computed analytically and after unfolding
the limiting distribution is the same for all three symmetry classes:
unitary, orthogonal and symplectic.

References

[1] C.E. Porter (editor), Statistical Theories of Spectra: Fluctuations, Aca-
demic Press (1965).

[2] O. Bohigas, M.J. Giannoni and C. Schmit, J. Physique Lett. 45 (1984)
L1015.

22



[3] O. Bohigas, M.J. Giannoni and C. Schmit, Phys. Rev. Lett. 52 (1984)
1.

[4] M.L. Mehta, Random Matrices, Second Ed., Academic Press, (1991).

[5] O. Bohigas in Chaos and Quantum Physics, Proc. of Les Houches Sum-
mer School of Theoretical Physics, 1989 (Eds. M.J. Giannoni, A. Voros
and J. Zinn-Justin), North Holland, Amsterdam, (1991).

6] M.V. Berry and M. Tabor, Proc. R. Soc. London A356 (1977) 375.
[7] G. Mahoux and M.L. Mehta, J. Physique I, (1991) 1093.

[8] G. Szego, Orthogonal Polynomials, American Math. Soc. (1966).
[9] L.A. Pastur, Lett. in Math. Physics, 25, (1992) 259.

[10] D.S. Lubinsky, Strong Asymptotics for Extremal Errors and Polynomials
Associated with Erdos Type Weights, Pitman Research Notes in Math.
202, Longman, Harlow, 1989.

(11] D.S. Lubinsky, and E.B. Saff, Strong Asymptotics for Extremal Poly-
nomials Associated with Weights on R, Lecture Notes in Math., 1305,
Springer-Verlag, Berlin, Heildelberg (1988).

[12] N.I. Muskhelisvili, Singular Integral Equations, Noordhoff, Groningan
(1966).

[13] S.G. Michlin, Integral Equations, Pergamon, N.Y. (1964).
[14] E. Brézin and A. Zee, Nucl. Phys. B402 (1993) 613.

[15] K.A. Muttalib, Y. Chen, M.E.H. Ismail and V.N. Nicopoulos, Phys.
Rev. Lett 71, 471 (1993).

[16] M.E.H. Ismail and D.R. Mason, Q-Hermite Polynomials, Biorthogonal
Rational Functions and Q-Beta Integrals, to appear in Transactions of
the American Math. Soc. (1995).

[17] J.A. Shohat and J.D. Tamarkin, The problem of moments, American
Math. Soc., Providence, 1963.

23



[18] C.A. Tracy and H. Widom, Commun. Math. Phys. 159 (1994) 151; ibid,
161 (1994) 289; ibid, 163 (1994) 33.

[19] E. Hofstefler and M. Schreiber, Phys. Rev. Lett. 73 (1994) 3137.

[20] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Prod-
ucts, Academic Press, Ney York and London, 1965.

[21] Y. Chen, M.E. Ismail, K.A. Muttalib, J. Phys. Condens. Matter 4 (1992)
L417.

FIGURE CAPTIONS

Figure 1. The individual probability distribution p,(z) for the model
(76) in the limit 8 — oo.

Figure 2. The support of the kernel (79). The modulus of the kernel
equals 1 inside the indicated squares. Qutside these squares the kernel is
zero.

Figure 3. The local nearest-neighbour spacing distribution p(¢,t + s) for
0<t<1/2.

Figure 4. The smoothed nearest-neighbour spacing distribution and the
smoothed next-to-nearest-neighbour distributions p(s).

Figure 5. The nearest neighbour spacing distribution for the case N = 2
and for # = 8 and @ = 30. The histograms are monte Carlo simulations. Also
shown the Poisson and the Wigner distributions, for the sake of comparison.

Figure 6. The density of states for # = 40 and N = 20. The Monte
Carlo simulations(the histogram) compared with the function 8,(2¢, p).

Figure 7. The nearest neighbour spacing distribution for 3 = 80 and
N = 20 before the unfolding with the exact mean level density.

Figure 8. The nearest neighbour spacing distribution for 8 = 80 and
N = 20 after the unfolding with the exact mean level density compared with
the theoretical spacing distribution. Also shown, the Poisson distribution
and the Wigner surmise, for the sake of comparison.

Figure 9. The nearest neighbour spacing distribution for 3 = 80 and
N = 20 compared with the theoretical spacing distribution for the case of
only positive eigenvalues.
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