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RECENT IMPROVEMENTS IN THE PERFORMANCE OF THE MULTITASKED
TORT ON TIME-SHARED CRAY COMPUTERS*

Y. Y. Azmy
Oak Ridge National Laboratory

P.O. Box 2008, MS 6363
Oak Ridge, TN 37831

Abstract

Coarse-grained angular domain decomposition of the mesh sweep algorithm has been imple-
mented in ORNL's three dimensional transport code TORT for Cray's macrotasking environment
on platforms running the UNICOS operating system. A performance model constructed earlier is
reviewed and its main result, namely the identification of the sources of parallelization overhead, is
used to motivate the present work. The sources of overhead treated here are: redundant operations
in the angular loop across participating tasks; repetitive task creation; lock utilization to prevent
overwriting the flux moment arrays accumulated by the participating tasks. Substantial reduction in
the parallelization overhead is demonstrated via sample runs with fixed tunning, i.e. zero CPU hold
time. Up to 50% improvement in the wall clock speedup over the previous implementation with
autotunning is observed in some test problems.

Introduction

Since its inception TORT has been geared towards solving large problems that typically
required mainframe platforms in the supercomputer class of the time.1" The advent of powerful
workstations in the late eighties that rival mainframes in speed and capacity led to porting TORT to
these new platforms. Nevertheless, with judicious programming to take full advantage of their
advanced capabilities, like vector processing, mainframes still lead workstations in performance
albeit with an admittedly diminishing margin. Extremely large production problems, over 3 million
cells with S16 angular quadrature, place a high demand on all components of a computer system
that is typically met only on large machines such as Cray supercomputers. For this reason we con-
tinued to support TORT on Cray computers running the UNICOS operating system, in addition to
several workstation platforms.

To enhance the performance of TORT even further it was equipped with multitasking capabil-
ity at the macrotasking level.2 Measured performance in this early implementation failed to produce
large speedup factors in spite of the extremely coarse grain of the parallel runs. Recently the multi-
tasking option* has been restructured to eliminate large chunks of parallel overhead thus providing
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speedup factors exceeding 5 in some modestly large problem configurations.3 The resulting multi-
tasking option included two types of domain decompositions, one across the right and left halves of
angular space termed the Octant Parallel method, the other across angular directions within an
octant termed the Direction Parallel method. The Octant Parallel method suffers a few drawbacks,3

and does not offer better performance over the Direction Parallel method with two participating
tasks. Hence the Octant Parallel method has been eliminated from TORT; the multitasking option
in TORT now refers exclusively to the Direction Parallel method even if not explicitly specified. In
spite of the good parallel performance exhibited by the multitasked TORT it was recognized that
the increase in parallel overhead with the number of participating tasks is large and attempts to
reduce it were initiated.

The first step in this process was to construct and validate a parallel performance model on the
Cray Y/MP that provided insight into the dependence of the CPU time on various problem parame-
ters as well as the number of participating tasks.4 The performance model enabled us to identify
bottlenecks that thwart parallel performance. These include: redundant operations in the angular
loop across participating tasks; excessive number of tasks created repeatedly; utilizing locks to
prevent overwriting the angular and spatial moment arrays accumulated by the participating tasks;
CPU hold time. Among these, the first three are under the programmer's control, while the last is
almost entirely set by the operating system depending on machine loading during execution. [The
user can set the CPU-hold time within the code but without runtime information on machine load-
ing this would amount to a gamble destined to failure].

In the second stage of the process of reducing the parallelization overhead we implemented
modifications aimed at circumventing the major contributors. Thus to reduce the redundancy in the
angular loop we analyzed its contents to determine dependencies, then using dynamic scheduling
techniques suitable for shared memory architectures allowed tasks to skip the loop for angles they
do not own. Then we eliminated the repetitive creation of tasks by constructing an infinite loop in
which the slave tasks constantly undertake additional work when available. Obviously this led to
additional synchronization points that contribute to parallelization overhead and potential CPU idle-
ness; however measured overhead suggests that these are more than compensated for by the reduc-
tion in total task creation CPU time overhead. Finally we avoided the use of locks by allowing
each participating task to accumulate its contribution to the angular and spatial moments of the flux
in private arrays which are subsequently summed across tasks after the mesh has been swept in all
angles of an angular quadrant. This requires additional storage space for the private arrays and
implies the serialization of the accumulation process of the flux moments. The former is typically
a small fraction of the total storage requirement in most applications while the latter is not too
severe a penalty since the resulting loops performing the summation across tasks are highly vector-
izable with relatively long vectors for most applications.

This paper is organized as follows. We start with a brief review of the parallel performance
model constructed and validated on Los Alamos National Laboratory's Y/MP rho machine. This is
followed by a description of the modifications implemented to reduce the parallelization overhead
from each of the three overhead sources described above. A subsequent section includes measured
performance results aimed at quantifying the effect of the reduction in parallelization overhead. The
last section summarizes this work and our main conclusions.

The Parallel Performance Model

One of the major difficulties in characterizing parallel performance on time-shared computers
such as the Cray is its dependence on machine loading during execution. Competition for resources
essentially reduces the possibility of overlapping execution of more than one participating task thus



suppressing speedup. Measured parallel performance for TORT on Los Alamos National
Laboratory's rho machine, an 8-CPU Cray Y/MP running UNICOS 8.0, accounted for this depen-
dence by repeating tests in a variety of machine loading regimes.3 These measurements also
revealed the strong dependence of the total CPU time consumed by all participating tasks, which
can serve as a gauge of parallelization overhead, on machine loading. Since it is practically impos-
sible to quantify machine loading to establish its influence on parallel performance in general, and
on parallelization overhead in particular, we aimed only at reducing its influence on the total CPU
time. This is accomplished by first observing that the sensitivity of the CPU time to machine load-
ing is largely due to the CPU hold time which by default is controlled by the operating system.
When machine load is light the operating system allows a process to hold a CPU until a task is
ready to execute on it thereby eliminating wasted time in re-engaging a new CPU; the time the
CPU remains on hold is counted towards the CPU cost of the process. In contrast, if the machine
load is heavy the operating system assigns any unoccupied CPUs to other processes thus reducing
CPU hold time but incurring additional delays in wall clock time. The characteristic behavior
resulting from this feature of Cray's multitasking is the opposite trend of the CPU and wall clock
times for a given problem using the same number of tasks, i.e. one increases as the other decreases.
In order to minimize the dependence of the CPU time on machine loading we set the parameter
holdtime to zero via a call to the system routine tsktune in a special version of TORT. As shown
shortly this results in measured CPU time that increases linearly with the number of participating
tasks that can be modeled as detailed below.

Since the main objective for the performance model is to quantify parallelization overhead we
construct it for the increase in CPU time over the sequential run of the same problem. As such the
parallelization overhead is comprised of all operations in the multitasked algorithm that are not per-
formed in the original sequential algorithm. We have identified six differences (not counting the
CPU hold time set to zero here) and we proceed to develop models for each if possible.

1. Slave task overhead: This is incurred in the creation of slave tasks, via calls to tskstart, and
when the master task waits for all slave tasks to complete execution via calls to tskwait.
These occur at the frequency of once per flux iteration, per row of computational cells, per
slave task. The total number of tasks, master plus slaves, n is selected by the user at run time
via the input variable ncpu. Denoting the slave task overhead Tslave, its dependence on the
number of tasks is represented by,

Tshve ( n ) = 4 z s l a v e I K J ( n - l ) , n > \ , (l.a)

where X is the total number of flux iterations for all energy groups^ K, J, are the number of
computational cells in the z -, and y -dimensions, respectively, assuming a uniform mesh for
simplicity, and xj/av£ is the CPU time consumed in creating a single task, and waiting for a
slave task to finish executing. The factor of 4 in Eq. (1) represents the four quadrants in
angular space because the mesh sweep in TORT is performed in the positive and negative (X
within the same task. The model parameter xslave was measured via a simple test code to be
of the order,

1slave = KT4 sec. (1-b)

Lock assign and release overhead: Locks are assigned only once per run and are not explicitly
released; they simply vanish upon termination of execution. The CPU time overhead for
assigning a lock was measured to be of the order 2X10"6 sec. Since there is only a total of
four locfo this contribution is negligible and is ignored in the model.

Lock arm and disarm overhead: Locks are deployed to protect shared arrays from overwriting
during the process of accumulating angular flux contribution to the angular and spatial
moments flux. Locks are armed, and disarmed via calls to routines lockon, and lockoff,



6.

respectively, at a frequency of once per flux iteration, per row of cells, per angular direction
with nonzero weight. Hence this source of parallelization overhead contributes,

Tiock\n) — "[ode ^lock X K J M<BJSO * (2-3)

where M ^ o is the number of angular directions with non zero weights, and Niock < 4 is the
number of locks utilized which is problem dependent. The CPU time penalty per lock was
measured to be,

xlock = 2.8X1CT6 sec. (2.b)

Lock collisions: Tasks encountering one another at an armed lock effectively execute in
sequence and can potentially waste CPU time if held in waiting until the lock is disarmed.
This source of overhead is run-time dependent and difficult to predict and model; hence it is
not included in the present model.

Memory management: This activity includes moving data from the master task memory loca-
tions to private memory locations to be used by the slave tasks, and creating pointers to all
necessary private arrays for each participating task. This is done once per flux iteration, per
row of cells, per quadrant in angular space, per task (including the master). Hence the contri-
bution to parallelization overhead from memory management is modeled by,

= 4 Xmtmar^ X K J It ,

where the measured value for the model parameter is,

= 2x10~5 sec.'•memory

(3.a)

(3.b)

Redundancy in the angular loop: The loop over angular directions in TORT involves several
initialization activities and index incrementing that must be performed correctly. When a task
executes these sections of the loop for directions it does not own this amounts to redundant
operations that waste CPU time. Modeling this contribution to the CPU penalty is compli-
cated by the fact that the CPU cost of the loop depends on whether or not the task owns the
angular direction, which is also different from the loop cost in the sequential run. Denoting
the CPU time required to span the angular loop once in each of the above three cases by
xown, Xnot, xseq, respectively, and noting that the angular loop is executed once per discrete
ordinate, per flux iteration, per row of cells, per task, the angular loop redundancy's contribu-
tion to the parallelization overhead is,

Tredundancy (n) = X K J M [Xown + (n - 1 )T^ , -Xje<? ] , « > 1, (4.a)

where M is the total number of discrete ordinates. The measured values for the model param-
eters are,

n = 7.4X10""6 sec. , xnot = 10~5 sec. , xseq = 8-lxlO"6 sec. . (4.b)

Note that in modeling this component we ignored the effect of the number of computational
cells in a row, because the loops involved in the angular loop overhead are highly vectoriz-
able.

Combining the modeled sources of parallelization overhead, Eqs. (1-4), we obtain,

T(n) = Tsiave(n) + Thck(n) Treduniancy(n) , n > 1. (5)

In order to validate the performance model, Eq. (5), we solved TORT's test problems 5, and
6, denoted TP5, and TP6, respectively, with autotuning and with fixed tunning using n = 1, • • • ,8.
Measuring the components of the parallelization overhead individually would have perturbed the
total CPU substantially so we measured only the total CPU time in the numerical experiments



described here. The measured parallelization overhead, i.e. increase in total CPU time from the
sequential run case, with autotuning and zero CPU hold time for TP5, and TP6 are depicted vs n in
Figs. 1, and 2, respectively. The difference between these two sets of points represents the CPU
time wasted in waiting at the machine loading level during the runs that produced these measure-
ments. In addition to the measured parallelization overhead, also plotted in Figs. 1 and 2 are the
model components, Eqs. (1-4), and the model total, Eq. (5). Comparison of the measured and
model overhead total curves demonstrates excellent agreement thereby validating the model; we
extrapolate this result to imply validation of the model components also.

Fig. 1. Parallelization Overhead for TP5: Measured Values with Autotuning (bullets), Fixed Tun-
ning (squares), and Model (solid line) Total, as Well as Model Components.

Measured, Autotunning
Measured, Fixed Tunning
Total Model = Redundancy
Slave Task Overhead
Memory Management

_ _ Lock Overhead

4 6

number of tasks, n

It is evident from Figs. 1 and 2 that the three major contributors to parallelization overhead
are the CPU hold time, redundancy in the angular loop, and the slave task overhead. Furthermore,
parametric studies with the performance model indicated the significant contribution of locks over-
head to the parallelization penalty in case of very large problems with high order angular quadra-
ture. As discussed earlier setting the CPU hold time to zero drastically reduces wall clock speedup,
hence no attempt is made to reduce its impact on parallel performance. In the following three sec-
tions we describe our approach to improve the other three major sources of parallel inefficiency.

Eliminating Redundancy in Angular Loop

Analysis of the angular loop in subroutine rowdp that implements the multitasking algorithm
revealed total independence of the individual instances in this loop. Since scheduling of the angular
directions to the participating tasks is assigned dynamically, we modified the loop to start with a
test on whether the task owns this instance of the loop index. [A task owns a direction index by
grabbing it from a global counter and incrementing it by one]. If the task owns the direction index



Fig. 2. Parallelization Overhead for TP6: Measured Values with Autotuning (bullets), Fixed Tun-
ning (squares), and Model (solid line) Total, as Well as Model Components.

Measured, Autbtunning
Measured, Fixed Tunning
Total Model = Redundancy
Slave Task Overhead
Memory Management

_ _ Lock Overhead

number of tasks, n

it sweeps the row along it, otherwise it skips to the end of the loop. As such the only redundancy
left in the loop is essential for its correct execution, and is indeed minimal.

Eliminating Repetitive Task Creation

The large contribution of the slave task overhead to the parallelization penalty is due, at least
in"part, to the large number of times the slave tasks are created. In particular, slave tasks are
created every time the master task sweeps a row of cells in all discrete ordinates in a quadrant in
angular space, and are released upon its conclusion. This is a direct consequence of the way multi-
tasking programming is designed, and the simplistic coding practiced so far for the purpose of facil-
itating the debugging and verification processes prior to optimizing performance. The purpose of
this effort is to reduce the contribution to overhead from the slave task creation by moving this
activity up the subroutine hierarchy and stalling the slave tasks until more work is made available
by subroutine row. In this scheme the slave tasks are created only once per run.

Our strategy in accomplishing this is to move the task creation as far up the subroutine hierar-
chy as necessary to encompass all mesh sweeps within a run, yet not too far up to miss variables-
setting as the input data are read. Hence we moved this, as well as several related activities such as
lock and barrier assignment, to the bottom of subroutine input. At such a point during execution all
pointers within the container array d have been computed; these are necessary for the slave tasks to
find needed data in their correct location, and to use private scratch room for their individual com-
putations. The slave tasks are created to run a new subroutine, slave, with two arguments: the con-
tainer array, d, and the pointer to the first position in each task's private copy of the comrowv
common block, lcomp. For the most part slave is an infinite loop that waits until the master task



calls ihe interface subroutine rowdp before doing the same. [Recall that the master task loads each
task's comrowv with correct data for the present row to be swept before it calls rowdp. This,
together with shared data that the slave tasks are able to locate through pointers to positions in d,
provides them all data necessary to proceed with a row sweep as before].

Clearly, correct execution of the multitasked code demands provision of correct shared data as
described above, and proper synchronization among the participating tasks. The four locks previ-
ously installed in rownvp are sufficient to prevent the overwriting of shared data by participating
tasks if left in place; however they are eliminated as described in the following section. Additional
synchronization points are defined via a total of five barriers, three of which are newly installed in
the latest version of the code. These introduce additional parailelization overhead and the potential
for wasted CPU time by tasks held in waiting at a barrier, but the working assumption here is that
this increase will be dominated by the reduction due to the fewer slave tasks created.

Eliminating Locks

This effort was initiated to enhance performance by eliminating the use of locks, and their
contribution to parailelization penalty which is substantial in problems employing high order angular
quadratures. Clearly correct accumulation of the flux moments requires an alternative mechanism to
avoid overwriting and it is understood that the reduction in CPU time will reflect the balance
between that mechanism's cost and lock overhead.

There are at least two strategies for accomplishing this goal that were considered. The first
strategy, which has been completed and is hereby being reported, is comprised of creating private
arrays for each participating task to accumulate its contribution to the flux angular and spatial
moments and PCR coefficients. These private arrays are created in subroutine input, and since they
do not overlap with one another the locks become obsolete and therefore have been completely
eliminated. The cost of implementing this modification is embodied in the storage of two new
private arrays. The first is of length 2xima, ima = maximum number of cells in a row, and con-
tains the PCR coefficients for each cell's right and left edges. The second is of length
(4 + lms)xima, 1ms = number of angular moments computed, and contains the cell-averaged, x-, y-,
and z-moments of the scalar flux, and the angular moments of the flux for each cell. These arrays
are reset to zero upon each entry into subroutine rowdp and contain the contribution of each task to
the.respective arrays upon return from it. In subroutine row a loop is executed to accumulate these
private arrays in their proper locations in memory.

It is evident from the description of the present strategy that the elimination of the locks alters
the iteration history and the converged solution only by as much as numerical imprecision, a fact
that was verified in all the test runs presented shortly. The main drawback of this strategy is that
the accumulation of the private arrays performed in subroutine row is sequential. This leads to the
second strategy, namely to multitask the accumulation process, which might be considered for
future implementation if deemed necessary to improve the parallel efficiency of large applications,
namely multitasking this process.

Testing and Measured Performance

Upon implementation of the improvements detailed above in TORT we repeated the numerical
experiments with TP5 and TP6 with fixed tunning to determine the effect on parailelization over-
head. In all runs we checked the converged solution and iteration history for the multitasked execu-
tion against their sequential counterparts and observed perfect agreement to all printed figures.



[This is in contrast to earlier results presented in Ref. 3 due to a bug that allowed the shared vari-
able pclr which contains the partial currents on the x=const faces to be overwritten asynchro-
nously].

The measured total parallelization overhead for TP5, and TP6 before and after the improve-
ments presented here are shown in Figs. 3, and 4, respectively. These exhibit a reduction in paral-
lelization penalty to 25-35% of its value before these improvements, implying successful achieve-
ment of our goal. However, comparing the measured penalty to the only remaining component in
the performance model, namely the memory management, reveals large disagreement. We conjec-
ture that this is mainly due to new contributors to overhead, mainly the barriers overhead and the
serial accumulation of the flux angular and spatial moments. Plans are underway to update the per-
formance model to account for these changes and identify additional candidates for improved per-
formance.

Fig. 3. Measured Total Parallelization Overhead for TP5 with Fixed Tunning Before (bullets), and
After (squares) the Improvements Presented in This Paper.
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Finally, in order to put the effect of these improvements into perspective we executed TP5 and TP6
with the original, and with S16 quadrature sets on LANL's Y/MP with ncpu = 1, • • • ,8, and we
plot the speedup in the measured Wall Clock times in Figs. 5, and 6, respectively. Comparing
these with the measured speedup factors reported in Ref. 3 on a typically loaded machine we
observe an improvement that is of the order of 50% for the eight-tasks case.

Conclusion

We used a parallel performance model constructed elsewhere to assess the sources of paralleli-
zation overhead and develop a strategy to reduce their impact on wall clock speedup. Specifically,
we targeted the angular loop redundancy, slave task creation, and locks overhead, as these are the



Fig. 4. Measured Total Parailelization Overhead for TP6 with Fixed Tunning Before (bullets), and
After (squares) the Improvements Presented in This Paper.
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major contributors to parallel inefficiency under the programmer's control. By practically eliminat-
ing these, but introducing other necessary sources of overhead, we obtained a net reduction in over-
head penalty to the range 25-35% of its earlier value. Furthermore, speedup factors that are 50%
higher than before have been measured for modestly large test problems.
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Fig. 5. Speedup in Measured Wall Clock Time on LANL Cray Y/MP for TP5 and TP6 with
Original Angular Quadratures After Implementation of Improvements Described Herein.
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Fig. 6. Speedup in Measured Wall Clock Time on LANL Cray Y/MP for TP5 and TP6 with
5 1 6 Angular Quadrature After Implementation of Improvements Described Herein.
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