
28 B Data Access and Storage

A litmus test is the ability to support a reasonable subset of the Object
Management Group's Query Services Specification with an interface that can be
supported consistently by both a lightweight object manager and a true object
database. We describe our efforts in this direction, and their connection with
efforts to implement the OMG's persistence services specification, which offers
a different (and in some ways, philosophically conflicting) view of how objects,
apart from databases, manage persistence.

ABS_44 BR9737149

Data compression in the DELPHI experiment
N.SMIRNOV (PROTVINO AND CERN)

E.Tcherniaev (Protvino and CERN)

An application of general data compression methods to the data involved in
the physics analysis at the DELPHI experiment is considered. The main goal of
this is to save disk space without essential changes in the data processing chain.

The DELPHI data processing chain consists of the following experimental
and simulated data types: RAW data, Full DST, Long or Leptonic DST, Short
DST, and mini DST. It is clear that the most essential data for physics analysis
(LDST.SDST and mDST) should be located on disks. At the present time this
requires 250 Gbytes of disk space. The 1995 data will require approximately the
same space. Such an amount of information produces definite difficulties even for
large computer centres like the DELPHI off-line analysis centre at CERN, and
for home labs it can be a real problem to keep all the information on disks.

One of the resonable ways to solve this problem is an application of
generaldata compression methods. Such an approach has been implemented
in the scope of the PHDST I/O package, which is being developed for the
DELPHI experement to provide a user-friendly access to the data with computer-
independent specification of external media.

The PHDST package uses the ZEBRA memory management system to
manipulate internal data structures and for computer-independent input/output.
The implementation of data compression in PHDST is essentially based on a
possibility of the ZEBRA package to read/write data not only from external
media (disk, tapes) but also from the internal memory of the program. Such a
possibility allows to introduce the data compression in very natural way without
visible changes in the user interface. For the user it is enough just to relink his
program with new library to be able to work with compressed data.

We considered several data compression methods as candidates to be used
in PHDST, but the final choice was more-or-less evident: it is the deflate/inflate
method available in GZIP and some other programs. Based on the GZIP's sources
two routines were implemented for in-memory compression/decompression, which
are suitable for use inside a FORTRAN program.

In addition to the technical details of the realisation of data compression in
the PHDST package, the article contains several tables with I/O timing and
compression ratios for different kinds of data. The compression ratio varies
between 3050possibilities for further improvement of data compression are also
discussed.

ABS.31 BR9737150

Data Analysis in an Object Request Broker Environment
D. MALON (ARGONNE)

E. May (Argonne), C. Day (LBL), D. Quarrie (LBL), R. Grossman
(Chicago)

Computing for the Next Millenium will require software interoperability in
heterogeneous, increasingly object-oriented environments. The Common Object
Request Broker Architecture (CORBA) is a software industry effort, under the
aegis of the Object Management Group, to standardize mechanisms for software
interaction among disparate applications written in a variety of languages and
running on a variety of distributed platforms. In this paper, we describe some
of the design and performance implications for software that must function in
such a brokered environment in a standards-compliant way. We illustrate these
implications with a physics data analysis example as a case study.

The promise of brokered-request object architectures is alluring. My software
will talk to your software, even if I know neither in what language your software
is written, nor where it runs. The idea is this: no matter what language you use
to implement your software, you describe its interface in a single, application-
language-neutral Interface Definition Language (IDL), and place an interface
description in a repository. You then register your implementation so that it
can be found by system utilities.

When I wish to invoke your software, I use standard utilities to find its
interface, and pass my request to an Object Request Broker (ORB). The ORB
looks for a server capable of handling my request ,its location may be transparent
to me. The ORB may instantiate such a server if none is already running. The


