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ABSTRACT
We have developed a new equivalent circuit model for space charge dominated
MITLs(Magnetically Insulated Transmission Lines). MITLs under high power
operation are dominated with space charge current flowing between anode and

cathode.

Conventinal equivalent circuit model does not account for space charge

effects on power flow. To discuss the power transportation through the high power
MITLs, we have modified the model. With this model, we can estimate the effects of
space charge current on the power flow efficiency, without using complicated particle

code simulations.

1. DEVELOPMENT OF THE MODEL
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Fig.1 Modified Equivalent Circuit of MITL
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In our modeling, as shown
schematically in Fig.1, once magnetic
insulation i1s established (I>Ic), the
equivalent circuit is replaced by modified
circuit that has space charge current path.
Here, lcis the critical current and G is
the conductance of space charge limited
current flows across the vacuum gap
when the insulation is not achieved.

To determine Ic, L, M and C
analytically, we use laminer flow theory
of space charge flow[1]. It assumes that
electrons move in straight trajectories
normal to the electric and magnetic field
and parallel to the axis. In this theory,
solutions for potential, charge desity
distribution, and fraction of the current
carried by the space charge are obtained
self-consistently as follows,
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Here I 1s the total (anode) current, Vo is the anode potential, Vm is the potential at the edge of
the electron sheath, and y, is the ratio of total (anode) current I and conduction (boundary)

current Ib on the cathode. When the solutions for y,, of equation (1) are not existing, we regard
as the magnetic insulation is not achieved and the minimum value (for V) of right side of
equation (1) is chosen for Ic.The distributing profile of space charge flow is assumed as,

N ir)= —cosh (IaIYm lné)

Space Charge Layer
(3)

where 1 1s coodinate of radial direction in the
cylindncal MITL, rc and ra is radius of the
cathode and anode(Fig.2), i(r) represents the
current enclosed with the cylinder of radiusr.
The outer radius of space charge layer is
expressed as

Yo — Ym Iqu

-1 ]
(6)

With these functions, effective inductance L,
Ls and mutual inductance M can be calculated
analytically, as follows,

r,=expflnr, -

— “0’ Vg
Fig.2 Cross section of cylindrical MITL L.= I n 7.
(7)
L= uol ra 1 z(r) I, pol i(n)- I”d
2“ " 27r
(8)
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where, Is is the space charge current: Is =1 - Ib = (1-1/y,)1, and { is the length of one unit of the

equivalent circuit.
The calculation of effective capacitance Ca and Cc depends on some assumptions. At first,

we must derive the expression for capasitance dC at radius r and gap distance dr,
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If the currents flowing in the next unit are primed, the current flowing this capasitance is i(r)-
i'(r). Using this current and an assumption of the square pulse, the voltage between the edge of
electron sheath and the cathode surface is

Vv, = fb %[: (i(r) - i'(r))dt

dC =

(11)
= f’b L(i(r) - i’(r))T
dC
" (12)
= f’ > 101 ¥ (z(r)—z (r))Tdr
‘ (13)

For simplicity, we assume that the ratio i(r) and Ib is nearly equals that of i'(r) and I'b, and Cc
is calculated from the next eq.

1 __ Vo j"’ 11,
—_— = i(r) dr/]
C. (]b 1,) . 2mell T b

. (14)
The capasitance of the vacuum region is obtained by
2meyl
Co=—>
In =
& (15)

The resistance R is electrode resistance when skin depth is about 105 m .

The conductance G of space charge limited current is usually the product of four functions(16).
They are a space-charge-limited Langmuir-Child conductance Gcrwhich depends on voltage
and geometry(17), an electric field dependent function f1 accounting for emission turn-on, a
smooth function of current f2 which is 1 for zero current and drops to O when I > Ic, and
correction function 3 for relativistic effects. Generally to say, the choice of these functions f is
arbitrary. In this report, we chose f1, f3 = 1 for simplicity.

G=GCGahhhts (16)
- 8n Sorc 2eV
ct 9(ra— rc)2 (17)
2. RESULTS

Fig.3(a),(b)are comparisons of simulation results between the equivalent circuit calculation
and the PIC simulation and the Flow Impedance model [2]. As shown in Fig.3(a), the effective
impedance (V/1) is reduced to about 80% of wave impedance by taking account of space charge
current[3] . Because the calculations of PIC and the Flow Impedance model are for positive
polarity, they are not strict comparison, but qualitative characteristics are fairly expressed with
our model. With some modifications, our model can treat positive polarity.

- 1024 -



V(V)

V(V)

3. CONCLUDING REMARKS

We have developed a new equivalent circuit model of MITLs which includes space charge
effects. Results obtained with this model are compared to those by PIC and Flow Impedane
model simulations. The qualitative agreement between the simplified calculation and the results
of PIC simulation is fairly good. The CPU time for the calculations is only one minute or so by

an average level personal computer (with Power PC603 75MHz unit).
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Fig.3 (a)The model and (b) PIC(dashed) and Flow Impedance model(solid) caluculations for
a step voltage in a 24.3(), 2m long MITL.
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1 Introduction

New applications of space tethers are discussed in relation with the idea [1] of an active
experiment, in the Earth’s radiation belts. Two long (about 10 km long each) strings of
radius r, ~ lmm made from cevlar and coated with a highly conducting material are
supposed to be tethered in opposite directions between the main satellite and two small
subsatellites, flying through the ERB in equatorial plane. High potential difference ¢, ~
1 MV is applied between the tethers, by means of a compact high voltage generator carried
by the main satellite. The tethers can effectively scatter the high energy particles into loss
cone, providing a control of particle life time in ERB. This high-voltage satellite system can
be used for precipitation of charge particles from man-made radiation belts, affecting the
ozone layer depletion and other active experiments in space such as ARAKS, CRRES, etc..
Electrodynamic aspects of the tethers and technical requirements for the generator are the

subject of the consideration below.

2 Structure of the sheath layer

The high energy particles are scattered due to the sheath layer formed around the tethers
by relatively cold plasma (n = 102 cm™3, T = 100 eV') existing in ERB. The problem of
evaluation of the potential profile is quite similar to that studied in the standard double
Langmuir probe theory {2]. Specific feature of our case is extremely high potential of the
probe p = e¢,/kT ~ 10* and high aspect ratio R = r,/r, ~ 108, that strongly effects on the
value of sheath radius r, (r, ~ 0.5 k) and current collected by the tethers. Since this range
of parameters is not widely discussed in publications, potential and current calculations are
reproduced below by making use of some rough iteration technics.

With high voltage applied between the tethers two oppositely charged sheaths are formed
around the strings. Positively charged string attracts the electrons and, correspondingly, the
area around it is negatively charged, while the ions are attracted by another string, which is
surrounded by positively charged layer. In stationary state electron and ion currents has to
be equal to each other. Since the calculations related to ion and electron sheaths are quite
similar, we will focus attention on the ion case only.

The typical ion velocity in the sheath area is v, = y/2e¢,/m; ~ 1.4 107 m/sec, transit
(bounce) time t, = 2r,/v, ~ 10~* sec, Larmor radius is large enough, rp; ~ 100 km,
that allows to neglect effect of magnetic field on particle motion. Electrostatic potential is,
therefore, axisymmetric with respect to the tethers and with the assumption of an infinitely
long string it varies along r only, where z axis of the cylindrical reference frame (r, ,z) is
chosen to be along the strings. The particle dynamics is governed by the integrals of energy

1on leave from Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia
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Figure 1: The graphs of U.y/(M, r) (normalized to e¢,) versus Inr/r, for a few values of M. The
lower curve (M = 0) illustrates a typical behavior of electrostatic potential in sheath area

E = m;v?/2 + e¢(r) and angular momentum M = muvrsin a. With the help of conservation
laws 3D problem of particle motion is reduced to 1D problem, which corresponds to the radial
motion with effective potential energy U.;;(M,r) = M?/2mr? + e¢(r). Analyzing graphs
of Uesy illustrated in Fig.1, one can classify particles in accordance with their integral of
motion into three main groups - locally trapped, absorbed and transit ions.

Ton distribution function is described by Vlasov-Maxwell equation with boundary condi-
tion at r = oo, implying that particles flying toward the string (v, < 0) have a Maxwell
distribution function: f = fn = ne(m/27kT)*2exp(—mv?/2kT), and boundary condition
on the string surface (r = r,) assuming that all particles reaching this surface become ab-
sorbed without any emission. Then, ion current density and ion density can be evaluated by
integration of distribution function over the relevant region in velocity space.

The critical issue of ion density calculation is the distribution function of the locally
trapped particles. If significant amount of these particles is accumulated and trapped in the
sheath area, then electrostatic potential turns out to be shielded in the narrow vicinity of the
string that strongly decreases scattering efficiency. Because of this reason some mechanism
(AC current or other one) for removing and pumping of trapped particles has to be provided.
In our further consideration we will analyze the most favorable case assuming that trapped
particle distribution function equals to zero.

With the help of some simplifications based on the fact that the maximum of U,y is well
localized near the sheath boundary, rpm.. ~ r, (see Fig.1), expression for ion density inside
the sheath area can be written as follows:

n‘-(r)=."4’°[ " daexp <~1 pe(r)sin’ >+ " daexp (P+P¢(T)(T2/TZ)sin2a>}

T |Ja ~ (r2/r?)sin’ a2 1 —(r?/r?) sin’
(1)

where a; = arcsin[r,/r], @y = arcsin[(r,/r)\/i ~ @(r)(R*—1) ], ¢(r) is a potential, nor-
malized to ¢,. Since electrons are strongly repulsed by the negatively charged tether, their
density is described by Boltzman distribution: n.(r) = ne exp[—p#(r)]. Then, Poisson’s
equation has been treated numerically yielding potential profile. First approximation for
¢(r) was found due to simplification that ion density is a const, ni(r) = n,. Making use of
initial condition on the string surface, ¢(r,) = 1, and varying initial slope at this point, the
sheath radius r, has been evaluated in the way allowing to satisfy with two other conditions,
@(ry) = do(ry)/dr = 0.

The profile obtained is then substituted into (1) to calculate corrected dependence n;(r).

Corrected function turns out to be const (n; = n.,) everywhere, except narrow vicinity
of the string ( 0 < In(r/rp) < 5), where ion density gradually decreases reaching value
n(r,) = ns/2 on string surface. Since this area makes small contribution in r.h.s. of

Poisson’s equation, second iteration for ¢(r) proved to be close to the first one, shown in
Fig.1. With the accuracy needed for the treatment of the scattering problem this function
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Table 1: The dependences of sheath radius r,, collected current (L = 10 km), and electrical
power on applied potential difference ¢,

can be approximated as follows:

T R L "

0 r>r,

Calculations of ion current density are not sensitive to the locally trapped particles.
Evaluating corresponding integrals, one obtains:

8 1/2 co /R
Jr =N (M) 2 (expp/ z? exp(—z?)dzr + R/P z? exp(—:rz)d:r) (3)
/P 0

Tmy r

In the case of practical interest, p >> 1, R >> 1, expression (3) can be simplified yielding total
current collected by the negative tether: J; = 2ennrpL(2e¢p/m;)}/%. Similar expression
for electron current is inversely proportional to m!/2. Equating electron and ion currents
yields potential of the strings with respect to infinity: ¢4 = ¢p/(1 + m;/m.) ~ 500 V,¢_ =
¢o/(1 + m./m;) ~ ¢,, showing that only negative string can effectively scatter high energy
component. The summary of the results related to electrical characteristics of the tethers is

given in Table 1.

3 The scattering of high energy particles

Because the scattering angle of high energy particles caused by their collisions with the
sheath layer is small, Fokker-Planck equation can be used for the treatment of particle losses
from ERB. In the reference frame (z,y, z), z axis is supposed to be along magnetic field
while the string is oriented along y axis. During a process of scattering the absolute value
of perpendicular velocity, ¥, = v.€; + v.€;, and the value of v, are conserved. Then, the
incrementof ¥, is: |A¥,| = 2vy sin(a/2), where a is the scattering angle in zz plane. With
the help of (2} a is found to be the following function of impact parameter p:

2e|¢y| 1 2771
o= Tn;{—ﬁ arctan y/r?/p? — 1 (4)

In order to find the rate of diffusion into the loss cone, 8 component of velocity increment
Avg = 2sin § cos ¢ is analyzed, where 8 is a pitch angle, ¢ is azimuthal angle in a spherical
reference frame. To evaluate average moment < A#? >=< Awvg? > /v?, which defines
the rate of losses, we take into account many microcollisions of test particle with the string,
resulting from it’s bounce motion along field lines and slow revolution of satellite in equatorial
plane. Then, averaging can be done by means of integration over p (—r, < p < r,), while v,
6 and sinp = z/r; are fixed, where z is a coordinate of guiding center, rp, = muvsinf/eB is
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protons protons protons electrons electrons electrons
H, km | Apss(sec™) | Eo, MeV | gotar(sec™) | Atoss (sec™) | Eg, MeV | quotar(sec™)

2000 4.3 x 109 64.2 1.8 x 1015 2.5 x 1017 0.28 1.4 x 1078
6000 9.9 x 1017 17.7 3.1 x 101° 1.2 x 107 0.22 3.7 x 1017
10000 7.8 x 1013 1.0 2.5 x 10% 2.3 x 10'8 0.3 1.5 x 1017

20000 1.9 x 107 0.25 8.0 x 107 9.1 x 10%° 0.57 2.5 x 107

Table 2: The characteristics of the distribution functions of loss-fluxes for the different
radiation belts ( ¢, =1 MV, L =10 km,r; = 0.32 km)

a Larmor radius.

< AP >=4(r - 2)

Lryy <2e¢, ) 1- (z*/r}) 5
2l GrR) \minR) (1 (epg)simta)”

Here [ is a length of magnetic field line, R, is a radius of satellite orbit.

Making use of Fokker-Planck equation the rate of particle losses from ERB has been
evaluated. It results in the energy distributions of loss-fluxes, which represent the number
of particles escaping from ERB per unit time and having energies greater than E. The
fluxes are averaged over the time interval which is much longer then the period of satellite
revolution over the Earth. They are also integrated over the area, thus, giving the rate of
total amount of particles falling down to the Earth’s surface. Using the experimental date
obtained through the measurements of the fluxes of trapped particles in radiation belts,
yields the tail of distribution function of escaping particles:

dN
- (> E)= Aloss(Eo/ E)? exp(— E [ Eo) (6)
where factors Ey and Ay, are given in Table.2. Note that in the case of proton belt localized

at the altitude H = 10000 km the distribution function (6) turns out to be: Ajoss(Eo/ E)®®.

4 Conclusion

The above calculations show that the loss rate dN(E)/dt depends on the distribution function
of the trapped particles and applied potential difference. This allows to use the scattering
center for the measurements of high energy particle distribution function. If potential differ-
ence can be varied in a wide range, both cold plasma and high energy particles’ parameters
can be measured with the same space tethers used as a diagnostic probe. For this purpose
tunable high-voltage 0.1 MV < ¢, <2 MV, low power 0.1 KW < P <10 KW, compact
(weight <1 T') DC generator is needed. Some other opportunities appear in AC case.
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Abstract
The type U(N) radio burst observed at February 23, 1993 is presented. Using a

1-D test particle model, this radio burst is modeled as an electron beam propagating in
a large coronal loop. For modeling of transport processes Coulomb collisions, mirroring
of electrons in the loop magnetic field, and scattering in zones of enhanced whistler wave
turbulence are taken into account. In the model electrons are injected upwards along
the loop axis in one leg. In the zone of whistler turbulence near the loop top the original
beam is splitted up into two beams propagating from the top back and forward into both
loop legs. It explains two widely separated radio sources observed during the descending

branch of U burst spectra.

Introduction
During the flare process electron beams travel along open as well as along closed

magnetic field lines and they generate type III or type U bursts in the radio spectra [1].
Type U bursts consist of a type III like rising branch that turns over into a descending
(reverse drift) branch. Occasionally a type U burst is followed by a new rising branch,
forming a burst spectrum reminding the letter "N”. Such bursts are called type
U(N) bursts [2]. All these radio bursts provide a diagnostic tool for studying particle
acceleration, injection and propagation in the solar corona.

Observations of the February 23, 1993 U(N) type radio burst

Figure 1A shows the type U(N) burst spectrum (spectrometer of the Observatory of
Solar Radioastronomy of the Astrophysikalisches Institut Potsdam in Tremsdorf) starting
18 min after a subflare in NOAA AR 7433 (N12 E40, Solar Geophysical Data). The main
features of the radio scurce configuration are shown in the one-dimensional scans and
the flux curves of the different subsources given in Figure 1B (Nangay multifrequency
radio heliograph of the Paris-Meudon Observatory, NRH). The gross source site pattern
confirms the model of an electron beam propagating in a closed coronal loop: a brightening
at a given site (the leg into which the beam is injected) during the rising branch in the
spectrum (U,, in Figure 1B) followed by a remote brightening during the descending
branch in the spectrum (Ugoun in Figure 1B). The time difference between ascending and
descending branches of the U burst at 236.6 MHz is 2.7 s. The N branch of the spectrum
(N in Figure 1) occurs nearly at the site of the descending U branch source with 4.2 s time
delay. Note that the N branch signature is more diffuse in comparison with the ascending
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U branch. The burst sources are located near a large coronal soft X-ray loop rooted in
NOAA AR 7433. For details and further examples see (7).

Looking more carefully to the details of Figure 1B some additional weak sources
become visible just in the beginning of the brightening of the main U descending and N
branch sources. These faint brightenings are situated definitely at the source site of the
rising U burst branch, this means near the beam injection site.
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Figure 1. The type U(N) solar radio burst on February 23, 1993 as observed by the
Tremsdorf spectrometer (Figure A) and by the Nangay multifrequency radio heliograph
(Figure B, top one-dimensional scan at 236.6 MHz; bottom the flux of the subsources in
arbitrary units (according to [7]). Continous line - ascending U burst branch; dashed
line - descending U burst branch; dotted line - N burst branch).

Model

For modeling of this observations we use a 1-D test particle model [3], in which the
trajectories of numerical electrons are computed in a large coronal loop. As concerns the
energy losses and the pitch angle changes of individual electrons three effects are taken
into consideration:
1. The energy losses and pitch angle scattering of electrons due to Coulomb collisions
with the surrounding plasma are calculated by a Monte Carlo method as in [4].
2. Magnetic mirroring effects are included similarly as in [5] considering the conservation
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of the electron magnetic moment.
3. Scattering at a zone of enhanced whistler turbulence was computed by Monte Carlo
method as suggested in [6]. We compute the coefficients of Fokker-Plank equation in the

following form:

w e 2n W'l By
Dy, = (2= (=) =
m.cn+1° B ~ 18364,

") e (- ), (1)

(1r2e 2n  Wltl

mec'n+1’" B ;
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18365,

¥ = (g5ag )" )sian()((n = DA = w1 "2 =2k 7). (@)
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Figure 2. The numerical simulation of the February 23, 1993 U(N) burst. The
trajectories of 20 numerical electrons in the distance vs time (A) and the frequency vs
time (B) plots for the case when Coulomb collisions, mirroring and scattering of electrons

at whistler turbulence zone near the loop top are considered.
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Now, let us model the presented observation. The length of the semi-circular
loop is estimated to about 1 solar radius from radio heliographic and YOHKOH
observations. Assuming radio emission at the fundamental of the plasma frequency the
density at the turning point of the loop has been determined from the U burst top
frequency. Considering the geometrical and density aspects we build the density model.
In varying the beam and the loop magnetic field parameters we fit the observed radio
data (spectrogram, radio source site distribution, and timing) with our model. For an
initial electron velocity of 10’ cm s™!, and a plausible loop top magnetic field of B =
5 G the results shown in Figure 2 are derived. Figure 2A shows the trajectories of 20
representative numerical electrons. Most of these electrons are propagating along the
loop and are reflected by the magnetic mirror on the opposite side of the loop. These
trajectories correspond to the gross characterictics of the observed U(N) radio burst
(Figure 1). For comparison with the observed radio spectrum (Figure 1A) see Figure
2B (the synthetic radio spectrum). To explain the 2 weak subsources observed after
the rising U burst branch at the injection site of the loop (Figure 1B) we consider the
whistler turbulence zone with an energy level W' = 5 x 107% erg cm™. In the present
example, the whistler turbulence region must be near the loop top, but closer to the
injection site as follows from the time sequence of the observed subsources (Figure
1B). As evidenced by Figure 2A, the zone of whistler turbulence backscatters some
electrons. The backmoving electrons should form a faint reverse drift burst (the first
weak subsource; ”1” in Figures 1B and 2A), some of these electrons are mirrored in the
injection leg of the loop and just form also a secondary faint N burst branch (the second
weak subsource, ”2” in Figures 1B and 2A). In the spectrum these faint additional N
branches are covered by the stronger main U(N) burst spectral signature.

Conclusions
1. We successfully applied our model to the U(N) burst observed at February 23, 1993.

2. Scattering of beam electrons at a zone of enhanced whistler wave turbulence near the
loop top is important for understanding the observations. Considering this scattering we
can explain the remarkable spatial splitting of some type U burst radio sources.
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Abstract

The investigation of a relativistic electron beam dynamics in the pulsar magnetosphere
is given. The equation of motion of the magnetospheric plasma particles is discussed.
As it turned out, if the particle radial velocity V; > c¢/v/2 (where c is the speed of
light), centrifugal acceleration changes its sign and the particle braking begins. Also the
stability of the magnetospheric plasma with respect to the radially oriented potential
perturbations is discussed and the possibility of the electrostatic field generation in the
pulsar magnetosphere plasma along the magnetic field lines is shown.

Introduction

As it is well known, pulsar is a rotating neutron star with the extremely high mag-
netic field, about 10'? — 10'® G. We use the perpendicular rotator model of the pulsar
magnetosphere. The magnetic field lines are frozen in the pulsar so they rotate together
with it as a whole. Because of the rotation of the star together with its magnetic field the
electric field is generated which has the nonzero component along the magnetic field lines.
This electric field ejects the particles (most of scientists think that these particles are elec-
trons) from the pulsar surface and accelerates them up to the relativistic velocities. The
particles, moving along the curved magnetic field lines, radiate y-quanta and when their
energy €, exceeds electron’s doubled rest energy 2mc? (e,>2mc?), v-quantum decays into
an electron-positron pair. This pair is also accelerated in the electric field and y-quanta
appear again which also decay into the electron-positron pairs, etc. Because of this cascad
process the relativistic electron-positron plasma is formed in the pulsar magnetosphere.
This plasma in its turn screens the electric field generated by the pulsar rotation.

We assume that the magnetic field lines are located in the plane which is perpendicular
to the pulsar rotation axis. We also assume that they are radial straight lines. This
assumption is justified because we discuss the processes in the magnetospheric layer the
thickness of which is much less than the curvature radius of the magnetic field lines.

As we have mentioned above, the particles move along the magnetic field lines which
are frozen in the pulsar and rotate together with it, thus the ”solid-body type” rotation
(corotation) takes place in the pulsar magnetosphere. This is the reason of the strange
dynamics of the plasma particles in the pulsar magnetosphere. In particular, as it turned
out, if the plasma particle radial velocity V; > ¢/v/2, the centifugal force changes its
sign and the particle braking begins. We show that because of the plasma particle bra-
king the electrostatic field generation along the magnetic field is possible in the pulsar

magnetosphere.
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Main Consideration

The equation of the motion of the magnetospheric plasma particles was discussed in the
paper [1]. We use the perpendicular rotator model of the pulsar magnetosphere and treat
only the polar cap. The magnetic field lines are considered as radial straight lines located
in the plane which is perpendicular to the pulsar rotation axis. This assumption is justified
because we discuss the processes in the magnetospheric layer the thickness of which is
much less than the curvature radius of the magnetic field lines. The magnetospheric
plasma particles move along the pulsar magnetic field lines and also rotate together with
them because the field lines are frozen in plasma. The electric field, generated by the pulsar
rotation together with its magnetic field, is screened by the magnetospheric plasma.

It is convenient to begin the discussion of the plasma particle motion in the noninertial
frame of a rotating magnetic field line,which is described by the metric

dS*=—(1 — Q*r))dt* +dr?, (1)

where  is the pulsar rotation frequency. Here and below we use so called geometric units
c=G=1

According to the Einstein principle of equivalence, we can not tell gravitation from
noninertiality. Thus for the description of particle motion in the pulsar magnetosphere
the 3+1 formalism can be used. This formalism is described in [2]. According to the 3+1
formalism, the equation of motion for the particle with the mass m and charge e has the
following form [2]:

—

10 ooy~ Va e = o=
=5 F(VYVIP=—r—+—(E +[VB]), (2)
where a is the so called "lapse function” and in our case a = /1 — §2?r2. Here and

below we use the dimensionless momentum 7 (7 is changed by p/m). We can rewrite the
equation (2) for the quantities defined in the rest inertial frame:
0P ,~=. ~ e, ==
E+(VV)p:—7aVa+;n—(E' + [V B)). (3)
Now let us discuss the motion of the plasma particles in the zeroth approximation of
the weak turbulence. In the limits of this approximation the quantities which are located
in the equation of motion can be presented as:

E:E‘o'*'l’i, §=.§o+.§1, 5=P—6+P—i, (4)

where E-"o, Eo and py are the basic terms and El, EI and p; are the perturbations in the
first approximation of the expansion over the parameter of the weak turbulence. The
small parameter in the approximation of the weak turbulence for the electron-positron

plasma is

E 2
1. (5)

mny

From the equation of motion in the zeroth approximation for the radial acceleration
one can obtain (see also [3]):

d*r Q% dr\?
7 R g [1—Q7r2—2(—£) ] (6)
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The equation (6) can be solved exactly. Using Jacobian function, the solution can be
presented in the form [3]:

‘/0,' Snt
=9 dnar’ ()

where Sn and dn are the Jacobian elliptical sine and modulus respectively [4], Vi, is
the particle initial velocity. From the equation (6) it follows that if the radial velocity
V. > 1/4/2, the acceleration changes its sign and the particle is not accelerated but braked
(see also [3]).

In the case V;—1, using the asymptotic expression for the Jacobian function one can

find [3]:

r(t)z‘—;z()—isinﬂt. (8)
For the radial velocity we will obtain:
Vo, =Vo;coslt, (9)
from which it follows that
Va=(Va, )+ (Vo) =const (10)

(because of the corotation V4, = §dr), i.e. no energy is expending on the particle braking
along the field line, the radial energy transforms to the transversal one.

As it was shown above, the relativistic plasma particles are braked in the pulsar mag-
netosphere, if their radial velocity V; > 1/+/2. It is very interesting to discuss the stability
of such a plasma with respect to the radial perturbations. In particular we discuss the
potential perturbations oriented along the magnetic field lines. The initial stage of the
perturbation development can be described by the equation which is easy to obtain from
(3) by substituting in it the expansion (4). For the first order terms one can obtain:

dp1 7y = 7 =\O22 L 0
E—-{-(VOV)Pl:(VoPl)Q T+ek. (11)

In order to eliminate the electric field E; from the equation (11), we use the Poisson
equation and the continuity equation in the first approximation of the weak turbulence.
After this, making the spatial Fourier transformation one can obtain for the radial per-

turbations:

8 . Poav2[e . : 2
[5{+1k'v°'] p1r= 20 gt-+zk,Vo, plrszn2Qt——u—;p—o—p1,sm29t, (12)
where w, is the plasma frequency. From the equation (12) we will obtain the dispersion
relation (see in detail [5]):
2 12y 2
2 Wp k, VO{
=———— 13
e (13)
We know that E;~ezp(—iwt) so one can conclude that when the second term in the right
hand side of (13) is larger than the first term the aperiodic instability is developing in
the pulsar magnetosphere, i.e. the field F, is increasing exponentially along the magnetic
field lines.
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The condition of the aperiodic instability development can be written in the following
form:

I < Xéﬂljg, (14)
Wp

where [/, is the charge separation scale in the magnetospheric plasma. For the typical
parameters of the pulsar magnetosphere the charge separation scale at the light cylinder
(the light cylinder is the surface on which the azimuthal velocity equals to the speed of
light V,, = Qr = ¢) is of the order 108sm.

Conclusion

At the end let us discuss the possible results of the instability. We can see that the
plasma motion along the magnetic field lines and at the same time rotation together with
them (i.e. corotation) causes the generation of the aperiodically increasing electrostatic
field under the condition (14). On the other hand it is selfevident that the corotation can
not take place on the arbitrary distances from the pulsar surface because on some distance
the azimuthal velocity will reach the speed of light V,, = r = ¢. So, the corotation must
be removed. The instability which was discussed above can contribute to the process of
the corotation removing, in particular the increasing electric field will cause the additional
braking of the particles of one sort and the decreasing of the braking of the other sort.
This fact will evidently cause the motion of the electrons and the positrons with respect
to each other, i.e. the increasing current 7 will appeare. So, according to the Maxwell
equation 47j= rotB, the magnetic field will be generated. The current will be directed
along the pulsar magnetic field lines, therefore the generated magnetic field will have the
azimuthal component B,. The particles move along the field lines so the corotation will
be removed. The electric field, i.e. the current _; will increase until the corotation law

removal.
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