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ABSTRACT

A basic stripline beam position monitor consists of four strips 90° apart inside a
circular beam pipe. To avoid signal distortion the strip to wall spacing must be
selected to make the strip impedance match that of the end connections. The problem
1s treated as two dimensional, quasi-TEM and reduces 10 an electrostatic case. The
impedance is first calculated using a finite element relaxation technique to solve the
Laplace equation. The energy in the field is then used to obtain the distributed strip
capacitance and impedance. This method requires a very fine grid and converges
slowly. In the second method the strip is assumed to be thin and is replaced by a set
of charge pipes. This method is applicable to the stripline geometry because the
cylinder can be replaced by a set of image charge pipes. A modified Green's function
is integrated over the charge pipes using a Gauss-Chebyshev quadrature. The result
is a set of simultaneous linear equations which can be solved very quickly. A monitor
had been constructed and the strip impedance and cross coupling coefficients had been
measured.
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Figure 1. The stripline to wall spacing must be set accurately to match the
strip impedance to the end terminations.
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INTRODUCTION

The position, intensity, and time structure of a proforf beam can be measured by
using a stripline monitor. The device consists typically of four striplines held inside
the walls of a cylindrical beam pipe, figure 1. The device constructed at TRIUMF uses
strips 0.062 in thick and 18 in long subtending 45°. The cylinder inner radius is
296 in. The beam at TRIUMF consists of a 23 MHz stream of proton bunches from
150 ps to 5 ns in duration, with an intensity of about 1 yA to 140 pA, respectively.
As each bunch passes through the monitor, it induces a signal of up to several
millivolts on the striplines. Signals are taken from the upstream ends of the strips
while the downstream ends are terminated in resistive loads. It is important that the
geometry of the striplines be designed so that the impedance matches that of the signal
cables and terminating resistors in order to avoid reflections. Though the repetition
rate of the beam bunches is 23 MHz, the short beam bunch creates a signal rich in
harmonics. Frequencies of up to several GHz are present for the shortest bunches.

THE FINITE DIFFERENCE METHOD

The impedance, for a given strip height, was calculated by using a computer
program called RELAX3D °. This FORTRAN program solves Laplace's equation for
user defined boundary conditions. In the case of the stripline monitor, the problem
was simplified to a two dimensional geometry, a cross section through the strips. The
area is divided into a square grid of evenly spaced points and an initial guessed value
of the voltage assigned to each point. While holding the voltages on the boundaries
fixed, the voltage on the rest of the grid points are allowed to relax. Relaxation
consists of replacing the voltage at each point by a weighted average of its
neighbouring points. One iteration has been done when the averaging process has
been applied to all points. To accelerate the convergence, over-relaxation is used.
The calculated change at each point is increased by a factor which is decreased from
2 to | over 10 successive iterations, constituting a sweep. Many sweeps must be done
before the voltage mesh converges to an acceptable accuracy. A FORTRAN program
was then used to calculate the total energy in the field from the voltages on the gnd.
From the energy, the capacitance and impedance are readily obtained.

The program was run for two cases. In the first case, only one strip had a voltage
on it, the others were held at ground. In the second case, all four strips were held at
the same non-zero voltage. The former case would approximate excitation by a very
misteered beam. The latter case would occur for a well centered beam and is the
more common situation. Runs were made for three values of strip to wall spacing.
The program was run with mesh sizes of 101 by 101, 201 by 201, and 401 by 401
points. The process is inefficient. Up to 6000 iterations per run were required for
convergence. At the highest resolution, the program requires about 6 minutes on a
VAXstation 4090. The results are shown in table I.



Table I. The results of the finite difference method.

h Number of 101x101 Gnid | 202x202 Gnid | 404x404Gnd

(inches) Active Strips C (pF/m) C (pF/m) C (pF/m)
0.169 | 116.6 1309 140.1
0.469 ] 591 620 633
0.769 | 432 439 44 8
0.169 4 116.6 127.6 136.1
0.469 4 59.1 56.0 572
0.769 4 432 359 36.6

The impedance, Z, can be derived from the capacitance per unit length, C, by
where ¢ 1s the speed of light. For an impedance of 50 Q the capacitance 1s 66.7 F/m.

Z = — (1)

It was found that a simple formula could be used to fit the results

C=e°—1—":fk (2)

where € is the permittivity of free space, w and k are parameters, and h is the strip
to wall spacing. This formula allowed the results to be interpolated. The value of h
for 50 Q impedance was found to be 0.428 in with one strip charged and 0.391 in with
four stnips charged.

THE MULTIPIPE METHOD
The multipipe method has been applied to problems involving flat strplines 2,
however 1t can also be applied to the cylindrical geometry of a stripline monitor. The
voltage on a sinp i1s the integral of the Green's function times the charge density over
all the stnips. The integral can be approximated using a Gauss-Chebyshev quadrature
method. The continuous charge distribution on each strnip i1s replaced by a set of
charge pipes located on the strips. From reference 3, we have

N
Vi, = Y d, G m+ n (3)
n=1

where x 15 the location of the m th pipe, V(x,) is the strip potenual, q, Is the
charge coetficient of the n th pipe, G 15 the Green's function and N is the number

of source pipes. This is a set of N equations in N unknowns. The ground plane, in



this case a cylinder, 1is replaced by the source pipe images. The Green's function
becomes

R GBOUICO (-x_:' ;Z) + GJ.MQQ (-x‘:l ;Z) ’ men
GanlX)) = — (4)
G!OUICO (0 ’ r.) + Gimg@ (x.l X.) ’ in =1

where r_ are constants dependent only on the number of pipes and sirip width.

As J.'L number of pipes per sinp increase, their radii decrease. In this note, the
pipes have been approximated by line charges and the charge coefficients are treated
as line charge densities. A line charge inside a grounded cylinder has an image line
charge of equal density, outside the cylinder, figure 2, where
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Figure 2. The image of a line charge inside
a grounded cylinder is an opposite line
charge outside the cylinder.

Together, the two line charges create an equipotential over the whole cylinder
radius with a voltage

= - 9. 4
u 2lle, In r (6)

where q is the line charge (C/m). The 2-D Green's funcuion of a line charge in free
space Is

% % = - 1 %-x!
G(x,x) S Te, 1n |x-x'| (7)

For convenience, the Green's function can be modified to leave zero volts at the
cylinder radius. For a given strip to wall spacing, a is constant and the voltage u can



be subtracted from the Green's function of the source and image

a

r

(il?) + Gimge(-i'?) + 1 . 1n

< 7
G(x,x’) 2lle,

= G,

source

(8)

The technique was applied to the two cases, one strip charged, the other three
grounded, then all four strips charged. For each case, calculations were made for 3,
4 and S pipes per strip, at three values of strip to wall spacing. The solution for five
pipes per strip, involving a set of twenty linear equations in twenty unknowns, takes
about ten seconds of computer time using Mathematica for Windows ~ on a 486 PC.
Most of the time is used to symbolically set up the equations and calculate the Green's
functions. Only about one second is used to solve the simultaneous equations. The
results are shown in table I1.

Table II. Results of multipipe method.

3 Pipe Pipes/Strip
(inches) Active Strips C (pF/m) C (pF/m) C (pF/m)

0.169 | 166.1 1524 148 .6
0.469 1 632 632 632
0.769 1 440 440 44 0
0.169 4 161.4 1485 144 8
0.469 4 576 57.6 57.7

4 36.5 36.5 36.5

Figure 3 is a contour plot of the upper right quadrant of the voltage field that
would result from the source and image line charges for four charged strips with five
pipes per strip. The circular equipotential running between the source and image
strips would represent the grounded pipe. The far field approaches that of the real
solution whereas the near fields form concentric circles around the line charges. A
truer representation of the field could be found by first fitting polynomials to the line
charge densities along the strips to give continuous charge distributions

P(x,)
\jl _(2x),
w

where w is the arc length of the strip, x; is the distance of the i th pipe around the
strip from its centre and P(x;) is a polynomial with an order of one less than the
number of pipes per strip.

aq; =

(9)
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Figure 3. Equipotential lines calculated using the
multipipe method. The scales are in meters.

COMPARISON OF CALCULATED RESULTS

Figures 4 and S are graphs of the capacitances calculated by the finite difference
and multipipe methods. The trends for both one and four charged strips are very
similar. The finite difference method converges from below while the multipipe
method converges from above. When the strip to wall spacing is small, the former
method requires a finer grid while the latter requires more pipes per strip. The latter
1s numerically faster to compute, however.
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Figure 4 A companson of the calculated results of the two methods for
one sinp charged.
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Figure 5§ Four stnps charged.



IMPEDANCE MEASUREMENT

A stripline monitor was constructed and tested in the leb prior to installation in
1988. An HP8753A network analyzer with an HP85046A test set was used in the
time domain reflectometer mode to measure the input reflection coefficient of a stnp.
The downstream end of the strip and both ends of the other three strips were
terminated. The network analyzer performs a frequency sweep and then
mathematically transforms the result into the time domain response to a step function.
Figure 6 shows the measurement for a strip to wall spacing of 0.405 in. The flat
sections al the beginning and end of the trace are the S0Q connecting cable and the
downstream termination, respectively. The nearly flat valley i1s the stnipline.
Mismatches are seen at the strip ends due to boron nitride suppport structures and
vacuum feedthroughs.
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Figure 6. The reflection coefficient of a stripline

measured using ume domain reflectometry.

The reflection coefficient of the stripline section was recorded for five strip to wall
spacings. The results were interpolated to find the spacing which resulted in a strip
relection coefficient of zero, which was 0.448 in. To make the tests easier, only one
set of strips with a fixed arc length of 2.012 in was used. At a strip to wall spacing
of 0.448 in the strips subtended 45.9°. This would imply, to first order, a "corrected”
spacing of 0.439 in for a 45° strip. Table III compares the strip spacing found using
all three methods. The measured value agrees with both calculated values within the
tolerance of the measurement.



Table 111. The strip to wall spacing for 50  impedance by various methods.

Method Stnp to Wall Spacmg ‘

for 50 Q (inches)
{ RELAX3D 0.428
| Multipipe 0.436
| Raw Measurement 0.448
f Corrected Measurement 0.439
| RELAX3D 4 0377
Multipipe 4 0.391

CROSS COUPLING COEFFICIENTS

The mutual capacitance Cij between the i th and the j th strip can be calculated as

ZQ’- (10)

C“j .=l
£

where N, is the number of pipes on the i th strip, q;, is the charge of the m th pipe,
V. is the potential on the j th strip, and the rest of the strips are grounded. The
capacitances, using five pipes per strip, are shown in table IV.

Table IV. The strip mutual capacitances.

Ci (pF/m) C2| (pF/m) C:” (pF/m)
(inches)
0.169 148.6 1.554 0.677
0469 63.2 2.341 0936
0.769 440 3.156 1.160
0.409 70.3 2175 0.885

The coupling, k, between two strips, when they are 1/4 wavelength long and have
the same capacitance to ground, can be calculated

k = m_c_{l.m (11)
Cy3 * Ciy

The coupling was measured using the network analyzer for h = 0.409 in, figure 7.
The length of the strips is 1/4 wavelength long at the top of the first peak (164 MHz).
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Figure 7. The coupling between adjacent strips
for a wall strip to wall spacing of 0.409 in.

Table V compares the calculated and measured values.

The cross coupling coefficients are useful for in-situ testing of the monitor.

Table V. The coupling coefficients of the strips.
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Measured
Coupling (dB)

Configuration Coupling (dB)
adjacent -30.5
opposite -38.1
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