Target values (Tv)			Reported values (R v)					
Place of exposure	Temp. ⁰C	t _{exp} h	Rn _{cone.} By/m ³	Institution	Number of samples	Range Bq/m	Mean 3	Bias = =Rv/Tv
Twilight Mine - Colorado	20	48 48 48 48 72	8592 8592 8592 8592 8592 8390	CLOR IBT AM NHI CMI ^{*)}	4 6 10 4 5	8303-9282 7250-7875 8272-9221 8611-9491 7413-8108	8750 7479 8749 9245 7821	1.018 0.871 1.018 1.076 0.932
EPA - Las Vegas laboratory	21	48 48 48 48	720 720 720 720 720	CLOR IBT AM NHI	4 4 6 4	730-784 530-700 726-801 751-833	760 688 764 776	1.055 0.866 1.061 1.078

 Table 2. International intercomparisons jointly organized by IAEA & US EPA in 1995. Results for the Canberra-Packard PicoRad systems.

*) CMI' own detectors and Quantulus - Wallac liquid scintillation counter.

2.14 MIGRATION OF ¹³⁷CS IN SOILS AND ITS TRANSFER TO MUSHROOMS AND VASCULAR PLANTS IN MIXED FOREST[°]

Z. Pietrzak-Flis, I. Radwan, L. Rosiak Department of Radiation Hygiene

PL9702362

Vertical migration of radiocesium in forest soils was extensively studied after the Chernobyl accident. It has been shown that downward migration of radiocesium is slow, and that the major part of this radionuclide is being retained in the organic horizons. Therefore, radiocesium is still easily available for mushrooms and vascular plants, thus entering into food chains of animals and man.

The purpose of the study was to determine the vertical distribution of radiocesium and potassium in mixed forest podsol soils and to evaluate a transfer of ¹³⁷Cs from soil to mushrooms and vascular plants. In calculations of transfer factors (TF), all the nutritive horizons were considered.

The study was performed at two locations in the Kampinos National Park (KNP), at Truskaw and Palmiry; sampling sites at both locations were \sim 200 m x 200 m each. In the mixed forest at Truskaw coniferous trees prevail,

whereas at Palmiry there are mainly oaks and hornbeams. In both locations the soil is of the podsol type.

Samples of soils and litter, mushrooms and vascular plants (leaves and stems) were collected from 20 sites at Truskaw and 36 places at Palmiry.

Samples of soil with horizons Of through B were taken using a 50 cm x 50 cm metal frame or a metal tube of 13 cm in diameter (surface area of 133 cm²). Horizons were separated and analyzed individually. Samples of mushrooms (*Xerocomus badius* and *Paxillus involutus*) and/or green plants (grass, *Calluna, Vaccinium myrtillus, Polypodium vulgare*) were taken from the same area as the soil samples or in close vicinity. By visual inspection it was estimated in which horizons the root system of the vascular plants was developed. To evaluate an anticipated increase of ¹³⁷Cs content locally under the mushrooms after their eventual decomposition, mushrooms and samples of soil were collected from beneath these mushrooms over a surface area of 133 cm². ¹³⁴Cs, ¹³⁷Cs and ⁴⁰K were determined by gamma spectrometry. Average deposition of ¹³⁷Cs in the soils from the KNP was

Average deposition of 137 Cs in the soils from the KNP was ~ 3 000 Bq m⁻². About 80% of 137 Cs was present in the Of and OhAh horizons, being in the OhAh horizon slightly lower than that in the Of horizon. After eight years since the Chernobyl accident, 137 Cs remained in almost equal amounts in Of and OhAh (in each about 40%), and it penetrated only in about 20% to the deeper mineral horizons (Table 1).

The high retention of 137 Cs in the Of horizons can be attributed to the high content of organic matter. A large difference in the 137 Cs content in the OhAh and Ah1 horizons appears to be typical for podsol. The migration of 137 Cs from the OhAh horizon is very small, demonstrating thus the high retention in the OhAh horizon.

Mean concentrations of the two cesium radionuclides and of potassium in mushrooms and vascular plants are given in Table 2.

As expected, the concentrations of radiocesium in the *Xerocomus* badius and *Paxillus involutus* were considerably higher than in vascular plants. The concentration $ratio^{137}Csl^{134}Cs$ in mushrooms and *Calluna* were similar to those in the Of horizon, while in the other plants they were higher.

	horizons at	Truskaw and Palmiry in 1994				
	Concentration	Content of	Concentration	Percentage of		
Horizon	of ¹³⁷ Cs	¹³⁷ Cs	of K	¹³⁷ Cs content		
	(Bq kg ⁻¹ dw)	(Bq m ⁻²)	$(g kg^{-1} dw)$	in horizon (%)		
		Truskav	N			
01	42 ± 17 ^a	5.7±3.1	0.9±0.4	0.2		
Of	151 ± 67	1363±364	4.7±1.4	41.6		
OhAh	71 ± 25	1325 ± 447	6.9 ± 0.8	40.4		
Ah 1	25 ± 10	457±169	7.8±0.4	13.9		
Ah 2	5.2 ± 4.7	95±38	7.7 ± 0.4	2.9		
В	0.8±0.7	32 ± 28	7.5±0.3	1.0		
Total		3278±590				
		Palmiry	1			
Ol	62 ± 26	<u>13</u> ±7	1.6 ± 0.6	0.5		
Of	143 ± 44	1150±496	4.4±1.0	39.8		
OhAh	49±19	1029 ± 440	6.0±0.8	35.6		
Ah 1	15 ± 7	475±240	6,4 ± 0.7	16.4		
Ah 2	4.5±2.4	179 ± 87	6.3±0.7	6.2		
В	1.1 ± 0.4	43 ± 4	6.3 ± 0.7	1.5		
Total		2889±711				

 Table 1. Mean
 ¹³⁷Cs and potasium concentrations and ¹³⁷Cs content in soil horizons at

 Truskaw and Palmiry in 1994

a - Standard deviation

Table 2: Mean concentration of ¹³⁷Cs, ¹³⁴Cs and potassium in mushrooms and green plants at Truskaw and Palmiry in 1994

Plant	¹³⁷ Cs (Bq kg ⁻¹ dw)	¹³⁴ Cs (Bq kg ⁻¹ dw)	K (g kg ⁻¹ dw)	Number of samples
Xerocomus badius Paxillus involutus	2588±1636 ^a 2920±1404	Truskaw 58±28 78±43	37±11 57±12	10 9
Calluna Grass	149±56 63±26	3.6±1.4 1.1±0.5	4.4±1.1 10±4	7 9

Xerocomus badius	2434±1081	49±28	39±8	26
Paxillus involutus	3685±1661	97 ± 63	48±15	6
Calluna	176±52	4.0±1.5	5.0±0.9	6
Grass	49±14	1.0 ± 0.5	6.3 ± 2.5	4
Vaccinium				
myrtillus	92±38	2.0±0.6	4.5±1.1	17
Polypodium vulgare	256±79	4.0±1.1	21±2.4	4

Palmiry

a - standard deviation

Different species of the understorey vegetation take nutrients from different soil layers. In this work, soil horizons for species were assessed on the basis of the depth of the rooting system. In case of roots penetrating through several horizons, the entry of radiocesium from each of the horizons depend on its availability in the horizon. It has been assumed that the avaiability was controlled by the content of organic matter (this content was used as a weighting parameter for calculating the weighted mean concentration).

Transfer factors were calculated as a ratio of 137 Cs concentration in mushrooms or green plants (Bq kg-l_{dw}) to the 137 Cs concentration in the horizons which have been assumed to be the source of this radionuclide. The largest TF occurred for mushrooms, being in the range from 17.0±1.8 to 25.8± 4.1. TF for *Polypodium vulgare* was 2.30±0.43, whereas for the other green plants it was from 0.44±0.08 for grass to 1.23±0.15 for *Calluna*.

The enrichment of the Of horizon in ¹³⁷Cs from the decomposing mushroom fruitbodies was evaluated and it was shown that this enrichment can significantly contribute to the horizontal displacement of radiocesium.

^{*}This work was supported by the Comission of the European Communities under Contract No. ERB F13 PCT 920050 BfS No FM 8026.

2.15 TRANSFER OF ²²⁶Ra TO PLANTS FROM SANDY SOIL

Z. Pietrzak-Flis, L. Rosiak, A. Bankiewicz Department of Radiation Hygiene

A soil-to-plant transfer was examined for edible plants (potato tubers, red beet, radish, carrot, parsley, kale, lettuce) and for fodder (grass, alfalfa). Plants were grown in a sandy soil on an experimental field.

²²⁶Ra was determined in soil, in edible parts of vegetables after their careful washing, and in unwashed grass and alfalfa. ²²⁶Ra was determined by