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ABSTRACT

We evaluate the ground state properties of a charged Bose gas at T = 0 within the quan-

tum version of the self-consistent field approximation of Singwi, Tosi, Land and Sjolander

(STLS). The dynamical nature of the local field correction is retained to include dynamic

correlation effects. The resulting static structure factor S(q) and the local field factor Ci(q)

exhibit properties not described by other mean-field theories.



I. INTRODUCTION

The homogeneous gas of electrons interacting via the Coulomb potential is a useful

model1 to understand a vast range of physical phenomena. The continuing interest in this

model stems partly from the realization of physical systems in the laboratory which lend

themselves to .such a description, and partly from theoretical reasons to understand the

basic properties of a many-body system. Similarly, a system of charged particles obeying

Bose statistics under the influence of Coulomb interactions is important in determining the

effects of statistics and correlations in comparison with the electron gas. Charged bosons

are the subject of renewed interest because of their possible role in some high-temperature

superconducting systems2 and in astrophysical applications.3

In the study of many-body properties of charged particles, the self-consistent field method

of Singwi et al.4 (STLS) provides a means of going beyond the random-phase approximation

(RPA) in a simple and physically motivated way. It has been successfully applied to electron

gas systems in various situations including different dimensions4'5 and also to the charged

Bose gas.6'' The local field factor introduced in the STLS scheme to describe the correlation

effects depends on the wave vector only. This is because classical distribution functions

were used in its original derivation. A quantum version of the STLS approach (qSTLS) was

developed by Hasegawa and Shimizu,8 which allows for a frequency dependent local field

fa "tor. A different formulation (with similar results) was put forward by Niklasson,9 who

al <o elucidated the relations among various related approximations. Numerical calculations

on the self-consistent equations for a three-dimensional (3D) electron gas were provided by

Holas and Rahman.10 A detailed corresponding study in a 2D electron liquid has recently

appeared.11 Schweng et a/.12 have investigated the frequency dependence of G(g,u>) within

a finite temperature formalism. The main finding of all these efforts has been that the

quantum effects embodied in G(q,u) change significantly the short-range correlations.

In this paper, we apply the qSTLS method to the study of a charged Bose gas in 3D. Our

main motivation, apart from possible applications, is to test for charged bosons the efficiency



of the qSTLS method, which is demonstrated to yield accurate results for electron systems.

We compare our results with more elaborate hypernetted chain (IINC) calculations1' and

with quantal Monte Carlo (QMC) results.14'15 Both in the HNC calculations and in the

QMC simulations static local field corrections have been extracted. In this work our aim is

to investigate the dynamical nature of G(q,uj). The frequency dependence of the dynamic

G(q,u) has recently been emphasized in some theories dealing with superconductivity."'

The paper is organized as follows. In the next section we outline the qSTLS method.

In Sec. Ill we present our self-consistent calculations, compare the results with other works

and discuss the effects of G(q,u>) on certain physical quantities. We conclude with a brief

summary in Sec. IV. In the Appendix, we provide some technical details on the calculation

of G(q,u).

II. THEORY

We consider a system of negatively charged bosons embedded in a uniform positive

background, interacting via the Coulomb potential. The system is characterized by the

dimensionless coupling constant ra — ro/a.B, where r0 = (3/47rn)1^' is the average inter-

particle spacing, as = lime2 is the Bohr radius and n is the number density (we use

h = 1). The bare Coulomb interaction is given by V(q) = 4ne2/q2, and at the lowest

order (in the Bogoliubov approximation) the static structure factor of the system is S(q) =

(1 -f 2nV(q)/tq)~1/2, where e, = q2/2m is the free-particle energy. Using the Feynman

expression for the excitation spectrum we can determine the collective modes of the system

to be u>pi = [e2 + 2neqV(q)]1^2. The lowest order theory (also known as the uniform limit)

neglects correlation effects, which become increasingly important at large coupling strength.

In the STLS approximation the density-density response function is given in the form of

a generalized random-phase approximation (RPA),

where Xo(<7,<*0 is the zero-temperature dynamic susceptibility of a noninteracting Bose gas
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Xo ?,") = * , (2)
(u; + IT])2 - e,2

defined in terms of the density n and free-particle energy tq (77 is a positive infinitesimal

ciiantity). The effective interaction Veff(<7,u>) — V{q)[\ — G(q,w)] is defined in terms of the

dynamic (frequency dependent) local field factor

for which we give an explicit formula in the Appendix. In the above expression for G(q,u>),

the static structure factor S{q) is related to the dynamical susceptibility through the

fluctuation-dissipation theorem

X{qu>), (4)
nit Jo

where we have used the analytic continuation of the response function to the complex fre-

quency plane followed by the Wick rotation of the frequency integral. This procedure is

more effective in capturing the plasmon poles dominating the response of a Bose fluid.

The derivation leading to the expression for the frequency dependent local field factor

G{q,u>) is similar to that in the static STLS approximation. Instead of using the classical

distribution functions, a set of equations of motion for the Wigner distribution functions are

considered. The hierarchy of coupled equations are terminated by making the assumption

that the two-body Wigner distribution function may be written as a product of one-body

distribution functions and the pair correlation function g(r).8'10 The frequency dependence

of G{q,u) comes from the factors \0(q,q';uj) and Xo{q,u) which are the inhomogeneous

and homogeneous free-particle response functions, respectively. We give the definition of

\o(q, q';u>) and a simple quadrature formula for G(q, iu) (evaluated on the imaginary fre-

quency axis) in the Appendix. We iterate between G(g, iu>) and S(q), which uses x(9)«w)

and in turn G(q,iuj), until self-consistency is achieved.

It is known that the STLS approach fails to fulfill the compressibility sum-rule, namely

the compressibility evaluated directly from the ground-state energy is not equal to that



calculated using the long-wavelength limit of G(q,0). This deficiency may be overcome

within a construction given by Vashishta and Singwi17 and may be applied to the present

problem of dynamic local field corrections as shown by Holas and Kahman.10 Since our

primary aim is to investigate the qualitative effects of frequency dependence of (7(</,u;), we

consider only the qSTLS scheme.

HI. RESULTS AND DISCUSSION

Since the dynamic local field factor depends on the static structure factor within the

qSTLS approximation, and the latter depends on the former through the fluctuation-

dissipation integral, they have to be calculated self-consistently. Although the frequency

dependence of G{q,u) makes the calculation slightly more demanding than the usual STLS

method,6'7 it is still manageable and we performed calculations for several densities until

convergence was achieved to an accuracy of 0.01%.

We first discuss the static structure factor resulting from our self-consistent calcula-

tions. The static structure factor of the 3D charged Bose system is shown in Fig. 1, for

various r, values. The correlation effects (treated here dynamically) induce a vast difference

with increasing ra compared to the RPA results (when G(q,oj) = 0) and the static STLS

results.6 At high densities (small r3) S(q) is similar to that obtained within the static STLS

approximation.6'7 As ra increases a peak structure starts to appear with increasing ampli-

tude. Such peaks in the static structure factor were observed in the calculations of Apaja et

a/.13 in which the hypernetted-chain approximation was used, and in the Monte Carlo simu-

lations of Moroni et a/.15 We attribute the peak structure in S(q) to the inclusion of dynamic

correlation effects. The static STLS calculations of Conti et al.7 also show the emergence

of a peak in S(q) at large ra, when the self-consistency condition on the compressibility

sum-rule is imposed.

In Fig. 2 the probability of finding a particle at distance r away from a particle situated

at the origin, namely the pair distribution function g(r) is shown for several r, values. We



use the Fourier transform

</('•) = i + 2 ^ : / 0 ° ° d k k s ™ (kr) [S(k) -1] (5)

to find that g(r) remains positive for r, < 12. This is a large improvement over the RPA (or

Bogoliubov) result. The g(r) within the present qSTLS approach starts to become negative

for small values of 7- as the coupling strength increases. We point out, however, that in the

present scheme only the dynamics of the Pauli correlation hole is taken into account, but

not the Coulomb correlation hole which becomes dominant at low densities.11

From our self-consistent calculations of the correlation effects we obtain the frequency

dependent local field factor. Fig. 3 shows G(q, iu) as a function of frequency on the imaginary

axis. We note that G{q,iu) is a smooth function of w, tending to a constant for fixed values

of q, and most of the frequency dependence is confined to the low frequency region. The

QMC simulations can only reveal information on the static local field, thus our frequency

dependent results for G(q,u>) present a different aspect of the correlation effects.

The real and imaginary parts of G(q,u>) may be obtained from G(q, tu>) by the analytic

continuation iu —> u> + if] in Eq. (3). We show in Fig. 4 the real and imaginary parts of

G{q,u>) as functions of frequency at rs = 10 and qr0 — 2, 4 and 6. We observe that both

the real and imaginary parts of G(q,u) oscillate as a function of u>. One can show that for

fixed q and large w, the local field factor behaves as

lim G(q,u) = GSTLS(<7) + O{l/u2), (6)

a property also known to exist in electron fluids.10 Thus, Im[G(g,u;)] vanishes and

tends to the value given by the static STLS approximation for large u>, as illustrated in

Fig. 4. In the static limit, i.e. u; = 0, Im[G(q,0)] vanishes, and the real part satisfies

lim,_>.ooG(g,0) = 1 - g(0).

The zero-frequency limit G{q, 0) is of interest in most practical applications. Within the

dynamical STLS theory G(q, 0) is given by

- ! ] • (7)
q + k



In Fig. 5 we employ the above expression using our self-consistent S(q) (solid lines) and

that coming from the QMC simulations15 (dashed lines). We observe that both calculations

agree quantitatively for qr0 ^ 2 and qualitatively for qr0 ^ 2. The differences originate from

the respective structure factors. G(q, 0) calculated in this manner is very different from the

results of static STLS approximation6 and also from G(q) of QMC simulations.15 We note

that in the QMC simulations G(q) is evaluated directly by the response of the system to an

external perturbation,without using the static structure factor S(q). It remains interesting

that G(q,0) for charged bosons displays rather different behavior than the QMC results,

whereas in the electron gas case10 it provides a meaningful estimate.

The high-frequency limit of our G(q,u) also yields a frequency independent local field

factor Goo(q). Our self-consistent results for G^q) are compared with the QMC and static

STLS approximations in Fig. 6. We observe in Fig. 6 that the qSTLS approximates the local

field factor at small q, but is not able to reproduce the large q behavior of the QMC results.

This is not surprising since the large-q nature of G{q) mainly comes from the momentum-

distribution (or kinetic energy of the interacting system), which we have assumed to be

a ^-function. However, our results capture part of the essential features seen in the more

precise theories.13'15 For instance, the peak structure in Goo{q) can be identified as in the

QMC and HNC calculations around qr0 « 4, where the first star of the reciprocal lattice

of the body-centered cubic crystal would lie. STLS-type mean-field theories without the

frequency dependence6 tend to display a monotonic behavior in G(q). Thus, it appears that

our Goo(q) may be useful as a good estimate of the true G{q,0), i.e. as extracted from QMC

simulations.

In Fig. 7 we plot the plasmon dispersion curve w, scaled with the long-wavelength

plasmon energy u>pi = (12r,)^2 at various r, values. u>, is obtained by solving for the

pole of the dynamic susceptibility given in Eq. (1), which includes the frequency depen-

dent local field factor. We compare our results with the plasmon dispersion in the RPA

[u,*PA = (12r,)l/2(l +q4/l2ra)
lt2] and with the static STLS calculations.6 For small <?, the



plasmon dispersion obtained from the present dynamical theory is very similar to that of

static STLS. The roton minimum appearing at intermediate q, on the other hand, is more

pronounced and shifted towards the low-q side. At large q the qSTLS results approach the

RPA faster than the static STLS. The differences between the qSTLS and the static STLS

approximations become more marked with increasing r,. Since our frequency-dependent

local field factor has an imaginary part, we also calculate the damping 7,, of the plasma

excitations by solving for the imaginary part of the equation

1 - V(q)[\ - G(q,uq - i7,)]Xo(g,u>, - 17,) = 0. (8)

Carrying out a standard analysis18 which assumes that 7, << u>,, we find that the damping

is given by

- Re[G])Im[Xo] - Im[G]Re[xo]
'

(9)

7, calculated according to the above expression is of the order of 0.5 x 10~3u;pi for qr0 ;$ 2.5.

In general, the excitation spectrum of a charged Bose gas contains multipair excitations1

in addition to the plasmon mode. Our approach neglects multiparticle correlation effects

since the lowest order polarization diagram described by Xo{q,w) is included in the calcula-

tion of G(q,uj). The role of multiparticle effects in the excitation spectrum as described by

the dynamic structure factor S{q,u>) has been thoroughly discussed by Apaja et a/.13

It has been argued19'10 that when the static local field factor G(q, 0) becomes greater

than unity, the system of charged particles may exhibit the formation of a charge density

wave (CDW). The instability will set in at a critical r, value when

which may be derived from the condition l/e(q,0) < 1, for the static dielectric function.

Since the accurate QMC results14'15 show no evidence of the violation of the above inequality,

it may be concluded that the charged bosons remain in a stable fluid phase till crystallization

occurs.

8



We have uncritically assumed that the charged Bose gas is in the condensate state and

determined the effects of correlations induced by Coulomb interaction, as in previous calcula-

tions of a similar nature.6'7 However, the QMC simulations15 indicate that even at relatively

high density (weak coupling) only about 80% of the particles are in the condensate. The

interactions enormously deplete the condensate so that by r, = 160 (crystallization density),

most of the particles occupy non-zero momentum states. Thus, the results of approximate

theories such as STLS or qSTLS should be used with caution at large r, values. It might

be possible to account for the effects of the particles out of the condensate by choosing a

suitable model for the distribution function (say, a Gaussian) that determines the response

of the noninteracting system. These ideas need to be explored within the self-consistent

scheme for quantitative assessment.

IV. SUMMARY

We have considered the system of charged bosons at T = 0 and studied the effects of in-

teractions within the quantum version of the STLS scheme. The self-consistently calculated

static structure factor S{q) exhibits a peak around qr0 « 4 with increasing rs, in agreement

with QMC and HNC calculations. The local field factor G(q,u>) is frequency dependent in

the present approximation and reveals information about dynamical correlations. In par-

ticular, inclusion of the dynamic G(q,w) improves the static STLS results in predicting the

r,-dependent behavior of G(q) for wave vectors qr0 < 4.
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APPENDIX A: QUADRATURE FORMULA FOR G(g,iu>)

In this appendix we provide some details for obtaining a one-dimensional quadrature

expression for G(q,iui). The local field factor is evaluated for frequencies on the imaginary

axis, which greatly simplifies the self-consistent calculations.

The response function for the noninteracting inhomogeneous system is defined by

(Al)

which reduces to that of the homogeneous system, viz. xo(<?,w), for q = q'. Taking the

distribution function as / (p ) = n8(p) for bosons at T — 0, we obtain

where «„> = q • q'/2rn. Starting from Eq. (3) and using the above expression for xo, the

angular integration for G(q,iu>) is evaluated as

2qk{4u2 + q4- 2q2k2 -

<2 + q4- 2q3k
2 + <?4 + 2<73fc + q2k2

in which the momentum variables q and fc are scaled with r0 and the energy variable u) is

scaled with l/2mrQ. Finally, the one-dimensional quadrature expression for G(q,iu) takes

the form

l], (A4)

where P(k, q; u) is the result of the angular integral given by the right-hand-side of Eq. (A3).

10
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FIG. 1. (a) The static structure factor S{q) in a charged Bose gas at r, = 1. Solid and dotted

lines show the qSTLS and RPA results, respectively. Crosses are the QMC simulation results from

Ref. 15. (b)-(d) S{q) at rs = 5, 10 and 20, respectively. In (b)-(d) the dashed lines arc the static

STLS results from Ref. 6.

FIG. 2. (a) The pair-correlation function g(r) as a function of r. Curves from top to bottom are

for r, = 1, 5 and 7, respectively. Dotted lines are the RPA results, (b) g{r) at lower density. Curves

from top to bottom as they appear on the ordinate indicate r, = 10, 20, 30 and 50, respectively.

FIG. 3. (a) The local field factor evaluated on the imaginary frequency axis as a function of u>

(in units of l/2mro) at (a) r, = 1 and (b) r, = 5. Dotted, dashed and solid lines are for qra = 2,

4 and 6, respectively.

FIG. 4. (a) The real part of G{q,uj) as a function of frequency at r, = 10 and </r0 = 2 (dotted

line), qr0 = 4 (dashed line), and qr0 = 6 (solid line), (b) Same as (a) for the imaginary part of

FIG. 5. (a)-(d) The local field factor G{q,0) at r3 - 1, 5, 10 and 20, calculated within the

dynamical theory with self-consistent S(q) (solid lines) and QMC-S(</) (dashed lines).

FIG. 6. G(q) in various approximations. Crosses, open circles and solid circles indicate the QMC

G(q) at r, = 10, 20 and 50, respectively. Solid lines are the present results of G(q,u> — oo) from

bottom to top at the same r, values. Dotted lines are the static STLS results of Ref. 6.

FIG. 7. The plasmon dispersion relation uq scaled with respect to the long-wavelength plasmon

energy as a function of q. Solid curves from top to bottom are for r, = 5, 10 and 20, respectively.

Dashed and dotted lines are the corresponding results of the static STLS approximation from Ref. 6

and of the RPA, respectively.
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