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ABSTRACT

We consider coherent atomic tunneling between two weakly coupled Bose-Einstein con-

densates (BEC) at T=0 in (possibly asymmetric) double-well trap. The condensate dy-

namics of the macroscopic amplitudes in the two wells is modeled by two Gross-Pitaevskii

equations (GPE) coupled by a tunneling matrix element. The evolution of the inter-well

fractional population imbalance (related to the condensate phase difference) is obtained in

terms of elliptic functions, generalizing well-known Josephson effects such as the *ac' effect,

the 'plasma oscillations', and the resonant Shapiro effect, to nonsinusoidal regimes. We also

present exact solutions for a novel 'macroscopic quantum self-trapping' effect arising from

nonlinear atomic self-interaction in the GPE. The coherent BEC tunneling signatures are

obtained in terms of the oscillation periods and the Fourier spectrum of the imbalance os-

cillations, as a function of the initial values of GPE parameters. Experimental procedures

are suggested to make contact with theoretical predictions.



I. INTRODUCTION

Bose-Einstein condensation, predicted some 70 years ago [1,2], was detected in 1995,

in alkali atoms held in magnetic traps, where a non-thermal velocity distribution below a

~170nK transition temperature signaled macroscopic condensation into a single quantum

state [3-5]. The existence of a quantum phase of the macroscopic wave function was demon-

strated by dividing a magnetic trap into two condensates by a far off-resonant laser. On

switching off the confining traps and barrier, the condensates, of different phases, overlapped,

producing robust interference fringes [6]. The non-destructive detection of a coherent phase

difference could be implemented by ac Bose-condensate analogs of Josephson effects that

occur in superconductor Josephson junctions (SJJ) [7],or other phase coherent oscillations

[8].

The macroscopic wavefunction of N condensate atoms tf(r, t) of a Bose condensate in a

trap obeys the Gross-Pitaevskii equation (GPE) [9]. The GPE has been applied to study

the collective mode frequencies of a trapped BEC [10,11], the relaxation times of monopolar

oscillations [12], and chaotic behavior in dynamical quantum observables [12,13]. For two

Bose condensates in a double-well trap with N\, N? atoms, one can write down wavefunctions

that have their spatial variation described by the isolated trap eigenstates $i,2(r) and their

time-dependence by amplitudes V'l.aCO = v^ri,2(0e''l'J^^ These amplitudes also obey two

GPE-like equations coupled by a tunneling matrix element between the two traps [14], with

spatial variation integrated out into constant GPE parameters. The tunneling dynamics

can be written in terms of the fractional population difference z(t) = (iVi(t) — NJ(0) /NT>

where NT = Ni + Nj, a constant; and the relative phase <f>(t) = $i(t) — &i{t). Predictions for

z{t),<f>(t) oscillations have been made from numerical solutions of the tunneling dynamical

equations for z(t),<f>(t) [14]. As we suggested earlier, [14], the ability to tailor traps, and the

non-ideal nature of the BEC should, remarkably, make the (neutral atom) double-well BEC

closer to the charged-pair SJJ than to neutral-atom Hell, and lead to Josephson-lke effects in

a Bose system. Non-sinusoidal generalizations of the familiar [7] sinusoidal Josephson effects

in SJJ emerge, including the 'plasma' or population imbalance oscillations (for symmetric

traps); the 'ac' effect (for asymmetric traps); and the resonant Shapiro effect (for asymmetric

traps with imposed trap/barrier oscillations). In addition, and as a consequence of the

nonlinear atomic self-interaction of the nonideal Bose gas, a novel 'macroscopic quantum

self-trapping' (MQST) effect was predicted [14] with population oscillations around a self-



maintained imbalance, beyond a critical value Ac(z(0),<f>(0)) of the ratio A s UNr/2fC of

the self-interaction to the tunneling matrix element. Mechanical analogs, e.g., in terms

of a non-rigid pendulum, clarify the rich dynamical behavior. Experimental detection of

predicted effects could be through temporal modulations (of the order of milliseconds) of

phase-contrast fringes [6] or other probes of atomic populations [3], with integrated signal

~ z(t). Oscillating currents z(t) might be monitored by Doppler interferometry methods.

The nonlinear GPE tunnelling equations for the macroscopic amplitudes V"i(0> V*a(O a r e

formally identical to equations governing a physically very different problem — a single

electron in a polarizable medium, forming a polaron [15]. Exact solutions have been found

[15], for the discrete nonlinear Schrodinger equation (DNLSE) describing the motion of the

polaron between two sites of a dimer.

This paper is an extension of our previous work [14], presenting exact solutions that

apply to BEC tunneling between two symmetric wells. The fractional population imbal-

ance z(t) (and the related phase difference <j>(t)) can be written in terms of Jacobian or

Weierstrassian elliptic functions for symmetric and asymmetric well cases. (These reduce to

sinusoidal SJJ dependences in the linearized, noninteracting Bose gas limit.) The period of

the non-sinusoidal oscillations is obtained in terms of the tunneling and other double-well pa-

rameters and total atomic densities. The frequency spectrum, with harmonics of these basic

frequencies, is also obtained. Just at A = Ac, the onset of MQST, there is a 'critical slow-

ing down', with a simplified analytic form governing the relaxation of (z{t)) to its nonzero

asymptotic value. Thus, the predicted Josephson effect generalizations and MQST effects

are obtained as exact elliptic functional predictions, that can be experimentally tested.

The plan of the paper is as follows: In Section II (and Appendix A), we obtain the

coupled GPE tunneling equations for z(t),<f>(t), and discuss the varied oscillations in terms

of mechanical analogs, pointing out similarities and differences with SJJ. In Section III, we

cast the GPE equations in terms of imbalance z(t), and variables i(t),e(t) related to the

Josephson tunneling current and coupling energy respectively. For the symmetric well case,

the exact solutions for z(t) follow immediately in terms of Jacobian elliptic functions. The

time-period r(A, z(0),<f>(0)) and Fourier spectrum Z(CJ) are also obtained. The generalized

Josephson plasma oscillation and the MQST effect and its onset are discussed. In Section IV,

we consider the (static) asymmetric double well, with the 'ac Josephson effect' and z(t)

oscillation expressed in terms of Weierstrassian elliptic functions. The analog of the Shapiro

resonance is considered in Section V, with an imposed incremental oscillation in the tunneling



matrix element. Finally, we suggest possible experimental procedures to set up various initial

conditions/parameter regimes and summarize our results in Section VI. For completeness,

Appendix B contains an outline of elliptic function properties and relations.

II. TUNNELING DYNAMICS EQUATIONS

The BEC wavefunction tf(r, t) in a single trap potential Vext(r,t) is known to satisfy

the Gross-Pitaevskii equation [9] at T ~ 0 (with derivation and possible T ̂  0 corrections

sketched in Appendix A),

= ~^V 2*(r , 0 + [VUO + *|*(r. O l W , t), (2.1)

g0 = 4nh2a/m, and a is the scattering length of the atoms. Consider a double-well trap,

produced by a laser barrier [6], with isolated well GPE (normalized) eigenfunctions $i,a(r)

in wells 1,2, of equal occupations Nj/2 = N\ = N?, with eigenvalues, E\&

^ jifl{r)\*\*iM. (2-2)

The amplitudes

[K^i9() (2.3)

with general occupations N\tj(t) and phases 0i,a(O> n o w including the inter-well tunneling,

obey the dynamical equations [14],

^ = (£? + UtNJfr - Ibk (2.4a)
at

(2.4b)

where E°2
 &re 'he zero-point energies in each well (that could be different for asymmetric

wells), U\tiNiti are the atomic self-interaction energies, and K describes the amplitude of

the tunneling between condensates [14]. See Fig. 1. The parameters £°2,(/i,2,AC can be

written in terms of $i,a(r) wave-function overlaps with the potential and kinetic energy

contributions, as in Appendix A. The total number of atoms, N\ + iV2 = l^l2 + |02 |2 = NT

is a constant. The fractional population imbalance

z(t) = (tf,(«) - N7(t))/NT s (|Vi|2 - M)/NT (2.5)



and relative phase

obey

' (2.7a)

- Az(0 + , V \ _ cosMO), (2.7b)

where

AE = (£° - £°)/2£ + ([/, - £/2)/2/C, (2.8a)

A = UNT/2fC ]U = {Ui + U2)f2, (2.8b)

and we have rescaled to a dimensionless time, t2IC/h —• t. There must be a minimum

population Niti > Afmin, so phase fluctuations [16,17] ~ 1/y/Nmin are small and phase

differences are stiff. For ~ 3% errors, we take 7Vmtn ~ 103 atoms and have \z\ ^ |1 —

2Nmin/NT\, that can be satisfied. The tunneling current / , and a scaled current i = I/(NT/2)

are given by

(t). (2.9)

The coupling energy W and a scaled energy w = W/(NT/2) are given by

• (2.10)—~w.

The equations of motion (2.7) can be written in Hamiltonian form

dH 1 dH

with

H = ̂ ~ + AEz-y/T^cos<f>. (2.12)

We now consider the SJJ tunneling equations, for comparison with the BEC tunneling equa-

tions above. The Josephson (charged) current of Cooper pairs N1)2, with critical junction

current Ij = 2eEj/h, is given by

- JV2) = Ijsm fa (2.13a)



and the Josephson frequency relation is

hj> = Afi = 2evext + Ec{Ni - N2), (2.13b)

where <f> is the superconductor phase difference, A/z is the chemical potential difference, and

vext is an applied voltage across the junction. EC(N\ — N2) is the capacitive charging energy

induced by a Cooper pair imbalance Ni — N?, with Ec = (2e)2/2C the energy related to the

transfer of a single pair, C being the junction capacitance. In terms of the fractional pair

imbalance z = {Nx~ N2)I{NX + JV2), with tEj/NTh -V t, Eqs. (2.13) become

z = -s\n<t> ; <j> = AESJJ + ASJJZ, (2.14)

where now

AE = 2evextNT/Ej , ASJJ = ECN}/Ej. (2.15)

For the SJJ, the requirement [7] that the chemical potential difference A/i be smaller

than the quasiparticle gap 2A,P (so as to prevent a jump onto the resistive I — V branch),

implies (for vext = 0) that |z| < 2A,P /ECNT ~ 10~12, for typical parameters. The smallness

of the upper bound is partly due to the fact that it involves a surface-to-bulk demension

ratio. Very small fractional population imbalances of the charged pairs are sufficient to

induce measurable voltages.

Comparing Eq. (2.14) with Eq. (2.7), we see that the SJJ equations are formally the

linearized (in z) versions of the BEC equations. However, the macroscopic occupation of a

single quantum state in the Bose case leads to a current scale ~ fcy/Nx Eq. (2.9) rather than

the SJJ scale ~ Ij of Eq. (2.13a). Thus we would expect analogs of the SJJ effects to occur

in BEC, with important modifications due to nonlinearities in z, and possibly nonlinear

effects not seen in SJJ. For the SJJ with external circuits one would monitor currents i and

voltages 4>. For the BEC, population imbalances z{t) could be detected; there is no external

circuit. However, external current drives can be imposed, i oscillations might be monitored

by Doppler interferometric methods; there have been some attempts [18] to inject/extract

atoms from traps in a controlled manner.

Mechanical analogs have been useful in visualizing the well-known Josephson effects of

SJJ. The Hamiltonian governing Eq. (2.14) is

H = ASJJZ2/2 + AESJJZ - cos <£, (2.16)



and can be regarded (for AESJJ — 0) as a 'particle' of mass A5}j, 'linear momentum'

z —> px and spatial coordinate <f> -> z, moving on a rippled, rigid potential energy surface -

cos <f>. Alternatively, Eq. (2.16) describes a rigid pendulum of tilt-angle <£, moment of inertia

A j j j , angular momentum z —>• p^, and external forcing angular velocity ~ AESJJ. The x

and y linear pendulum-bob coordinates have a physical significance, as the SJJ tunneling

currrent i and coupling energy e respectively, similar to Eqs. (2.9,2.10), with x(t) = — sin <f> =

i(t),y(t) = — cos<£ = w(t) and a rigid pendulum,

x2 + y2 = i2 + w2 = l. (2.17)

•The Josephson effects in SJJ follow at once from physical considerations:

i. Plasma oscillations: For AE = 0, the 'particle' of coordinate x «-* <f> can oscillate

with small amplitude in one of the potential wells of cos< .̂ This corresponds to small,

harmonic oscillations in angle <f> of the rigid pendulum. Linearizing Eq. (2.14) in <£ -C 1

yields z « —ASJJZ or a sinusoidal population imbalance oscillation,

z(t) « *(0) cos w* - (<f>(0)/u))s\nu>t, (2.18)

where (in unsealed units),

u; « LOP = 27r/rp = AyjjEj/hNr = y/EcEj/h, (2.19)

independent of initial conditions z(0

ii. ac e^ect: For a dc voltage A2? ^ 0, the particle has an imposed velocity, and moves

between the cos$ minima over the barriers. In the pendulum analogy, thcexternal

drive enforces rotatory motion at an angular velocity ~ AESJJ. The phase, for A E ^>

A|z| increases linearly with time, <f>(t) ~ AEt/k, and the sinusoidal z(t) oscillation,

similar to Eq. (2.18) has angular frequency

2TT AE /nnn.
u} = u,ac = — = — - , (2.20)

rac h
independent of z(0),^(0), and A.

iii. Shapiro resonance effect: If we have a small incremental ac voltage in addition to

an applied dc voltage, AE -> AE(1 + S0cosu>ot); SQ <§; 1, then at resonance wo =

u v , there is a dc tunneling current or a nonzero time average (i(<)) ~ <50(sin(wac< +

<f>{Q))s\nuot) ^ 0. This Shapiro resonance repeats at higher harmonicsuac — 2n/Tac =

nu>0,n = 1,2,. . . , with characteristic Bessel function coefficients Jn{nSo) [7].



We expect that the BEC will show the analogs of these Josephson effects, with sinusoidal

time dependences, in the limit A <t£ 1, pr for general A, with |^|,|<^| <$C 1. As shown

numerically [14], for A ^ 1 and arbitrary z, the terms of Eq. (2.7) that are nonlinear in z

lead to non-sinusoidal behaviour - these are generalizations of the SJJ effects. We will show

that exact solutions for z(t) are possible in terms of elliptic functions. The relevant signatures

then appear as characteristic parameter dependences of the elliptic function periods similar

to the Josephson oscillations of Eqs. (2.19, 2.20), but with strong deviations from the SJJ

sinusoidal case.

The double-well BEC is a neutral superfluid system, like superfiuid Hell. In the latter

case, material tunneling barriers cannot exist. The only Josephson analog suggested has been

[19] an imbalance in Hell heights (h(t)) between two baths connected by a submicron orifice,

where vortex phase slips [20] occur at a steady rate. By the Josephson frequency relation,

(4>(t)) = mg(h(t)) this implies a gravitational chemical potential difference. As pointed

out earlier [14], from From Eqs. (2.8),(2.15), however, the ability to tailor traps and the

condensate self-interaction compensates for electrical neutrality, making the BEC double-

well system more like a (charged) SJJ [7] than like Hell. Asymmetric positioning of the laser

barrier could produce an energy difference AE, analogous to an applied voltage, since the

effective potential seen by the atoms on the smaller-volume side will have a larger curvature

and have a larger zero-point energy E°. The (bulk) nonlinear atomic self-interaction ~ UNTZ

is like a (junction) capacitive charging energy ~ ECNTZ.

The signatures for the generalized 'plasma' oscillation and 'ac' effect for the BEC, will ap-

pear in the period r of the anharmonic oscillation as generalizations of Josephson frequencies

of Eqs. (2.18),(2.20). In unsealed units, the inverse periods are:

T"1 = y/2UNTlC + {2fC)2/2nh ; T~C
1 = 2KJ{AEf + l/2nh. (2.21)

Since the coupling energy K ~ A, the tunnel junction area and UNT the bulk interaction is

independent of A, and the oscillation rate goes as r~l ~ A1/7. This can be checked by varying

the intensity profile of the barrier laser beam, with a low-intensity to permit tunneling, only

over a cross-section A. (The plasma frequency for SJJ, T~X ~ y/EcEj by contrast, is

independent of A, as Ej ~ A, Ec ~ A'1.) The Josephson-like length 'Aj = y/i2/2mAC, that

governs spatial variation along the junction, should be much greater than ~ y/A to justify

neglect of spatial variations of z,<f>, i.e., obtain a 'flat plasmon' spectrum. For K = O.lnK,

one finds 'Aj ~ 10/im. We will not, however, consider such spatial variations here.
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The nonlinearity in z, and parameter values of the BEC, supports other interesting

behavior. Consider the AE = 0 case. If the initial 'angular kinetic energy' of the pendulum

(or 'linear kinetic energy' in the particle analogy), z2(0) exceeds a certain critical value,

namely the potential energy barrier height — cos(</> = 7r) = — 1 — of the vertically displaced

4> = 7r 'pendulum orientation', there will occur a steady self-sustained 'pendulum rotation'

(running particle motion). For BEC, one has Eq. (2.12), in contrast to Eq. (2.16). Rather

than a unit-length pendulum, one has a non-rigid pendulum, with length

(x2 + y2)1'2 = (i2 + w2)1'2 = y/r^z* (2.22)

decreasing with 'angular momentum' z. The condition for the pendulum bob to roll over

the 'vertical', is that the initial energy Ho = H(z(0),(j>(0)) > —cos(<f> = TT) = 1. This implies

novel behavior for 2(0), ̂ (0), A, satisfying

1 + J l - z2(0) cos <f>(0)
> V 2 ( 0 ) / 2 =

(2.23)

Below the critical value Ac, the population imbalance oscillates about a zero value. Above

Ac, the time-averaged 'angular momentum' is nonzero ((z(t)) ^ 0), with oscillations around

this nonzero value. The BEC maintains a nonzero dc population imbalance arising from

the nonlinear self-interaction ~ UNTZ2 of the atoms: the macroscopic imbalance is self-

trapped. This may be termed 'macroscopic quantum self-trapping' (MQST). It differs from

the He II imbalance [21], that arises from external gravitational effects. (For the BEC,

gravitational effects merely result in a gravitational sag or shift of the 'centre of mass' of

the wavefunction, as noted in Appendix A and in Ref. [22].) MQST also differs from the

self-trapping of polarons [15] that arise from single electrons interacting with a polarizable

lattice: it arises, instead, from self-interaction of a macroscopically large, coherent number

of atoms.

The parameters UNT>JC, and E° can be estimated [14] to be ~ lOOnK,~ O.lnAT, and

~ lOnK respectively for NT = 104 if we take the trap-frequency uftrap to be ~ lOOHz.

Typical frequencies are then 1/TP ~ kHz, and l/roe ~ kHz per nK energy difference, AE.

The parameter A can be made to be of order unity, for NT ~ 108 by changing the trap-

frequency. Thus, with collective mode excitation energies Acoii ~ E°, and quasiparticle

gaps A,p ~ \/UNTE° (as in Appendix A) the condition that excitations not be induced,

allows for |z| < 0(1), i.e., even large population imbalances of the (neutral or un-excited)

double-well BEC.

9



In the following Sections, we present exact solutions of Eq. (2.7) that yield experimentally

verifiable predictions of phase-coherent signatures of BEC in double-well traps.

III. JOSEPHSON ANALOGS AND MQST: SYMMETRIC WELL CASE, AE = 0

A. Exact solutions in terms of Jacobian elliptic functions

From the non-rigid pendulum analogy, the energy of the system is given by

H{z[t)t<f>(t)) = ̂ f + AEZ" y/r~^cos* = 7/(2(°)'tf°)) s ^o, (3-1)

where Ho is the initial (and conserved) energy. Using Eqs. (2.7a),(2.9),(2.22), the square of

the pendulum length can be written as

)2 = l - z \ (3.2)

Combining Eqs. (3.1) and (3.2) we have

I . 2 -|2

-^- + AEz-H0\ = 1 - * 2 . (3.3)

As in polaronic contexts [15,23-26] we use Eq. (3.3) to obtain the exact solution for z(t) in

terms of quadratures,
At M * ) d z

l
2 lm V t t ) ' [ * * ] '

We consider AE = 0, and AE ^ 0 cases separately. The first draws directly on previous

results by Kenkre and collaborators [15,23,26-28], and work related to the second is to be

found in Ref. [29]. For symmetric double wells, AE = 0, Eq. (3.4) becomes

A£ _ Mo) dz
2 ~ 7.(0 ^( a 2 + 22)(C2_22)'

where

C2 = ~ [(ffoA ~ 1) + ̂ ] ; a2 = ̂  [C - (ffoA - 1)], (3.6a)

C2(A) = 2^/A2 + 1 - 2//0A. (3.6b)

The solution to Eq. (3.5) is known in general (see, e.g., Refs. [15,23]) and is written as

10



z{t) = Ccn[(CA/k)(t - t0), k] for 0 < k < 1

= Cdn[(CA)(t -1 0 ) , 1/k], for Jfc > 1; (3.7a)

a _ 1 / CA V _ 1 ( / /oA-l)
fc " 2 V C ( A ) J ™ 2 i 1 + ^ 1 2 /2 VC(A) J ™ 2

where t0 is a constant determined from the initial population imbalance, z(0) and initial

energy Ho (see Appendix B), and the functions en and dn are the Jacobian elliptic functions

with k the elliptic modulus. In Appendix B, we provide, for completeness, some definitions

and properties of elliptic functions. The character of the solution changes when elliptic

modulus k = 1. From Eqs. (2.23),(3.7b), this mathematical condition (2.23) corresponds

to the physical condition Ho = l,A = Ac, for the onset of MQST. The evolution of the

imbalance is given, in this special case, by the non-oscillatory hyperbolic function

z(t) = Ccn[(CAc)(t -1 0 ) , 1] = CsechCAc(t - t0) , C = 2 x / A° * (3.7c)
Ac

The Jacobian elliptic functions cn(u, k) and dn(u, k) are periodic in the argument u with

period 4K(k) and 2K(k) respectively where K(k) is the complete elliptic integral of the first

kind (Appendix B). Thus, the time-period of oscillation of z(t) is given by [30]

forO<fc<l, (3.8a)

f o r f c > 1 . (3.8b)= f o r f c > 1 .

G A

The period is infinite, as in critical slowing down, diverging logarithmically, K(k) —¥

ln(4/y/l — k2) as k -> 1, or A -> Ac. diverging logarithmically, as noted in Appendix

B.

The elliptic functions in Eqs. (3.7) can be expanded in a Fourier series [30]. As the non-

linear parameter A -4 0, i.e., k ->~ A, single harmonic sinusoidal dependences are recovered,

as in the SJJ case. Using Eqs. (3.7), the time-fourier transform, z(u>) = (l/27r)/0
2ir</felta'<z(i)

can, therefore, be written exactly as,

= (—-) sech(u;/a;c) for A:2 = 1, (3.9b)

)]| for fc2 > 1, • (3.9c)

(w ± (!„)]I for fc2 < 0, (3.9d)

11



where

(n + l/2)ir»(0)A n7rz(0)A n7rz(0)2A
n LI / /M ' n IS ft /L^ ' n L IS/I. \ \\i.i.\io.)

(3.10b)

In the expressions above Eqs. (3.9), we have assumed initial conditions such that 0(0) = 0, TT

for simplicity. Choice of other initial values of 0 merely adds an irrelevant phase to the

fourier components with no shift in the frequencies themselves: the qualitative behavior is

independent of the initial phase 0(0), that is harder to fix than the initial imbalance z(0).

B. Discussion of results

As Eq. (3.4) shows, the dynamics is governed by two initial values z(0),i/o- However,

we note that z(O),0(O) are equally valid initial parameter values and work with them for

the remainder of the paper. In particular, from Eq. (3.1) note that the two extreme initial

conditions 0(0) = 0, n correspond to the two extreme values of Ho (for a fixed value of

), Ho = ^ f i £ ± ̂ i _ 2(o)2. Equations (3.7),(3.8),(3.9) constitute predictions for mea-

surements of population imbalances z(t), the period r , and the frequency spectrum z(u), in

terms of tabulated elliptic functions [30,31].

In the figures, we consider U > 0,A > 0, for 0(0) = 0,TT. The case U < 0,A > 0

corresponds to a negative scattering length, as may occur for lithium atoms, where the

condensate may be stable only for low densities [22]. The dynamical equation (3.5) is

invariant under the transformation A —> —A, 0(0) —> IT — 0(0) (HQ —t —Ho in that case

from Eq. (3.1)). Thus the special case 0(0) = n with A > 0 that we shown in the figures,

may physically correspond to the behavior of A < 0 atoms with 0(0) = 0. We remark that

the general behavior of the time-period, of Ac, as well as the Fourier spectrum for arbitrary

values of 0 < 0(0) < n are similar to those corresponding to 0(0) = 0. The 0(0) = n case is

also considered for its special properties and because it may correspond, as discussed earlier,

to negative scattering length atoms with 0(0) = 0. In all the figures, the 0(0) = 0, n cases

are shown as dotted and dashed lines respectively, unless otherwise mentioned.

Figures 2(a)-(d) show the predicted z(t) oscillations from Eqs. (3.7a), with z(0) =

0.6,0(0) = 0 and various values of A as shown. These match previous [14] numerical

solutions. For A = 1, Fig. 2(a), we have almost pure sinusoidal 'plasma' oscillations around

12



a zero time-average (z) = 0. [16,32,33] (Rabi oscillations of frequency 2AC, correspond to

the unphysical limit A = U = 0 of the non-interacting, ideal Bose gas.) Non-sinusoidal

oscillations are more typical - these are generalized Josephson 'plasma' oscillations, shown

in Fig. 2(b)-(d). At A = Ac (10 in this case), the timeperiod of oscillations diverges, r = oo,

signaling the onset of MQST, and the nonoscillatory Eq. (3.7c) yields the dashed line in

Fig. 2d.

Figures 3(a)-(d) show, for various z(0), the reciprocal of the timeperiod, 1/T, given

by Eq. (3.8), expressed in dimensionless form by being scaled by l/rp of Eq. (2.21), as a

function of A/Ac. The period of the non-sinusoidal z(t) of Fig. 2 shifts from the simple

SJJ-type value of unity, attained only in the A ~ U —> 0 ideal Bose gas limit. Note that

rp ~ 1/v/A + 1 decreases with A. For 0(0) = 0, the unsealed 1/r actually rises with A before

falling as MQST sets in at A = Ac signified by the dip 1/r —* 0. This corresponds to the

dashed-line z(t) time-evolution in Fig. 2(d). For A/Ac > 1, there is a non-zero time-average

((z(t)) ^ 0) value (inset of Fig. 3(a)) and TP/T above the dip describes the time period

of oscillations around this. The sensitivity of the curves to initial 0(0) values decreases as

the initial population imbalance increases, and for the (unphysical) value of z(0) = 1, the

0(0) = 0,7r curves merge, as in Fig. 3(d). Whereas for the case when 0(0) = 0, the MQST

dip is abrupt,for 0(0) = 7r, the transition dip is much more gradual. This observation will be

elaborated later in this Section. In both cases, however, the divergence of the time-period r

is logarithmic [23] (see Appendix B). Note that from Eq. (2.23), Ac increases as l/z2(0) for

z(0) -* 0, for the range 0 < 0(0) < TT, while 0(0) = n is special case, Ac —> 1 as 2(0) —f 0.

For 0(0) = 0, Ac ~ 400, while for 0(0) = TT, AC ~ 1.

As noted earlier, 0(0) = 0,A < 0 corresponds to 0(0) = TT,A > 0. For 0(0) — IT,A >

Ac > 0, for a special value, A = — SyiM £ of Eq. (3.6b) can become zero and k2 can

become infinite. The system is then placed in a self-trapped stationary state [27], z{t) = z(0)

for all time. An increase of A beyond this value (in magnitude) results in an intriguing

situation: the condensates transfer more of their population into the initially populated

trap, i.e., the time-averaged value (z(t)) > z(0). The atomic flow is 'uphill', settling to a

higher dc imbalance than initially. This feature is illustrated clearly in the inset of Fig. 3(a).

z(0) = 0.1 and with the solid (dashed) line referring to the initial condition 0(0) = 0(TT).

When 0(0) = 0, the time-averaged value of the imbalance (z) always remains less than the

initial value z(0) and approaches this value from below for large values of A/Ac. On the

contrary, when 0(0) = n ( dashed line), the average value rapidly increases to ~ 0.45, i.e.,
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larger than the initial value z(0) = 0.1, decreasing to 0.1 from above, for large A/Ac. The

initial phases can induce a flow from the less populated to the more populated trap. This

is in keeping with the observation of the 'amplitude transition' in Refs. [26,27].

In Fig. 4, the Fourier spectrum z(w) of Eq. (3.9) is displayed. Figures 4 (a)-(f) show the

normalized spectrum z(u>) / z(u)max as a function of the scaled frequency u>/A. (z(iv)max is

defined as the strength of the largest peak in z(u>); values are as stated in the figures. As

a function of A/Ac, z(uj)max remains finite with a sharp dip to a value 1/AC at A = Ac.)

Here, z(0) = 0.1 in all the figures and the ratio A/Ac is increased from 0.1 to 1.01 in

(a)-(d). For small values of A/Ac, Fig. 4(a), only the <£(0) = 0 dotted lines are visible

since the <fr(0) — IT dashed lines are outside the region shown. The separation between

positive/negative frequency peaks is reduced for larger values of A/Ac and more lines appear.

At the onset of MQST, there is an explosion of frequencies and all the lines merge into a

band at A/Ac = 1, that is the same <f>(0) = 0, ?r. For A > Ac, there is a remnant delta-

function peak at zero-frequency representing that (z(t)) ^ 0, with side frequencies that

march outward as A is increased. Note that despite the fact that both the curves collapse

onto the same curve at A/Ac = 1, in actual magnitude, the width of the spectrum at the

transition for the $(0) = TT is much less compared to the </>(0) = 0 case, since Ac values differ

widely. We remark that although we analyze only two special cases 0(0) = 0,7r, the general

behaviour of the time-period as well as the Fourier spectrum for arbitrary values of <f>(0) are

similar to those corresponding to ^(0) = 0.

IV. JOSEPHSON ANALOGS AND MQST: ASYMMETRIC TRAP CASE, AE # 0

A. Exact solutions in terms of Weierstrassian elliptic functions

Let us now analyze the case where the traps are asymmetric, i.e., AE ^ 0, as in Fig. 1,

and return to Eq. (3.4),

At fW dz
/= / . , (4.1a)

2 Aw j/try K

As outlined in Appendix B, the solution to Eq. (4.1) for the fractional population imbalance

z{t) is given as
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2(0 = *'+ 2MHtt)f/2-lm)f'W (4-2a)

92 — -a* ~ 4a ia 3 + 3a\ ; g3 = —a-i^ + 2aia 2 a 3 - &l + <*3 - a?<»4, (4.2b)
AE 2 , . , „ , . A _3X 2HQAE 4 ( 1 - / / ^ ) , , . ,

; a (A( / / + 1) A £ 2 ) ; a3 = - - - - - ; a4 =
 V

 A , 0 / , (4.2c)ai = ; a2 = 3^(A(/ /o + 1) A £ ) ; a3 =

where p(<; 52, £3) is the Weierstrassian elliptic function, to is a constant determined from the

initial conditions 2(0), Ho, and Z\ is a real root of f(z). In terms of the non-rigid pendulum

analogy, z\ corresponds to that point of the evolution where the instantaneous angular

velocity vanishes, z\x-Xi = 0, or from Eq. (3.3) when <f> = 0}n. The fractional population

.difference z(t) in Eq. (4.2) can also be written in terms of Jacobian elliptic functions by

making use of the usual relations between the elliptic functions [34]. The key quantity

governing the behaviour of the Weierstrassian elliptic function is the discriminant, defined

as S = g\ — 27g\. The relationships between these functions depending on the sign of S

are detailed in Ref. [24] and reviewed in Appendix B. These results go beyond the AE = 0

solutions found in Refs. [15,23] and are equivalent to those of Ref. [29] for a similar polaronic

system and those of Refs. [24,25] in different contexts.

A closed form evaluation of the spectrum was given for the symmetric trap, AE = 0.

This is not possible for the asymmetric case, AE ^ 0. However, it is still possible to calculate

analytically the time-period of the solutions in Eqs. (B19,B21a, B22,B23,B24) in terms of

the complete elliptic integral of the first kind [34]. Since we will be discussing the properties

of the time-period of oscillation later in this Section, we give below a brief listing of the

explicit dependence of the time-period r on the parameters of the problem,

r = A'(ik1)/(ei - e3), for S > 0, (4.3a)

T = Kity/s/Fi, for 6 < 0, (4.3b)

r = oo,for 8 = 0,02 > 0,g3 < 0, (4.3c)

T = n/\/6g^,ioT5 = 0,92 > 0,g3 > 0, (4.3d)

T = oo, for 5 = 0, g2 = g3 = 0, (4.3e)

where K(k) is the complete elliptic integral of the first kind and fci,2,61,2,3,^2,3 are defined

in Eqs. (4.2b, B22,B23,B24).
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B. Discussion of results

Figure 5 shows the scaled reciprocal of the period Tacfr plotted as a function of the

scaled nonlinearity ratio A/AC(AE) where roc is denned in Eq. (2.21) and Ac(Ai?) denotes

the value of A at which r -> oo. This is like Fig. 3. Here, z(0) = 0.1, AE = 1.0. Insets

(a) and (b) show the time-averaged value, (z(t)) plotted as a function of A/Ac for <j>(0) and

<f>(0) = n respectively. The results are similar to those in Fig. (3), with a dip at the onset of

MQST, but now with a skew due to the trap asymmetry AE. Note that the dip now denotes

the separation of two kinds of trapping or localization of the condensate, where (z) ^ 0,

now on both sides, as in the insets. For A < AC(AE), the condensate is localized, (z) ^ 0,

entirely due to the 'disorder' or trap asymmetry. (For AE = 0, this regime is marked by

(z) = 0.) At A = Ac itself, the system is on the phase-boundary: T - » O O , (Z) = 0. When

A > Ac, the condensate is again localized or self-trapped, and again (z) ^ 0, but this time

it is due to the self-interaction, in a AE ^ 0 version of MQST.

There are a few key differences between these two kinds of localization as the insets (a)

and (b) show. Let us look at the <j>(0) = 0 inset (a) first. When A < Ac, (z) > 0 and

is governed by the combined influence of z(0),<£(0), AE. Furthermore, the absolute value

can be much larger than z(0). This fact is reinforced in inset (b) also. On the contrary,

note that for large values of A (with MQST trapping), the actual value of (z(t)} approaches

the initial imbalance value z(0) and is independent of <f>(0). Thus, whereas the nonlinear

self-interaction does act as an effective 'disorder' [26,27], there do exist significant differences

between the two kinds of localization.

Figures 6 (a,b) show, for <£(0) = 0, n respectively, the scaled reciprocal of the period

TacJT as a function of the trap asymmetry AE for different values of A/Ac, where rac is as

defined in Eq. (2.21). Note that, unlike Fig. 5, Ac is now the critical value of A at which

MQST sets in, in the absence of trap asymmetry, AE = 0. The simple ac Josephson effect

value TacJT — 1 is approached for all curves, for large positive and negative values of AE

(when trap asymmetry effects dominate nonlinear effects). The MQST dip in Tacfr shows

up (for fixed A/Ac close to unity) as AE passes through critical values.
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V. SHAPIRO EFFECT ANALOGS

Let us now consider the analog of the Shapiro resonance effect observed in SJJ [7].

In addition to a time-independent trap asymmetry AE, we impose a sinusoidal variation

so that we can write the asymmetry term as AE + Aicosu>o<). This could be done by

varying the laser barrier position at fixed intensity. A similar Shapiro-like resonance effect

could be seen, with an oscillation of the laser beam intensity, at fixed mid-position, so

K —\ fC(\ + &0cosu}0t). The analog of the Shapiro effect arises when the period from

the time independent asymmetry, ~ I / A S , matches that from the oscillatory increment,

•~ l/u»o. This matching condition is intimately connected with the phenomenon of Bloch

oscillations and dynamic localization in crystals [35-38] and trapping in two-level atoms [39].

We analyze the dc value of the drift current, (z(t)}, and plot it as a function of AE, where

resonances shown up as spikes. (For SJJ, with current drives, the Shapiro effect shows up as

steps in the I-V characteristics.) Of course, the dc drift cannot persist indefinitely, as when

the population in one well drops below Nmin, phase difference will collapse.

Figure 7 shows l&e oc (z(t)) obtained from time averaging the numerical solution, with

a small ac drive and AE ^ 0. It is plotted as a function of A£/w0 for increasing values

of the nonlinearity ratio A. The initial conditions are z(0) ~ 0 = 0.045,0(0) = TT/2, for

which Ac ~ 1000 (in the absence of AE and ac driving). When A is zero, the analog of the

'Shapiro effect' occurs, with sharp peaks in Ijc occurs whenever AE oc nwo,n = 1,2,

As A increases, however, two things happen. Firstly, multiple peaks also occur at AE/ivo

values different from integers. Close to the MQST regime, (A ~ Ac), there is a proliferation

of peaks as the system moves from a regime of constant current, (z) ^ 0 (A'small), to one

of constant population imbalance (z) ^ 0 (A large). Secondly, the magnitude of the peaks

or dc currents decreases.

VI. POSSIBLE EXPERIMENTAL PROCEDURES, AND SUMMARY

In order to illustrate experimental issues, we now discuss possible 'gedanken' procedures

to set up initial conditions, determine parameters, and cast data in terms of theoretical

plots.

i. Fixing initial z(0),<f>(0): With no barriers, the phase of the BEC will be locked across

the single well. A strong laser barrier will produce two BEC with a common phase,
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<f>(0). If the barrier is off-center, it captures N\ ^ yV2 populations, z(0) / 0, AE ^ 0.

Moving the barrier to the center, so AE = 0, sets up initial conditions for plasma

oscillations to occur, when the barrier is lowered to permit tunneling. The zero initial

current z(0) = 0 is consistent with <j>(0) = 0. (Alternatively, the strong laser barrier

could be switched on at mid-point, so AE = 0, but Ni — N2; atoms could then be

slowly added to one well, to set up the z(0) ^ 0,^»(0) = 0 state.)

In the SJJ, external dc current drives /„< = / = Iosintj) force phases apart <f> =

sin""1 (Text//ifc)> with <f> = TT/2 when the dc current rises to a maximum 1^% = Ij.

Speculatively, if the magnetic trap profile along the outer edges could be reduced

along a direction perpendicular to the laser sheet barrier, then a stream of atoms

could be injected in one well an be ejected from the other well, tunneling through the

intervening barrier, in a steady state, analogous to the dc Josephson effect. Switching

off the dc 'current drive' would leave the BEC phase difference at nonzero values.

ii. Experimental Sequence: The theoretical predictions are in terms of the parameter

A = UNT/2IC, and scaling times are rp, roc. A can be varied by changing the total

density of atoms ~ NT with U,fC also functions of density. A can also be varied by

varying the coupling K. = fC(I,d) that depends on the intensity I and (exponentially)

on the thickness d, of laser-sheet barrier. We suggest an experimental sequence based

on variations of I , <f, with NT constant, and present a plot more directly connected to

measurable quantities.

Suppose we set up a z(0) <3C l,<£(0) = 0, AE = 0 state and measure the oscillation

period T for a range of K(X, d) corresponding to a range of A = UNT/2IC(I, d). Then

this measured r , that we call T* say, will correspond to plasma oscillations, and serves

as a calibration curve for different later experiments with different initial conditions.

Now suppose we measure T for other z(0) $̂ 1,^(0) = 0 initial conditions, over the

same range of control parameters, i.e., of A. If Ac ~ l/z2(0) is within the range of A

explored, MQST dips in 1/r will be seen at critical values of I or d. Now, we plot 1/r

versus 1/r* noting the \/T* values where the dips occur. A final scaled data plot of

T*/T versus T*/T* is suitable for theoretical comparison.

Figure 8(a) shows a theoretical plot of 2nh/UNrT versus A for illustrative values

z(0) = 0.02 (dotted line), and z(0) = 0.4,0.6 (solid lines), with <f>(0) = 0. (Here we

scale in UNr/h, assumed fixed, instead of/C, as previous.) The dashed line, indicating

18



the plasma oscillation behavior that is now l/rp(A) = UNTVA'1 + A~2 clearly closely

follows the dotted line, T(Z(0) = 0.02,^(0) = 0,A) = rp(A). The solid lines show

MQST dips at different A = Ac(z(0)) values, corresponding to values Tpc(z(0)) of the

dotted line.

Figure 8(b) shows the theoretical plot of

Tp/r versus r^/Tp — \ZA-1 + K~2fJt\.~x + A~2 that can be directly compared with

experimental data of T*/T versus T*/T*. The rp(A) calibration curve procedure can

also be followed for the AE ^ 0 case.

iii. Data Collapse: Figure 8(b) shows that the curves are different for different z(0). Can

we cast the theoretical curves/experimental data so that data collapse occurs to a

universal form, common for all z(0)l From the above discussion, the bridge between

theory and experiment is T*/T* = v^A"1 + A~2/^A~1 + A~2. Thus, (for a given z(0)),

A = 2/(1 + [1 + (2Tc7T*)yA71+A-2]1^2). Now, from Eq. (3.8), the scaled period

CA/r can be expressed as a function of k2 = fc2(A, z(0),<f>(0)) given by Eq. (3.7b).

Thus we can cast the data in a universal curve of CA/T versus k2, common to all z(0),

that is all a complete elliptic integral of the first kind.

To summarize, we have presented analytic solutions in terms of elliptic functions for

the population imbalance as a function of time and for the period of imbalance oscillations

for a model describing Bose-Einstein condensate tunneling. The observation of predicted

Josephson effect generalizations to non-sinusoidal oscillations both in time and frequency;

and of a blocking of tunneling by self-trapping due to nonlinear self-interaction, and/or

asymmetric traps constitute experimentally verifiable tests of quantum phase coherence in

BEC.

APPENDIX A: DERIVATION OF GPE EQNS.

We sketch the derivation from the basic Hamiltonian describing a system of interacting

bosons in an external potential leading to the GPE. In the treatment below, we shall follow

closely earlier work [40,41,43]. Our starting point is the basic Hamiltonian

J
. (Al)
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where the field operators ^t(r),V»(r) can be written in terms of the boson creation and

destruction operators of an as yet unspecified single-particle basis {<&»(r)}

V-(r) = E«a«Mr). (A2)
a

Here, U(r — r1) is the interaction between the particles and Vext(r) = |fnw(
2
r(If(r

2 — mgz =

9mw?roi)(r ~ rfl)2 ~ \^ra~ describes the external harmonic trap potential including effects
+ r * wtrap

of gravitational acceleration g, that enters as a 'sag' or shift of the wavefunction's postion,

rg = (0,0,-^—). We simplify the calculations by taking a contact interaction for the self-

interacting term, U(r—r') = go5(r—r'). We thus arrive at the following equation of evolution

for 0(r) ,

^ ^ . (A3)

As sketched, for example in Refs. [40,41], by following Bogolyubov-type [42] procedures, we

obtain mean-field equations for the boson eigenfunctions <£o,

- r - V V a ( r ) + 2(/>n(r) + Po(r))go<f>a{r) + vext<j>a{*) = <<*<!>*{*), (A4a)

2pn(r)gO(t>o{r) + po{r)g0<l>o{r) + v^M?) = co^o(r), (A4b)

where

a | ^ ( r ) | 2 (A5)

is the density of the 'normal component' and po(r) = no|<£o(r)|2 is the condensate density,

na = [exp(/3(ca — fs)) — I ]" 1 and no = [exp(/3(co — ̂ )) ~ I]"1 a r e the occupation numbers,

and fi is the chemical potential.

At zero temperature, we only consider the a = 0 ground state component of Eqs. (A4)

and obtain the GPE equation (2.1)

3*(r' ° + [Vext{r) + 3o|*(r' 0|2]*(r> °' (A6)
where ^(r , t) = <f>o(r)e~llot. One sees from Eq. (A4b) that the primary effect of finite temper-

ature is to alter the energy to, and hence, later, the zero-point energies E°2 in the double-well

case. For BEC tunneling between two symmetric traps, this temperature dependence will
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cancel. Thus our results of the symmetric trap case discussed for zero temperature are valid

for finite temperature as well. However, for asymmetric traps, one has to consider finite

temperature effects with more care.

As in Ref. [14], we now derive the basic tunneling equations Eqs. (2.4) from the GPE

eigenvalue equation, Eqs. (2.2). We take a trial solution in the form

)e">.'<'\ (A7)

where $i,2(r) are the time-independent GPE solutions for two independent traps, (2.2).

With the restrictions

/ <*3r|$1>2(r)|2 = 1 , j #r*x(r)*2{r) ~ 0, (A8)

we define parameters,

[~|V$ l i 2 |2 + V^(r)*f,a(r)J , (A9a)

u* = go f frtlAr), (A9b)

and obtain the following GPE equations for the amplitudes V*i,2(0> (2-4),

ih^- = (E? + UiNi)^ - K.xl>2 (AlOa)

.• (AlOb)

Note that because of the GPE nonlinearity, the parmeters U, /C, E° are implicit functions of

, the atomic density.

APPENDIX B: REVIEW OF PROPERTIES OF ELLIPTIC FUNCTIONS

a. Symmetric Wells: Let us first look at the case AE = 0. One writes the basic equation

in the form given in Eq. (3.5),

At r ( 0 )
 f
 dz

2 J'lt) y/(a2 + z2)(C2 - z2)

where
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C2 = ~ [(tfoA - !) + 7 ] 5 «2 = XI [C2 ~ ("oA ~ 1)], (B2a)

C2(A) = 2^A2 + 1 - 2tf0A. (B2b)

The solution to that equation is given in terms of Jacobian elliptic functions,

z{t) = Ccn[{CA/k){t-to),k]

= Cdn[{CA)(t-to),l/k], (B3a)

to = 2[A\/C2 + a2F(arccos(z(0)/C), A:)]"1 (B3c)

where C, a are defined in Eq. (B2b), F(<f>, k) = /0* d<p{\-k2 sin2 y?)~1/2 is the incomplete

elliptic integral of the first kind and the functions en and dn are the Jacobian elliptic

functions with k as the elliptic modulus defined in Eq. (B3b). The key quantity

governing the behavior of the elliptic functions is the elliptic modulus k (or the elliptic

parameter A:2). When 0 < A:2 < 1, the function is usually written in terms of the en

function. Further, when A:2 <̂C 1, it takes approximate forms given by

cn(u, A:) « cos u + A;2(sin u)(u — sin(2u)/2). (B4)

However, when A: increases, the departure from these simple trigonometric forms is

more drastic. Specifically, when A; ;$ 1, the approximate form is

cn(u, Ar) « sechu — (1 — A:2)(tanh usechu)(sinh u cosh u — u)/4. (B5)

When k2 = 1, the en function takes the hyperbolic secant form. When A:2 > 1,

the natural function is the dn function, and once k7 3> 1, it takes trigonometric

approximations once more,

dn(u, 1/A:) « 1 - sin2 «/2A;2. (B6)

The elliptic functions en and dn are periodic with a period given by 4K(k),2K(l/k)

respectively where #(Ar) is the complete elliptic integral of the first kind. Specifically,

as A; -> 1, the time period diverges logarithmically, lim^-n K(k) = log(4/\/l — A;2).

For A: -> 0, K(k) -»• ir/2.
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b. Asymmetric Wells: For the case AE ^ 0, one obtains Eq. (4.1),

<B7a)

One first writes the r.h.s. of Eq. (B7) as

MO) dz' MO) dz> fIt dz<MO) dz' _ MO) dz> fIt dz<

where ^i is a real root of / (*) . Defining the first term on the r.h.s of Eq. (B8) to be

Ato/2, we are faced with the evaluation of the second term. In the method below, we

shall follow Ref. [44] closely. Recognizing that / (zi) = 0, we expand f(z) about z\.

We, further, define

a = uf'(Zl)/4 + /"(zO/24 ; s = £/'(*0/4 + /"(*i)/24, (B9a)

- *0 (B9b)

and rewrite Eq. (B7) as

T~-L W-w-g*' (B10)

where

<72 = = —**4 — 4 f l i f l 3 -f- of l j J <73
 = —Q2Q4 "4* 2cL\CL2<lZ — Oj ~\" O 3 — fli<l4, (Blla)

AE 2 , 2H0AE 4(1 — /f^)
ai = __ . a2 — _.^(yY(/f0 + 1) - AE ) ; a3 = — — — ; a4 = ——— °-. (Bllb)

A oA' A /*'

Equation (BIO) can be inverted immediately to give the solution of 5 as a function of

t in terms of Weierstrassian elliptic functions. One thus obtains Eq. (4.2)

where the constant to is given below. From Eq. (BIO) we have

A t ° - r , ,dli

2 J. y/4^-g2V-g3
y

where
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r, = /i/'(*i)/4 + n * i ) / 2 4 ; /i = l/(*(0) - *,). (B14)

One then explicitly writes the denominator of Eq. (B13) in terms of its roots as

4z3 - g2x - g3 = 0 = 4(x - ei)(x - e2)(x - e3). (B15)

Combining Eqs. (B13),(B15), one obtains

Ato = - J. •FCy.ib), (B16)

where y? = arcsin J{t\ — ez)(s — e3) and k is the elliptic parameter whose specific

forms are given below as appropriate arguments of the Jacobian functions [see, e.g.,

Eqs. (B19),(B21).] To arrive at the properties of the Weierstrassian elliptic function

itself, one begins by constructing the discriminant

(B17)

If S > 0, all the roots c,- in Eq. (B15) are real and are given by

(B18a)

, (B18b)

f - J ,

e3 = -yfg^cos ( -y^ -J . (B18c)

6 = zxcco^TJgllgl). (B18d)

Then the Weierstrassian elliptic function takes the form

P(y) = ^3 + C A f ^ ,T> (B19a)
sn2(yv

/el - e3,fc,)
Ar? = 2 L L S . (B19b)

ei - e3

Here sn refers to the Jacobian sn elliptic function. If 8 < 0, there are two complex

conjugate roots and only one real root (denoted usually by e?), and given by

e2 = \ [(53 + sPtWY13 + (53 - Z ^ ) 1 7 3 ] , (B20a)

and the Weierstrassian elliptic function is given by
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(B21b)

When the discriminant, <J, is zero, the Weierstrassian elliptic function takes on specific

forms [34], as below:

For g2 > 0 , g3 < 0 , a = e2 = c, e3 = -2c ; c = (l/2)|fir31
1/3 : (B22a)

(B22b)

For 5 2 > 0 , p3 > 0 , ex = 2c, e2 = e3 = - c ; c = (1/2)|5 3 |1 / 3 : (B23a)

(B23b)

For 52 = 53 = ei = e2 = e3 = 0, (B24a)

(B24b)

Although the solutions have been written down in terms of the Jacobian elliptic,

trigonometric, and hyperbolic functions in Eqs. ( B19,B21a, B22,B23,B24), the fourier

transforms are not susceptible to a closed form evaluation of the spectrum as was the

case for the symmetric trap. However, it is still possible to calculate the time-period

analytically in terms of the complete elliptic integral of the first kind [34]. We give

below a brief listing of the explicit dependence of the time-period r on the parameters

of the problem,

8 > 0 : r = K{kx)l{ex - e3), (B25a)

8 < 0 : T = K(k2)/y/Ih, (B25b)

8 = 0 , g2 > O,03 < 0 : r = oo, (B25c)

<J = 0 , ff2>0,gr3>0 : r = 7 r / \ / 6 ^ i , (B25d)

8 = 0 , g2 = g3 = 0 : r = oo, (B25e)

where K{k) is the complete elliptic integral of the first kind and k\^^\.,7,z,gi,z are

defined in Eqs. (4.2b, B22,B23,B24).
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FIGURES

FIG. 1. The double well trap for two Bose-Einstein condensates with Nitj and Ej1
2, the number

of particles and the zero-point energies in the traps 1 and 2 respectively.

FIG. 2. Population imbalance z(t) as a function of dimensionless time, with initial conditions

z(0) = 0.6,0(0) = 0, symmetric trap, and nonlinearity parameters A as shown.

FIG. 3. TP/T as a function of A/Ac (see text for definitions) and z(0) values as shown. Dotted

(dashed) line refers to 0(0) = 0(7r). The inset of (a) shows the time-averaged value (z(t)) plotted

against A/Ac.

FIG. 4. The time-fourier transform z(u) of z(t) as a function of the dimensionless frequency

u/A and A/Ac values as shown, z(0) = 0.1 and symmetric trap. The dotted (dashed) lines refer

to 0(0) = O(TT).

FIG. 5. Tac/r plotted against A for asymmetric trap parameter AE = 1. In the main figure,

the solid (dashed) line denotes 0(0) = O(TT). The vertical scale on the left (right) corresponds to

the initial condition <f>(0) = 0(7r). The insets show time-averaged (z) against A, for (a), $(0) = n

and (b), 0(0) = 0.

FIG. 6. Tac/r plotted against trap asymmetry parameter AE for various values of A/Ac. See

text for definition for roc. z(0) = 0.1. In (a), 0(0) = 0 and in (b), 0(0) = ir.

FIG. 7. Analog of Shapiro effect: dc current !& — (z) as a function of trap asymmetry param-

eter scaled in applied frequency, AE/u>0, for various values of A as shown.

FIG. 8. Theoretical inverse periods cast in a form suitable for direct experimental comparison.

See text, Section VI.
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