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ABSTRACT

A Goal Programming formulation to CANDU fuel management optimization is proposed.
Four objectives are considered, respectively : the feed rate, CPPF (Channel Power Peaking
Factor), BPPF (Bundle Power Peaking Factor) and CPR (Critical Power Ratio). This problem
is investigated using a numerical approach to optimization established on STepMethod and
the use of loss matrix. The optimization technique developed is more adequate for fuel
management analysis for fissile enriched fuel cycles, in which cases the relative importance
of the objectives could be modified. Numerical results are presented for 0.93% SEU fueled
CANDU 6Mkl core and weapons-grade plutonium burning in CANDU 6Mkl core, using
standard 37 rod fuel bundle.

I. INTRODUCTION

The first attempts at CANDU fuel management optimization were made to correct
undesirable flux distributions and the methods used were mostly heuristic . More
recently, optimization techniques suitable for CANDU reactor fuel management were
studied . In the published research studies an economic model, showing a direct
dependence of the fuel costs on the feed rate of fresh fuel in the reactor, was used to
formulate an optimization problem with one primary objective, minimize the feed rate, while
the remaining objectives were expressed as constraints. The characteristics of such a problem
and optimization techniques are:

• one primary' goal to be minimized;
• targets or constraints are inflexible; no deviations are allowed;
• the equilibrium flux and power distributions are used to evaluate the objective

function and to verify the constraints.
The paper proposes a goal programming formulation to CANDU fuel management

optimization. Four objectives are considered, respectively: refuel ratio, CPPF (Channel
Power Peaking Factor), BPPF (Bundle Power Peaking Factor) and CPR (Critical Power
Ratio). This problem is investigated using a numerical approach to optimization established
on STepMethod and the use of loss matrix. The characteristics of this problem and the
optimization techniques are:



• all objectives are ranked, each with a target;
• the constraints are flexible, deviations are acceptable. The constraints can be

relaxed.
© the objective is to minimize the sum of the undesirable deviations, weighted by

their relative importance.
• the equilibrium and instantaneous flux and power distributions and neutronic and

thermalhydraulics calculations are called to evaluate the values of objective functions and to
verify the constraints.

In Section II we present the mathematical optimization model, the system equation
and the constraints and the technique applied to solve the optimization problem. Numerical
results are presented in Section III for 0.9% SEU fueled CANDU 6Mkl core and weapons-
grade plutonium burning in CANDU 6Mkl core, using standard 37 rod fuel bundle. In
Section IV the conclusions are provided.

II. OPTIMIZATION TECHNIQUE

The primary' purpose of this work was to investigate the feasibility of applying a Goal
Programming Optimization Technique to the in-core fuel management of CANDU reactor.
Characteristics and requirements of the optimization problem were to be assessed.

The ultimate goal of the optimization is to develop an equilibrium refueling strategy
that will keep the reactor operating at critical and maximize the reactor availability by
eliminating operations that could induce clad failures or refueling machine outage.

II. 1. The Mathematical Optimization Model

The objectives of fuel management optimization problem are formulated on
economic models. Economic models show a direct dependence of the "index of
performance", expressed by the actualized cost of generated energy, on the fuel operation
conditions, corresponding to fuel management strategy and fuel bundle characteristics, and
on the safety requirements.

We quantified these objectives in the following mathematical program:
V J ••::

min/, = minZ7fZFft
vFtt

XD XD l\ tf, k = \
XeD XeD l=\

.Ve/J /=! -

I• f • I
min/3

 = mini max
X <LD

^ miivjmaxj

r

max/5 = max mini '""...
XcD XcD I / \_ Jr (<)XcD XcD I /



where:
fi - feed rate (bundle/day), characterizing the fuel cost
fz - feed rate (channels/day), characterizing the refueling machine utilization
fs - CPPF (Channel Power Peaking Factor), characterizing the overpower protection
f4 - BPPF (Bundle Power Peaking Factor), characterizing, by power envelope, the fuel
bundle behavior
f, - CPR (Critical Power Ratio), characterizing the thermalhydraulic requirements

N - total number of channels

nj - number of fresh bundles loaded in channel 1 at each visit of the refueling machine

Sj - exit irradiation for channel 1

Tj - time interval between two consecutive visits of channel 1

F .y&,. - normalized fuel flux
IK -L IK

Po (1) - channel power at equilibrium

P (1) - instantaneous channel power- refueling simulation

Phm (1) - dryout power for channel 1

po (i j , l ) - bundle power at equilibrium
p (i,j,l) - instantaneous bundle power- refueling simulation
X - decision variables vector

Regarding the decision variables vector we have considered only the control
components characterizing the core configuration and fuel management strategy,
respectively:

X] - burnup regions configuration

X2 - axial refueling scheme configuration

X3 - exit irradiation's distributions
The use of a XYZ geometry representation for the core model leads to a discrete

character of the control variables concerning: number of channels in each burnup region,
number of channels with different axial refueling schemes, number of fresh bundles loaded
in a channel at each visit of the refueling machine. The number of channel positions and the
radial symmetry condition for the core configuration were used to evaluate the interval range
for these control variables. The exit irradiation distribution was characterized by the value of
exit irradiation in central burnup region - G - and the exit irradiation in burnup region i to exit

irradiation in central burnup region ratio- a, . The exit irradiation in central burnup region is

determined by the criticality constraint. In this way only the a, are control variables and they
have a continues character.

The technique applied to solve the optimization problem is a steepest numerical
method, where the decision variables are modified at each iteration. The algorithm steps are.

1. A first guess for the axial refueling scheme is made., which must correspond to a
feasible case, and can be obtained from supercell or cell calculations. In the case of cell

calculations we use the facilities developed for LATREP-T3S computer program J.



2. Two burnup regions are considered and a first guess for the number of channels in
inner burnup region is made.

3. The optimal discharge burnup (or irradiation) distribution is computed using a
numerical alghoritm established on STepMethod and the use of loss matrix.

4. The optimal solution S is stored. A new configuration of burnup regions is
defined.

5. The step 3 is repeated and optimal solution S ' is compared to S ' If S ' is
better the step 4 is repeated. If not, the better solution is stored and the axial refueling
scheme is changed.

6. The steps 2-5 are repeated until S n+ is unacceptable compared to S n .

The essential step 3 involves the objective functions' evaluations, using the
equilibrium and instantaneous flux and power distributions from neutronic and
thermalhydraulics calculations, and the optimal discharge burnup distribution evaluations,
using a numerical alehorirm developed by R. Benayonu, O. Laritchev, J. de Montgolfier and
J. Tergny .

The method consists in:
3.1. From numerical tables, for each objective function the optimal values are

evaluated

3.2. The loss matrix A= \\2 n \ is builded. where:

A.,j - the importance of objective function I

X, , Xj - the optimal solutions for objective function i and j , respectively.
If the functions have equal importance then the loss matrix must be symmetric and

then:

and A^ are computed.
*

3.3. The optimal solution S is computed as a solution of the following problem:

3.4. The deciding user compares and chooses:
- each objective function have an acceptable value for S . In this case S is

the optimal solution and the alghoritm stops.
- none of them have acceptable value for S . The problem has not a solution.
- There are a few functions with unacceptable values, but they can accept a

penalty of their maximum value by decreasing the maximum value of F, .

3.5. Let be A Fj the penalty proposed for Fj . The alghoritm returns to step 3.2.
considering the supplementary constraints:

Fj*(X)>F j*(S*)-AF j*

Fj(X)>Fj(S*),j*j*



The equilibrium and instantaneous flux and power distributions and neutronic and
thermalhydraulics calculations are called to evaluate the values of objective functions and to
verify the constraints. For our analysis a key role in objective function's computation is
played by fuel management computer program SERA' ''l , excepting the thermalhydraulic
calculations.

For past thermalhydraulic analysis the AECL computer programs HYDNA and
NUCCP was used. At the present time, for new analysis, such as weapons-grade plutonium
burning in CANDU reactors, we have used, for CRP computation, tabled coefficients as
function of axial power shape. That is because, at the present time, we do not have in use a
specialized thermalhydraulic code for CANDU reactors.

Equilibrium calculations, using time-average approximation, and refueling
simulation, using random-age method, arc done in order to compute and to store the

objective function values for different values of a, . The interval range for ô  is chosen from
integrated multiplication properties and bundle power to cell flux ratio evolution with
bumup.

Apparently, a great number of complex calculations are called to be done. Practically,
the number and the computing time are relatively small, due to:

- the flexibility of the alghoritm, which permits the intervention of the deciding user
at each step;

- the facilities offered by the fuel management computer code SERA, as there arc
presented in [5J;

- the experience of the deciding user.

Two numerical application are presented in the next Section.

m . NUMERICAL APPLICATIONS

The technique described was used by the authors for advanced fuel cycles analysis
for CANDU reactors. Some numerical results are presented in [9], for 1% SEU fueled
CANDU 6Mkl core. In this paper we present two numerical applications for 0.93% SEU
fueled CANDU 6MKT core and MOX- weapons-grade plutonium- fueled CANDU 6 Mkl
core.

For both applications the same reactor model and assumptions are used These are:
- a detailed XYZ 42x28x22 mesh points core model
- a detailed representation of adjuster rods and ZCU
- 45% water level in ZCU
- the remainder of reactivity devices simulated by 2 mk reactivity excess
- the same thermal absorption cross section increments, for adjuster rods, as for the

natural uranium fuel case
- standard 37 rod fuel bundle
- the top to bottom asymmetry, due to ZCU characteristics, was neglected and a radial

symmetry for burnup region's configuration was considered.



III.l. Solution of the optimisation problem for
0.93% SEU Fueled CANDU 6Mkl Core

The choice of a 0.93% enrichment is motivated by the requirement to reach a
maximum 18 MWd/kgHE of fuel rod, a constraint for the use of 37 rod fuel bundle.
Moreover, this enrichment offers the opportunity to develop a solution independent on
uranium source: SEU or RU.

The optimal solution search was initiated with a 4-bundle shift refueling scheme, two
burnup regions, with 124 channels in inner burnup region. 3-bundle shift refueling scheme
was found as optimal value, for axial refueling decision variable. However, imposing for the
number of fresh bundle loaded to be an even number, a 2^4-bundle shift refueling scheme
was searched.

The final optimal solution, concerning refueling scheme and burnup regions'
configurations, is illustrated in Figures 1 and 2. The main parameters for core are presented
in Table 1. A detailed refueling simulation, for 200 days with a 10 day step, was done in
order to verify the solution.

The power envelope and power boost envelope are illustrated in Figures 3 and 4. The
solution responds to the use of standard 37 rod fuel bundle constraint.

m.l . Solution of the optimisation problem for
MOX-Weapons-grade Plutonium-Fueled CANDU 6MK1 Core

High operating neutron flux, high neutron economy and on-power refueling
make CANDU particularly suitable for the annihilation of weapons -grade plutonium l

The option being considered in this paper for disposing of weapons-grade plutonium is
burning the plutonium in the form of a mixed UO: - PuO; fuel using standard 37 rod fuel
bundle.

The source for uranium can be: recycled uranium from LVVR, low enriched uranium
from enriching plant or CANDU spent fuel. For this analysis the fuel consists in a mixed
CANDU spent fuel (0.23% U235, 0.25% Pu2'9) and Pu239.

The objectives of the study were as follows:
- to preserve the power envelope of the standard 37 rod fuel bundle;
- to reduce to zero the void reactivity effect for equilibrium fuel.
Details regarding fuel bundle composition configuration are presented in [11]. We

present in this paper only the results of the fuel management optimization procedure applied
239 "

for the average 1.5% Pu enriched fuel bundle. The fuel bundle composition is illustrated
in Table 2. The optimisation procedure was completed with an external search for optimal
fuel bundle configuration.

The optimal solution search was initiated with a 1-bundle shift refueling scheme, two
burnup regions, with 124 channels in inner burnup region. The alghoritm was stopped when
acceptable values for BPPF and CPPF were obtained. The main reason is the high priority
level accorded to the objective regarding the preservation of power envelope of standard 37
rod fuel bundle.

The increase of the importance of feed rate (channels/day), describing the cost
component corresponding to refueling machine utilization, leads to a change in fuel bundle



configuration, concerning fissile distribution, and a 2-bundle shift refueling scheme can be
achieved.

A similar situation was repeated for an average 1.2% Pu~" enriched fuel bundle, for
which a 2 or 4-bundIe shift refueling scheme as optima! solution is dependent on radial
distribution of fissile in fuel bundle rings.

The main results are presented in Table 3 and the power envelopes are illustrated in
Figures 6 and 7.

To illustrate the importance of a detailed physics model an intermediate solution is
also presented. By the point of view of equilibrium model this solution appears to be
acceptable. In fact it is not. as is illustrated by the power envelope.

IV. CONCLUSIONS

The paper presents a Goal Programming formulation of in-core fuel management
optimization for CANDU 6Mkl core. The main characteristics of the mathematical model
and of the technique developed for solving the optimisation problem are:

- three main components of economic "index of performance" are involved,
respectively: fuel cost, refueling machine utilization and reactor availability. Five objective
functions are used to describe the cost components.

- a numerical approach to optimization established on STepMethod and the use of
loss matrix is used. A detailed physical description of the core is preferred to a sophisticated
analytical mathematical method.

- the constraints are flexible, deviations are acceptable. The constraints can be
relaxed.

- the objective is to minimise the sum of the undesirable deviations, weighted by their
relative importance.

- apparently, a great number of complex calculations are called to be done.
Practically, the number and the computing time are relatively small, due to the flexibility of
the alghoritm, which permits the intervention of the deciding user at each step, and to the
performances offered by the new PC generation and the facilities than can be developed for
fuel management computer programs.

Two numerical applications, for 0.93% SEU and MOX- weapons-grade plutonium-
fueled CANDU 6Mkl core, are presented. The results do not exhaust the physical aspects
implied by the use of these fuels. Nevertheless, the optimal fuel management solutions
demonstrate the feasibility of using these fuel cycles in the CANDU 6Mkl reactor, without
constructive and operational alterations.
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Table 1. The main parameters for 0.93% SEV fueled CANDU 6Mkl Core

Equilibrium maximum channel power (kW)
Equilibrium maximum bundle power (kW)
Equilibrium CPR
Maximum power envelope (k\V)
Maximum overpower envelope (kW)
Discharge bumup (MWd/kgHE): region 1

region 2
region 3
average

Equilibrium feed rate, channels/day
bundle/dav

Instantaneous maximum average channel power (kW)
(random-aae method)
Instantaneous maximum average bundle power (kW)
(random-age method)
Average CPPF (random-age method)
Average BPPF (random-age method)
Average CPR (random-age method)
Maximum channel power (kW)
(detailed refueling simulation)
Maximum bundle power (kW)
(detailed refueling simulation)

6375 (M-17)
762 (M-14, 3)

1.42
839
943

13.53
15.41
16.05
15.05
2.36
7.62
7084

872

1.216
1.237
1.312
7197

892

Table 2. Standard 37 rod fuel bundle configuration
MOX-Weapons-grade Plutonium- Fuel

Bundle Type
Central Rod

1-st Inner Ring

2-nd Inner Ring
External Ring

075
1.5% Pu-239
2.0%B-10
1.5% Pu-239
2.0% B-10
1.5% Pu-239
1.5% Pu-239

D15
1.9% Pu-239
2.0%B-10
1 .9% Pu-239
2.0%B-l0
2.01% Pu-239
1.00% Pu-239

CFJ5
0.25% Pu-239
2.0%B-10
0.25% Pu-239
2.0% B-10
2.56% Pu-239
1.28% Pu-239

B12
1.75% Pu-239
1.23% B-10
1.75% Pu-239
1.23% B-10
1.48% Pu-239
0.80% Pu-239

CF12
0.25% Pu-239
1.35% B-10
0.25% Pu-239
1.35% B-10
2.03% Pu-239
1.01% Pu-239



Table 3. The main parameters for MOX- weapons-grade plutonium-
fueled CANDU 6MK1 core

Parameter

Equilibrium
Maximum
Channel
Power fkW)
Equilibrium
Maximum
Bundle
Power (kW)
Maximum
Average
Channel
Power (kW)
Maximum
Average
Bundle
Power (kW)
Average
CPPF"
Average
RPPF

Bundle Ol 5
1-bundle shift

6402

749

6688

782

1.07

1.07

Bundle Ol 5
2-bundle shift

6398

757

6976

857

1.12

1.16

Bundle D15
2-bundle shift

6406

725

6817

793

1.09

1.11

Bundle B12
4-hundle shift

6471

745

7035

871

1.18

1.27

Bundle CF12
2-bundle shift

6404

731

6840

803

111

1.12



Figure 1. Burnup Regions' Configuration: 0.93% SEU Fueled CANDU 6Mkl Core
Exit Irradiations ( n/kb ):
region 1=2.9432113; region 2=3.344558; region 3=3.511786
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Figure 2. Axial Refueling Scheme Configuration; 0.93% SEU Fueled CANDU 6Mkl Core
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Figure 3. Equilibrium Channels Power Map
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Figure 4. CPR Values Map
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