$$\mathcal{T}_{2} = \mathcal{T}_{2}^{\infty} + \mathcal{T}_{\gamma} \ln\left(1 + \frac{P_{o2}}{P_{oi}} e^{-\frac{\Delta t}{\mathcal{T}_{\gamma}}}\right) , \qquad (1)$$

где $\mathcal{T}_{2}^{\infty} = \mathcal{T}_{3} \mathcal{C}_{7} P_{o2} U_{o} / P_{n}^{*} U$ – ВПР второго сбоя при $\Delta t = \infty; \Delta t$ – интервал между импульсами ионизации; P_{oi} – мощность дозы соответствующего импульса ионизации.

Как следует из рис. З, расчет по формуле (I) качественно согласуется с экспериментом. Таким образом, при оценке стойкости аппаратуры в реальных условиях необходимо учитывать влияние кратности воздействия импульсов излучения.

В заключение отметим, что установленные закономерности обратного сбоя в КМОП ИМС могут быть полезными при оценке радиационной стойкости аппаратуры, особенно если универсальность зависимости ВПР от уровня нагружения будет подтверждена для широкого класса ИМС, так как в этом случае объемы испытаний могут быть существенно сокращены.

Статья поступила в редакцию 25 июня 1993 г.

УДК 621.382.323.539.12.04

MINETAKA HAKONJEHNA M TUHHEJEHOPO OTIMTA PAJMALMOHHO-HABEJEHHOPO SAPAJA B OKACJE MOH-TPAHEMOTOPA

Г.И. Зебрев

Предложен теоретический подход, позволяющий описывать кинетику накопления и туннельного отжига радиационно-индуцированного заряда в окислах МОП-структур. Рассмотрены случаи импульсного и стационарного облучения с разными интенсивностями.

Радиационная стойкость современных МОП-структур определяется главным обрезом качеством узкой (<3 нм) переходной области границы раздела $Si - Si O_2$. Из-за нарушенной стехиометрия (дефицита атомов кислорода) в этом слое повышена концентрация кислородных вакансий \mathcal{N}_{vo} , которые по современным представлениям являются соновными предвестниками радиационных нарушений, в частности, дырочных ловушек [1,2]. Радиационную стойкость МОП-структуры будем характеризовать шириной залегания кислородных вакансий ℓ и эффективностью захвата дырок F_4 в этом слое

$$F_t = 1 - exp(-\sigma_p N_{vo} l) \cong \sigma_p N_{vo} l ,$$

где 🗇 - сечение захвата дырок.

Доля захваченных дырок от полного их количества, индушированного облучением, варьируется от $F_t < 0, I$ (радиационно-стойкие образны) до $F_t \sim 0, 2-0, 5$ (коммерческие).

Радиационно-наведенный заряд на дирочных ловушках является существенно неравновесным. Одним из механизмов восстановления термодинамического равновесия является туннельная релаксация. Кинетическое уравнение, описывающее динамику встраивания и туннельного отжига, можно записать в виде

$$\frac{dP(x,t)}{dt} = \frac{F_t}{\ell} K_g d_{ox} \gamma(E_{ox}) P_y - \frac{P(x,t)}{\mathcal{T}(x)}, \qquad (1)$$

RU9710221 ,

где $K_g = 1,38 \cdot 10^{13}$ см⁻³рад⁻¹; $\gamma(E_{ox})$ - зависящая от поля в окисле в момент облучения доля разделенных электронно-дырочных пар [3].

Решение уравнения (I) дает для приведенной поверхностной плотности заряженных дырочных ловушек следующее выражение:

$$N_{ot} = F_t K_g d_{ox} \gamma (E_{ox}) \frac{\lambda}{\ell} \int_{0}^{t} dt' \left[E_t \left(\frac{t-t'}{T_e} \right) - E_t \left(\frac{t-t'}{T_o} \right) \right] P_{f}(t'), \qquad (2)$$

где $P_{\mathcal{F}}$ - мощность дозы; $\lambda \leq 0, I$ нм - туннельная длина; $\mathcal{T}_o = 10^{-11} c$ - минимальное время туннелирования; $\mathcal{T}_e = \mathcal{T}_o exp(\ell/\lambda); E_i(y)$ - функция интегральной экспоненты.

Рассмотрим основные частные случаи, представляющие практический интерес.

<u>Импульсное облучение</u>. В этом случае связь мощности дозы $P_{\mathcal{J}}$ с полной дозой \mathcal{D} можно представить в виде $P_{\mathcal{J}}(t) = \mathcal{D} \mathcal{O}(t)$. Тогда общая формула (2) дает временную динамику туннельного отжига после импульса облучения

$$N_{ot} = F_t K_g d_{ox} / (E_{ox}) \frac{\lambda}{\ell} \mathcal{D} \left[E_1 \left(\frac{t}{\tau_{\ell}} \right) - E_1 \left(\frac{t}{\tau_{o}} \right) \right] .$$

С точностью до слагаемых $\ell/d_{ox} \ll 1$ сдвиг напряжения ΔV_{ot} , обусловленный зарядом в скисле, определяется соотношением $|\Delta V_{ot}| = e N_{ot}/C_o$, где C_o – емкость окисла. Счень удобно воспользоваться известной асимитотикой интегральной экспоненты ($E_i(y)=0,577$ – $\ell ny, y < I$ [4])

$$\Delta V_{ot} \cong \frac{F_t K_s \mathcal{L}_{ox} \gamma(E_{ox})}{C'_o} \mathcal{D} \left[1 - \frac{\lambda}{\mathcal{L}} \ln \frac{t}{\tau_o} \right]$$
(3)

Из сравнений с экспериментальными данными [5] можно по формуле (3) извлечь величину ℓ : $\ell \cong 46 \lambda$ или $\ell \sim 3$ нм, $\mathcal{T}_{\ell} \sim 10^9$ с, что соответствует многочисленным независимым экспериментальным данным.

<u>Станионарное облучение</u>. Рассмотрим облучение с постоянной мощностью дозн $P_T = D/T$ на протяжении времени T. С точностью до исчезающе малых слагаемых общая формула (2) дает зависимость временного отжига в виде

$$N_{ot} = F_t \, K_g \, d_{ox} \, \gamma(E_{ox}) \mathcal{D}_{\ell}^{\lambda} \left\{ E_t \left(\frac{\mathcal{D}}{P_T \mathcal{T}_{\ell}} \right) + \frac{1 - exp\left(- \frac{\mathcal{D}}{D_T \mathcal{T}_{\ell}} \right)}{\mathcal{D}/P_T \mathcal{T}_{\ell}} \right\}$$
(4)

При дозах $\mathcal{D} \ll \mathcal{P}_{\mathcal{V}} \mathcal{T}_{\mathcal{C}}$ существенно только первое слагаемое в скобках выражения (4), что соответствует практически линейному виду зависимости, накопленного заряда от дозы, слегка редуцированному слабым логарифмическим отжитом

$$N_{ot}(\mathcal{D}) \sim \mathcal{D}\left[1 - \frac{\lambda}{\ell} \ln(\mathcal{D}/P_{g}\tau_{o})\right]$$

При очень больших дозах (больших временах облучения), когда $\mathcal{D} > P_{\mathcal{J}} \mathcal{T}_{\ell} \sim 10^9 P_{\mathcal{J}}$, скорость отжига сравнивается со скоростью накопления х \mathcal{N}_{ot} перестает расти. В реальности дозовое наснщение сдвига порогового напряжения начинается при гораздо меньших дозах из-за ограничений, обусловленных накоплением отрицательного заряда на поверхностных состояниях, полевыми эффектами и т.п.

Наконец, рассмотрим динамику туннельного отжита заряда как функцию времени Δt , прошедшего после окончания стационарного облучения продолжительностью T. Результат, полученный по формуле (2), имеет в очень широком диапазоне параметров $\mathcal{T}_{\ell} \gg \Delta t$; $T \gg \mathcal{T}_{o}$ простую асимптотическую форму

$$N_{ot}(\Delta t,T) = F_t K_g d_{ox} \gamma (E_{ox}) \mathcal{D} \left\{ 1 - \frac{\lambda}{\ell} \left[ln\left(\frac{T+\Delta t}{T_o}\right) + \frac{\Delta t}{T} ln\left(1 + \frac{T}{\Delta t}\right) \right] \right\}.$$
(5)

Как мы видим из выражения (5), кривые отжига абсолютной величины заряда в окисле (или ΔV_{ot}), соответствующие одной дозе и разным продолжительностями облучения (т.е. разным P_T), практически параллельны (даже при $\Delta t < T$) друг другу и различаются в одной временной точке не более чем на 2-3 % ($\sim \lambda/C$). Реальная экспериментальная ситуация такова, что в очень ширском диапазоне мощностей доз (от импульсного облучения до значений $P_{s} < 0, I$ рад/с) экспериментальные точки после облучательного отжига ΔV_{ot} ложатся практически на одну кривую [6]. Этот факт имеет исключительно важное значение для прогнозирования радиационного отклика приборов в условиях низкоинтенсивного космического облучения по результатам ускоренных наземных испытаний. Последовательное теоретическое объяснение указанных экспериментальных данных до сих пор в литературе окутствовало.

СПИСОК ЛИТЕРАТУРЫ

- 1. Woods M., Williams R. Hole Traps in Silicon Dioxide // J. Appl. Phys. 1976. Vol. 47. P. 1082.
- Lenahan P.M. Hole traps and Trivalent Silicon Centers in MOS Devices // Ibid. 1984.
 Vol. 55. P. 3495.
- 3. Srour J.R., McGarrity J.M. Radiation Effects on Electronic Devices in Space // Proc. IEEE. 1988. Vol. 76. P. 1443.
- 4. Янке Е., Эмде Ф., Леш Ф. Специальные функции. М.: Наука, 1977.
- 5. Lelis A.J. e.a. The Nature of the Trapped Hole Annealing Process // IEEE Trans. Nucl. Sci. 1989. Vol. 36. P. 1808.
- 6. F l e e t w o o d D.M. e.a. Using Laboratory X-Ray and Cobalt-60 Irradiations To Predict CMOS Device Response in Strategic and Space Environments// Ibid. 1988. Vol. 35. P. 1497.

Статья поступила в редакцию 25 июня 1993 г.

ЛАК 621.3.049.77.623.454.832

МОДЕЛИРОВАНИЕ ДИНАМИКИ ИЗМЕНЕНИЯ ТОКА ПОТРЕБЛЕНИЯ КМОЛ ИНВЕРТОРА ПРИ ВОЗДЕЙСТВИИ НЕЙТРОННОГО ИМПУЛЬСА ЯДЕРНОГО ВЗРЫВА

Р.Г. Усеинсв, В.Ш. Насибуллин

На основе феноменологической модели изменения порогового напряжения МОП-транзистора после воздействия импульса ионизирующего излучения разработана модель расчета динамики изменения тока потребления КМОП инвертора после нейтронного импульса ядерного взрыва. Предложена оценочная формула для дозы нейтронного излучения поглощенного в SiO₂, учитывающая реальный энергетический спектр нейтронного импульса и иснизационную способность нейтронов.