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Abstract

A general overview about the properties of Cathode Strip and Pad Chambers is given. Position finding
methods are discussed and compared within Monte Carlo studies. Noise contributions and their minimization
are discussed. Pad chambers allow a two-dimensional readout with spatial resolution of <r < 100/im in
direction parallel to the anode wire. The resolution normal to the anode wire depends mainly on the wire
spacing. Special attention is paid on the double-hit resolution capability of the pad chamber. An outlook is
given on the possible utilisation of Cathode Pad Chambers in the Di-Muon Arm of the ALICE detector at LHC.
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Chapter 1

Introduction

The design and development of Cathode Strip
Chambers (CSC) and Cathode Pad Chambers (CPC)
made a lot of progress in the last few years. CSC's are
usually considered as a low-cost alternative to other
gas and wire chambers and can provide a good spatial
resolution a between 40 and 100 ftm which is equal or
better to comparative detectors. In all experiments at
the Large Hadron Collider (LHC) large surface detec-
tors with high resolution are needed. In the ATLAS
and CMS 1 experiments the bunch crossing of two
proton beams arrives every 25 ns, which demands a
rapid response of the detector (CSC). This limits the
usage of multiwire drift chambers. An advantage of
CSC's is their precise construction by photo-etching,
while for drift chambers the variation of drift veloci-
ties remains a problem.

The aim of this report is to review the important
features of CSC and CPC described in the vast liter-
ature. Monte Carlo studies for a CPC lay-out have
been performed and results are presented and dis-
cussed here in detail. Special attention has been
paid if the demanded resolution of about a = 60 fim
for the Di-Muon Arm of ALICE 2 [1, 2, 3] can be
achieved. As particle multiplicities in Pb-Pb collisons
at LHC will be much higher as in p-p collisions (AT-
LAS and CMS experiments) the problem of how to
resolve closely neighboured tracks (double-hits) with
CPC's is treated with care.

1.1 The Di-Muon Arm in the
ALICE experiment at LHC

The ALICE experiment will study in ultrarelativis-
tic nucleus-nucleus collisions at LHC the physics

of strongly interacting matter at extreme densities,
where the formation of a new phase of matter, the
quark-gluon plasma (QGP), is expected 3 . In 1995 it
was proposed [2] to add a forward muon detector in
order to measure high mass lepton pairs coming from
the decays of heavy quarkonia (J/¥, * ' , T, T', T").
The formation of these qq states should be suppressed
in the presence of a deconfining medium (i.e. the
QGP) [5].

The Di-Muon Arm is planned to have an accep-
tance between 2° and 10.5° in forward direction [3].
More than 10000 charged particles are expected in
this small cone for one central Pb-Pb collision. The
forward detectors have to be shielded by an absorber
(~ 3.5 m thickness), designed to stop most forward
hadrons without degrading the muon resolution too
much and avoiding muon background from decays of
stopped pions. A mass resolution of better than 1% is
needed in the T mass region to properly separate the
excited states. Muon tracks will be measured with
several sets of detectors (we consider here CPC's)
in a distance between 4.5 and 12 m from the colli-
sion point. The actual design consists of 8 chamber
planes, grouped in sets of two planes. The latter have
a distance of about 6 cm to measure the angle of the
track 4. This is necessary to speed up the fitting pro-
cess in the track analysis, to minimize ambiguities
and the number of ghost tracks. Remaining back-
ground particles (light hadrons), also coming from
the beam pipe, will be stopped in a second absorber.
It will be followed by 2 detector planes which serve as
muon identifier. A schematic sketch of the detector
is shown in fig. 1.1. A dipole or toroidal magnet will
be used to measure muon momenta. More details can

1 Compact Muon Solenoid
2 A Large Ion Collider Experiment

3 For a review see the article of H.R. Schmidt and J.
Schukraft [4].

4 A spatial resolution on each plane of a sc 60>im will give a
precision of the angle between the two impact points of about
1.4 mrad.



Figure 1.1: Schematic sketch of the Di-Muon Arm of ALICE [3].

be found in the ALICE Technical Proposal [3]. shows two sketches of a CPC with its basic param-
eters. A charged particle with angle a ionizes the
chamber gas along its trace. In the high voltage elec-
tric field electrons drift towards the anode wires 5.

1 . 2 C a t h o d e S t r i p a n d P a d When the electrons come closer to the anode wire,

Chambers *hev w^^ 8 a m more kinetic energy due to the larger

electric field. As soon as their kinetic energy is larger

than the ionization energy of the gas molecules, the

Table 1.1 gives a list of experimental results from the electrons can knock out further electrons and thus

literature for the spatial resolution <rx in direction create an avalanche close to the wire. Neglecting the

along the anode wire. In the last 5 years there have angular effect all the charges will in most cases be

repeatedly been reported resolutions well below 100 collected by one wire. Therefore the track position in

/im. However, most of these results are from detec- direction normal to the wires (Y) is given by the wire

tor tests under optimum conditions and usually with position. The resolution in Y-direction is thus

small chambers (< 0.5m2). c

* - 7 H - ( u )

Cathode strip/pad chambers are in fact ordinary .
, . . , , , , with s being the anode-anode gap.

multiwire gas chambers with segmented cathodes.
The impact position is obtained by interpolating the _, . , _ . . . . ,. . , , ,

For Monte Carlo simulations a realistic knowledge
induced charge on the cathodes over several neigh- «*. • . J L i t . . . .

of the induced charge on the strips is of importance,
bouring strips or pads. In the first design [6] the _,, . , , . ,

There exist a number of formula and models of how to
cathode consisted just of several wires which were , , , , , . . . . . ,

describe the charge distribution induced on the cath-
electronically coupled. Shortly after, strips of thin , , . , ,._ . . . . . , , , , . . , .

ode which differ mainly in the tails of the distribution,
copper or gold layers were apphcated on thin mylar „ , . , . „ ,

some formulae are compared in chapter 2. In the
supports by photo-etching methods. Like for elec- . , „, , . . . ... , „ . ,

, Monte Carlo simulation we will use the Gatti descrip-
tronic circuits photo etching can nowadays be done rn, . . „
. , . „ . . . , tion 191 in its one-parameter form as given by Math-
mdustnally with high accuracy even for surfaces of . . . . , , , _ , . . . . ,

, , . _, _, . . . . , leson [10, 111. The authors claim it to be the closest
several m ' 17, 81. Segmentation is possible in one di- . , . , , , .

. . . . , . . , form compared with an exact calculation [9, 12, 131.
mension with strips or in two dimensions with pads.

The latter design allows to work with high particle _,. , . . .
. . . . . . , ., . . ,. . , The track position is determined by interpolating

multiplicities and eventually (depending on the size)

a position determination using the pad information t l ^ ' ^ f t e P O 8" i v! ionS °lthe c h ^ b e , r g M WuU d r i f t

° r to the cathodes but are about a factor 1000 slower than the
also in direction normal to the anode wires. Fig. 1.2 electrons.



CHAPTER 1. INTRODUCTION

Table 1.1: CSC prototypes with spatial resolution a tv 100 fim or better. Some authors give several results
from different test runs. The spatial resolution parallel to the anode wires quoted is usually the ax of a fit with
one Gaussian to the residuals in comparison to a microstrip calibration detector, ignoring a broad background
contribution (< 10%) due to S electron production, ADC overflows or double-hits. Only few real CPC's have
been constructed. wx is the cathode pad/strip width (readout pitch) and d is the anode-cathode spacing.

Ox

(fim)
w60
»65
»45
100

<100
64

80 (65)
100

40-80
45-53

40
&60

<rx/wx

(%)

1.7
1.0, 2.5

2.2

0.8

wx/d
(mm/mm)

2/4=0.5

4.5/2=2.3

5/2.5=2

reference
(et al.)

G. Charpak [17]
F. Piuz [13]

L.S. Barabash [18]
A.L.S. Angelis [19]
R. Debbe [20, 21]
H.v.d.Graaf [22]
N. Khovansky [7]
M. Benayoun [23]
H. Fenker [15, 16]

K. Lau [8]
G. Bencze [24]
J. Guillot [25]

year

1979
1982
1985
1989

1989, 1990
1991
1994
1994

1994, 1995
1995
1995
1995

remarks

wire cathode

CPC
CPC

CPC, wy = 12 mm
full size chamber

IPN Orsay

the induced charge on neighboured strips or pads.
The different interpolation algorithms are described
and compared in chapter 3 and the appendix. It
turns out that the algorithms used in the literature
have a different sensitivity on electronic or other noise
contributions. One can choose therefore an optimum
method for a given chamber design.

Electronic noise, mainly of the preamplifier, is in
fact the resolution determing factor. To achieve reso-
lutions of e.g. 50 fiva the noise amplitude variation in
each pixel must not exceed 0.5% of the total cluster
charge. This demands special low-noise electronics.
The degradation with noise is discussed and shown
in chapter 4.

The high multiplicity of events expected in the Di-
Muon Arm of the ALICE detector will result in a non-
negligible contribution of very close tracks with over-
lapping charge distributions in the chamber. Usually
CSC and CPC are believed to have a very poor sepa-
ration of double-tracks. The question is a stepchild of
the literature. Only Fenker et al. [15, 16] and B. Yu
[14] treat the problem to some extend. In chapter 5
methods are discussed to separate double-tracks and
the resulting resolution degradation.

Finally in chapter 6 the discussed methods will be
applicated on the impact distribution in a real-size
pad chamber in the ALICE Di-Muon Arm. The hit

distribution was generated with GEANT 6 for Pb-Pb
collisions at LHC energies. As the particle density
is high for small angles and low for large angles the
detector does not need the same granularity over the
whole surface. An outlook on the optimization of the
chamber design is given.

1.3 Standard chamber design
choosen in this model

Inspired by the good spatial resolution of ax — 40/im
achieved in the test by Bencze et al. [24] we decided
to start our simulation studies with a similar chamber
design. The parameters are :

• wx = 5 mm pad size in X-direction (= readout
pitch)

• wy = 7.5 mm pad size in Y-direction (= read-
out pitch)

• cf = 2.5 mm anode-cathode gap

• h = 5 mm total chamber gap between 2 cath-
odes (h = 2d)

• 8 = 2.5 mm anode-anode gap

6 The detector description and simulation tool from the
CERN Program Library.



1.3. STANDARD CHAMBER DESIGN CHOOSEN IN THIS MODEL
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Figure 1.3: Standard pad lay-out and definition of
parameters used in the Monte Carlo simulations in
this report.

Avalanches
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Figure 1.3 shows a sketch of the lay-out. It seems

advantagous to have the wires shifted by s/2 from

the pad edge. Like that the events attributed to each

wire will have the impact on a specific pad (neglecting

the angular effect). We will later refer to this lay-out

as standard design.

Figure 1.2: Schematic sketch of a pad chamber. (Fig-
ures are inspired by ref. [8] and [24].) (a) Anode-
cathode spacing d = 2.5 mm, anode wire pitch s = 2.5
mm, pad size in direction rectangular to the anode
wires wy = 7.5 mm. Only one cathode plane is seg-
mented, (b) Chamber turned by 90° in the x-y plane.
A charged particle ionizes the chamber gas along its
track. Electrons will be attracted by the closest anode
wire(s). Avalanches are created near the wire.



Chapter 2

Charge distribution

In order to study the spatial resolution proper-
ties by means of a Monte Carlo code, it is necessary
to reproduce the induced charge distribution on the
cathode as precisely as possible compared to the real
distribution. There exists a number of propositions
in the literature of how to parametrize the induced
charge distribution on the cathode [9, 10, 11, 26, 27,
28, 29, 30]. It has been shown that the charge distri-
bution should be described by a formula with some-
what larger tails than a Gaussian [10, 13, 28, 30]. ec

In the Monte Carlo simulations discussed below the
induced charge on the cathode pads is calculated with
the one-parameter formula given by Mathieson and
Gordon [10, 11, 12] 1. The authors claim [10] that
their empirical formula is very close to the shape re- *°
suiting from an exact model calculation by the same
authors [12]. Their formula is now widely used in
the literature [e.g. [13, 14, 15, 16, 31] and others)
and easy to handle 2. The Mathieson formula allows
to calculate the charge distribution both in direction &
normal and parallel to the anode wires. Piuz et al.
[13] found the best description of their experimental
data with the Gatti/Mathieson formula. See fig. 2.1.

In the Mathieson representation the shape of the
charge distribution is determined by one parameter '
K3 which depends only on geometrical factors, like
the anode-cathode separation, the anode wire pitch
and the anode wire diameter. Values for this param-
eter K3 can be found in refs. [10,11] for a wide range
of chamber geometries. K3 is of course (weakly) de-
pendent on geometric accuracies of the chamber con-

1 The formula had been derived before by Gatti et al. [9]
and was simplified [10].

* Note that recently Benayoun et at. [29] developped a
charge distribution for CPC'a in both dimensions, based on the
formula given by Endo et al. [28]. We prefer the representation
of Mathieson because of its simpler form and most probably
closer description of the real distribution.

8

Figure 2.1: Experimental data for the induced charge
distribution compared to several formulae. (Figure
from Piuz et al. [IS].) The Mathieson charge profile
(curve A) is the closest description of the experimen-
tal data. Curve B: hyperbolic secant, C: Gauss, D:
Lorentz.



struction (see section 4.1.5). Once real data are taken,
Kz can be fixed with a fit to the data to minimize sys-
tematic errors 3.

Following ref. [11] the charge distribution p(X) in-
duced on the cathode, where A = x/d with x being
the position either parallel or normal to the anode
and d the anode-cathode separation 4 and qa is the
net anode charge, can be written

- tanh2(/t2A)

where

and

K -*(l

4 arctan -*fKz

(2.1)

(2.2)

Otherwise one can also write, with 1 — tanh2 =
1/ cosh2 and cosh2 = 1 + sinh2,

(2.4)

Values for Kz for the charge distributions parallel
and normal to the anode wire are plotted as a func-
tion of d/s and ra in a range from 0.2 to 1.4 in ref.
[11] (shown in figure 2.3) and from 1.4 to 6.0 in ref.
[10]. s is the anode wire pitch and ra the anode wire
radius. All simulations in this report were done with
d/s =1 .0 which is close to the optimum resolution
(see below).

Fig. 2.2a shows the charge distributions with
a Gaussian [27], Mathieson [11], hyperbolic secant
squared (SECHS) [30] and Lorentzian [26] shape. The
single parameter formula gives a shape between Gaus-
sian and Lorentzian. The Lorentzian curve has very
long tails and is therefore not useful. The SECHS
curve is a very close approximation to the Mathieson
formula. Nonsquared hyperbolic functions as used by
Endo et al. [28] and Benayoun et al. [29] lie be-
tween Mathieson and Lorentzian shape. We like to
stress the importance of the knowledge of the correct
charge distribution, especially in its tails. As the po-
sition reconstruction algorithms work with ratios of
the charges of the central to the neighbouring pads
or strips, the signal-to-noise ratio of the neighbouring

3 This was also proposed in refs. [15, 16].
4 Note that Mathieson used the letter h for the anode-

cathode gap.

Mathieson
Sechs
Gauss
Lorentz

Figure 2.2: (a) Different representations for the in-
duced charge distribution. The curve are aligned to
have the same amplitude and width, (b) Mathieson
charge distribution for different values of Kz (see
text). Both figures show the charge in arbitrary units
as a function of the position normalized by the anode-
cathode separation.

pads is the limiting factor. This must be correctly
evaluated in the simulations. If not, the optimized
design of the pad chamber might not be the true op-
timum design.

For practical reasons we note the FWHM [11] of
the charge distribution in equation 2.1,

(2.5)

The width of the induced charge depends on the
anode-cathode separation d. For the parameters cho-
sen in this report the FWHM rests between 1.5— 1.6d.
It is important to note that by varying d also Kz is
affected, therefore the FWHM is not only a linear
function of d.

In fig. 2.2b the small Kz dependence for charge
distributions parallel or normal to the anode is shown
for the chosen parameters d/s =1.0 (both 2.5 mm)
and ra — 20 /im giving ra/s = 2.4 x 10~3. The wire
radius has an influence on the width of the induced
charge distribution. The larger the wire radius the
wider the distribution becomes (see also fig. 2.3).



Figure 2.3: Empirical dependence of parameter A'3
from geometrical factors as given by Mathieson [11].
h is the anode-cathode gap, s the anode-anode gap
and ra the anode wire radius. Top: Charge distri-
bution parallel to anode wire direction (X). Bottom:
Charge distribution normal to anode wire direction

(Y)-

Figure 2.4: Integral over the Mathieson charge dis-
tribution calculated with eqn. 2.10 and 2.11. In X-
direction 10 arbitrary units correspond to the pad size
of 5 mm and 15 units in Y-directwn to 7.5 mm. The
charge scale is arbitrary.

For pads the charge distribution must also be inte-
grated in direction normal to the anode wires. The
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total integral may be written as the product of the
two integrals parallel and normal to the anode wire
direction:

(2.11)

with 4 being the normalisation factor to unity. Only
K3 and the boundaries Ai and A2 have to be changed
accordingly. Note that this simple integration is only
valid for rectangular pads. The integral is plotted in
fig. 2.4.



Chapter 3

Position finding methods

In this section a few commonly used position find-
ing algorithms are discussed. They all calculate a re-
lation between the measured charges on a few strips
or pads around the impact point. For all methods
systematic corrections are necessary due to the fact
that the charge distribution is not linear l. The size
of the systematic corrections is clearly depending on
the chosen geometric parameters, i.e. the ratio of
the width of the charge distribution 2 to the read-out
pitch 3. However, the reconstruction is very precise
in the absense of noise, if the systematic correction is
carefully treated.

There have been a number of attempts to decrease
the non-linearity to improve the resolution. There are
three methods:

• resistive coupling of two or more strips/pads be-
tween the read-out pitch [14, 31]

• capacitive coupling of two or more strips/pads
between the read-out pitch [24]

• geometric compensation of the non-linearity e.g.
by chevron shaped pads, zig-zag shaped strips
[14, 31, 32] or other forms [33]

Finally, we point out that in general the methods
using 3 pads (i.e. readout nodes) are the best [30, 31],
because this limits the noise effects. For small ratios
of pad size to anode-cathode gap one might be tended
to include more pads because a considerable amount
of charge is found on the side pads, but with each ad-
ditional pad the noise error is increased. If the charge

1 Therefore the ratio of charge induced on one pad to the
total charge is not varying linearily with the impact position
on the pad. Note that in the linear case the charge distribution
would have a triangular shape.

2 which depends mainly on the anode-cathode gap
3 The read-out pitch must of course be somewhat larger

than the pad size.

is spread on more pads than necessary this means
that the signal-to-noise ratio is not optimized. It is
therefore not adviseable to choose a chamber design
where the charge is spread over more than 3 pads.
This holds at least true as long as one is dealing with
single hits. If the pad occupancy is high, narrower
pads could have advantages in special cases.

3.1 Some remarks about
Monte Carlo program

the

The Monte Carlo code provides at the state of the art
a rather simplified simulation of CPC's and CSC's.
So, for example, we made no attempt to simulate the
electron creation in the gas and the collection at the
anode, which could be done e.g. with the Garfield
drift-chamber simulation code 4. The pad size is at
the moment identic with the readout-pitch which is
of course in practice impossible. But Rybicki [34] re-
marks that in fact no charge can be induced on the
isolator between the pads and therefore all the in-
duced charge is shared by the pads themselves. So in
the simulations the integration should be done over
the readout pitch and not only over the pad width.
Similar conclusions were drawn by Yu [14] to explain
discrepancies of experimental data with model calcu-
lations where this effect was not taken into account.
But for the basic understanding of CPC's this is not
very important. Resolution comparisons with differ-
ent position finding methods, the general lay-out and
the double-hit problem could be studied with a sim-
ple program that has a low CPU time consumption
(10000 events can be simulated in a few minutes). All
calculations are done in double precision mode.

* Garfield by R. Veenhof, CERN Program Library W5050.
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3.2. CENTER-OF-GRAVITY ALGORITHM 13

The simulations described in this section are all
done without noise contribution. This allows to un-
derstand easily the systematic corrections which are
necessary due to the non-linearity of the charge distri-
bution. The quality of fits to correct for the system-
atic deviations can be checked instantly. The resolu-
tion degrading under the influence of noise is studied
in the next chapter.

The simulation is done in the following order

• The impact position of an event is generated
randomly on a selected pixel (pad) in X and
Y-direction (parallel and normal to the anode
wire). This can of course be easily extended to
a large matrix representing a real-size chamber.
The position distribution on the selected pixel is
uniform. This can as well easily be replaced by
a realistic event distribution or generated by a
direct GEANT output. The latter is shown in
section 6.

• There are program versions for single hits and
for close double-hits. For the double-hits one can
select a defined pixel distance, but each event is
chosen randomly on the pixel.

• The amplitude of the total charge can be chosen
to come from a Landau distribution.

• The charge integral is calculated with the Math-
ieson formula for each pixel in a cluster of at
least (5 x 5) pixel size, which includes more than
99.99% of the induced charge in the standard
lay-out.

• A noise signal is added randomly chosen from a
Gaussian distribution. Its a is given in the input
and was usually fixed at 0.5% of the mean total
charge of a standard event (see section 4.1.1).

These are the initial conditions in an experiment.
Identification and position calculation is separated
and has as unique information the charge measured
on each pixel.

• A simple cluster (maximum) finding algorithm 5

was applied scanning through the denned cham-
ber array.

• In experimental conditions each cluster is
checked whether it can be identified as single hit
or may be deconvoluted as a double-hit. (The
problem of the identification and separation of
double-hits is discussed in chapter 5).

• For single hits the ratio algorithm (see below) is
used to calculate X and Y position of the impact.
Systematic corrections are applied and the resid-
ual between calculated and real impact position
are stored in a histogram.

• The position of the impact is calculated in X and
Y by the center-of-gravity algorithms using be-
tween 2 and 5 pads.

• Further algoritms are tested to check the resolu-
tion which can be achieved with other methods.

• For double-hits a fit routine is applied to find the
impact position of both hits in X and Y direction.

The above described routine is of course do-looped
as much as is necessary to understand sytematic ef-
fects with the desired precision (103 — 10s events).

Once the test phase of the program is finished, a
more stringent and optimized version of the program
must be created to apply on to events generated with
GEANT. Of course the only one (the best) position
finding algorithm will be used and most spectra gen-
erated for understanding will not be necessary any
longer.

3.2 Center-of-gravity algorithm

The center-of-gravity (c.o.g.) algorithm calculates a
simple charge relation of 3 or more neighbouring pads
or strips:

3,4,5

i s l

3,4,5

£Q,
i

(3.1)

where Xi is the center position of the t-th pad and
Qi the induced charge on the pad. Xcogr is defined in
relative coordinates on the pad and can have values
between [-wx/2,wx/2]. -wx/2 corresponds to the
left edge, 0 to the center and +wx/2 to the right edge
of the pad. In absolute coordinates the posistion is

5 not optimized — tl/x-A- eogr H" (3.2)
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with Xe the center position of the hit pad.

Alternatively, Endo et al. [28] gave an equivalent
notation to equation 3.1 which is slightly shorter to
compute :

with Qi-c-r being the charge on the left, center or
right pad. Similar notations exist using 4 and 5 pads
[28].

Figure 3.1a shows the resolution achieved using the
3-c.o.g. algorithm with the standard chamber geome-
try. The large a of 184 fan is not expected for a noise-
free signal treatment. In 3.1b one sees the resolution
as a function of the reconstructed relative position on
the pad. Systematic deviations with an amplitude of
240 fim appear.

The curve of fig. 3.1b can be fitted with an odd
polynom (see also [23, 29]):

X—Xcog = CiXeogr+C3Xeogr+C3Xcogr+C4XCogr-\ ,

(3.4)
where c\ — c4 are constants found by the fit 6 and

Xeogr ' s *ne result from eq. 3.3.

Using eqn. 3.4 to correct XeOg by

(3.5)
yields a much narrower distribution of the residuals
X — Xl™g

r shown in fig. 3.1c. Remaining system-
atic deviations shown in 3.Id are now negligible and
could only be taken into account by correcting with a
higher order polynom. Compared with the resolution
degradation by noise influence the systematic effects
are now very small. Taking only the first 3 terms of
eq. 3.5 for the correction, like in ref. [29], would not
enlarge the resolution if it is of the order of > 50/im.

Otherwise [8, 30] the systematic deviation can be
corrected by a fourrier series

X - Xcog = ^2 am sin( X) . (3-6)

Usually 4 to 6 terms are needed untill systematic ef-
fects are smaller than the noise contribution.

6As no 2-dimensional histogram-fit can be done with PAW
(from Cemlib), we write Xeogr and (X — XCog) into a file which
can be read as two vectors by PAW. The fit can then be done
in 2-dimensions with the vector/fit command.

For the standard lay-out with small pad length
also in Y-direction the c.o.g. algorithm can also be
used to reconstruct the vertical position. Taking sim-
ilar to eq. 3.3 the charges of 3 consecutive strips in
Y-direction (QUp, Qe and Qdown) one gets the Y-
position as shown in fig. 3.2a. The calculated posi-
tions at 0° are of course discrete due to the fact that
the induced charge origins from the wires. Taking
into account systematic deviations (fig. 3.2b) similar
to eq. 3.4 for the 7.5 mm pad size one gets the ex-
pected resolution oy=0.72 mm (fig. 3.2c). In d and
e one sees that the wire position is precisely recon-
structed.

3.2.1 Using more than 3 pads

The c.o.g. method can easily be extended to in-
clude more pads. Nevertheless, this is only useful
if the charge distribution is large compared to the
pad size 7. In the above given geometric example the
integrated charge on 3 neighbouring strips is always
> 98.5% and in most cases > 99.5%. If the mean
noise amplitude variation on each pad is 0.5% of the
total cluster charge, then the signal/noise ratio would
be in the best case of the order of 1 on the outer strips
but much worse in most of the cases. So only noise
is added. Lau et al. [8] give an approximate relation
between the number of strips used and the spatial
resolution

a-K-
Qtot

-w (3.7)

where aq is the rms error of the charge measurement
per strip, qtot is the total charge and w is the strip
pitch. The constant K is given by y/n — 1 with n be-
ing the number of strips used in the c.o.g. algorithm.

3.3 Charge-Ratio algorithm

The charge-ratio or ratio algorithm was introduced by
Chiba et al. [35] and further developped by v.d.Graaf
et al. [22]. The ratio algorithm uses the charges of 3
adjacent strips or pads.

The ratio algorithm makes the following ansatz [22]

7 But then one would of course enlarge the pad size because
there would be no advantage for the resolution. See chapter
4.4 and refs. [14, 30].



Figure 3.1: Center of gravity method (without noise) using 3 consecutive pads, (a) gives the resolution using
eq. 3.3. The o~x for all events is about 185 fitn. (b) shows the systematic deviations which attain about 240 fim
near 1/4 and 3/4 of the pad. (c) After correction with the fit-polynom of 7th degree in fig. (b) the standard
deviation of the residuals ax = 2.3 fim. (d) shows the remaining sytematic deviations.



Figure 3.2: Center of gravity method in Y-direction (without noise) for 0° using S consecutive pads. In (a) one
sees the resolution using eq. 3.3. (b) shows the systematic deviations and its fit. (c) gives the resolution after
the correction ay = 0.73 mm. (d) shows that there are no visible systematic deviations. And (e) shows the
reconstructed (wire) positions.
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a = arctan (%—~) I*- 0.25 , (3.8)

where Qc is the measured charge on the center strip
or pad (the charge maximum). Qr and Qi are the
charges on the right and left pad of the center pad.
The relation has a unique dependence from the po-
sition on the center pad and is plotted in fig. 3.3a
from our Monte Carlo simulation data. Remark that
the width of the curve comes from the bin size (100
channels). The relation is exact in the absence of
noise. Van der Graaf et al. [22] fit the relation with
Xrei = ci arctan(c2a)) to reconstruct the relative po-
sition Xrei on the pad from the observed charges. c\
and C2 are constants found from the fit. They de-
pend on the given geometric parameters 8. We found
better results by adding a linear term

rei = ci arctan(c2a) + 03a . (3.9)

In fig. 3.3b one can see that the residuals with the
true track position have a ax of 5.4 /im. This is
due to remaining non-linearities shown in 3.3c which
were not completely corrected by the fit with eq. 3.9.
They could be taken into account by fitting with an
odd polynom of 9th degree and the resolution would
be even less than 1 fan with small remaining non-
linearities (fig. 3.3d and e). But this procedure re-
mains academic as long as noise and other effects limit
the resolution to 40 or 50 /im.

For the standard chamber design the ratio algo-
rithm can be used as well in Y-direction 9. The re-
sults are shown in fig. 3.4. For incident tracks at
0° the induced charge origins from one of the wires
meaning the the position is discrete. The curve over-
layed in 3.4a was produced similar as for the data in
X-direction with a pad size of 7.5 mm. It is used to
calculate the position with 3.9 and the residuals are
shown in fig. 3.4b. The resolution is equal to what
is expected from the wire spacing s/y/l2 = 0.72 mm.
There remain no visible systematic deviations and the
wire position is clearly reproduced (3.4c and d).

* The pad size and the width of the charge distribution.
9 ujy ss 2 FWHM of the charge distribution is small enough,

so that in all cases at least on one of the side pads in Y-direction
some charge is induced.

3.4 2-pad algorithms

The c.o.g. or ratio methods using only 2 pads might
have advantages in certain cases or can be used if one
of the 3 pads is absent [15, 23, 29]. We consider first
the case where a side pad is missing or can not be used
in the algorithm for some reason. The case where the
center pad has an overflow or is absent is described
below. The position is calculated as the ratio of the
left or right side pad with the center pad. The error
will of course be relative large if the charge on the
corresponding side pad is relatively small, meaning
that the impact point is more on the opposite side of
the side pad. Nevertheless the error is comparative
to the ratio algorithm as long as the impact is on the
relative half to the side pad.

3.4.1 2-pad c.o.g. like algorithm

In this algorithm first the ratios

R,= Qi
and Rr = *̂ r— (3.10)

are calculated. They are shown in fig. 3.5a as a func-
tion of the relative position of the impact on the cen-
ter pad. These relations are fitted with

Ri(r) = c3 , (3.11)

where ci_3 are constants found from the fit. Note
that the sign of c2 is negative for Ri and positive
for Rf. The results of the fit is superimposed. The
position can now be calculated with the charge ratios
using the fit. Xi(r) is then

v ~~ C3
)/c2 . (3.12)

T h e resolution are shown in fig. 3.5b and remaining

systemat ic deviat ions in fig. 3.5c, which are only im-

portant on the opposite side of the side pad . They
can be corrected by a polynom of 3 r d degree but as
one sees later these deviations are negligible com-
pared with noise contributions.

The results in Y-direction are shown in fig. 3.6.
The charge ratios Qb/Qc and Qt/Qc are plotted as a
function of the relative impact position on the center
pad in (a) and (b). The solid lines show the behaviour
as if the charge was induced from continous points as



Figure 3.3: Charge ratio method (without noise) using 3 consecutive pads. In (a) one sees the relation between
the normalized position and a from eq. 3.8. The width of the curve is governed by the bin size of 100 channels.
The fit drom eq. 3.8 is superimposed but there is no visible difference to the simulated data, (b) gives the
resolution using the fit of eq. 3.9. The o~x for all events is only about 5 fim. (c) shows the systematic deviations
which are larger at the limits of the pad. In (d) one sees the resolution after correction with the fit polynom of
9th degree in fig. (c). (e) shows the remaining systematic deviations. In practice one is already satisfied with
the result shown in (b).



Figure 3.4: Charge ratio method in Y-direction (without noise) for 0° using 3 consecutive pads. In (a) one sees
the relation between the normalized position and a from eq. 3.8. The 3 vertical strips are the data from the 3
discrete wires. The curve shows a fit used to calculate the position. It is generated like for continuous events,
(b) gives the resolution which is as expected about 0.72 mm. (c) shows the that there are no visible systematic
deviations. And (d) shows the reconstructed (wire) positions.



Figure 3.5: 2-pad c.o.g. algorithm without noise, (a) and (b) show the ratio of charges left (right) to the center
pad as a function of the relative position on the pad. The relation is fitted to calculate Xcog from the charges
(see text). Note that the width of the curve is dominated by the bin-size (100 channels), (c) and (d) show the
residuals of the calculated position with the real position, (e) and (f) show the remaining systematic deviations
and their fit (see text).
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in X-direction. But the wires cause a clear quantiza-
tion (at least for 0°). For the wire on the opposite
side of the pad, used to calculate the ratio, there is
almost no charge induced on that pad and the ratio
is close to 0. Nevertheless the position Ycog2 is calcu-
lated using the fit curve, as it was before done for the
X-position. In the absense of noise this gives immedi-
ately a good position resolution of about <ry = 0.8 mm
(3.6c and d) which is not far from the value expected
from the wire spacing of 0.72 mm. Small systematic
deviations exist ((3.6e and f) and might be corrected
(3.6g and h).

3.4.2 2-pad ratio-like algorithm

The 2-pad ratio-like algorithm gives very similar
results to the 2-pad c.o.g. like algorithm. For
completeness the formula and results are shown as
well. The arctan of the charge ratios left/center and
right/center (see eq. 3.10) is calculated:

a/(r) = (arctan Rt(r))/n • (3.13)

The relative position on the pad is shown as a func-
tion of a in fig. 3.7a. They are fitted by

X|(r) = c\ arctan(c20r) + C302 + C40 + C5 . (3.14)

The resolution and remaining systematic deviations
are shown in fig. 3.7b. They are corrected by an odd
polynom of 7th degree. The result is shown in fig.
3.7c.

Results for the 2-pad ratio like algorithm in Y-
direction are shown in fig. 3.8. Again one can rec-
ognize clearly the wire positions though the charge
ratio for the wire opposite to the used side pad is al-
most 0 ((a) and (b)). With the curve shown, fitted
for continous events, the position is calculated. The
standard deviation of the residuals has immediately
the expected size of ary = 0.73 mm ((c) and (d)).
Systematic deviations are negligible ((e) and (f)).

3.4.3 2-pad algorithm if the center
pad has an overflow

There will always be some events which induce a very
large charge due to the long tail of the Landau energy
loss distribution or due to the creation of S electrons.

Benayoun et al. [29, 23] proposed in this case just to
use the ratio of charges on the side pads to determine
the position on the center pad. We study to what
extend this might be advantageous as compared to a
normal usage of the ratio algorithm. This depends
of course on the resolution which can be obtained by
this left-right algorithm compared to the resolution
degradation of the ratio algorithm when the overflow
is not abundant. One might imagine that if the num-
ber of events which create overflows is rather small
(a few %), then the usage of a special method is not
helpful. This depends finally on electronics noise and
the necessary amplification gain.

3.5 Remark on other methods

There exist a number of other algorithms listed by
Endo et al. [28], Khovansky et al. [7] and Lau and
Pyrlik et al. [8, 30] which mainly try to follow the
shapes of the charge distribution. In the appendix
formulae for

• Gaussian

• hyperbolic secant squared (SECHS)

• Mathieson

• Lorentzian

shapes are given and we show explicitly how to derrive
the algorithm from the function.

It must be kept in mind that the error on the spa-
tial resolution depends finally on the accuracy of the
charge measurement. While the one or the other al-
gorithm might be more or less sensible on the noise
the resolution will still be of the same order or worse
as the c.o.g. algorithm. In general the best results
can be found from an algorithm which best follows
the real induced charge distribution in order to limit
the non-linearities. The is in agreement with the find-
ings in the literature [7, 28, 30]. We checked the al-
gorithms with our geometry and simulation program
and the results are shown in section 4.3.

Recently Lau and Pyrlik et al. [8, 30] claimed to
have found a new algorithm giving a better resolu-
tion. Their socalled WCOG algorithm [8] calculates



Figure 3.6: 2-pad c.o.g. algorithm in Y-direction without noise, (a) and (b) show the ratio of charges bottom
(top) to the center pad as a function of the relative position on the pad. Two wires are clearly seen while the
2-pad charge ratio for the 3rd is almost 0. The curves shown were generated for continuous spectra like for
the X-coordinate. The position reconstruction gives a standard deviation (in (c) and (d)) already close to the
expected value (<ry = 0.72 mm). And after correcting for systematic deviations ((e) and (f)) the reconstruction
is good ((g) and (h)).



Figure 3.7: S-pad ratio algorithm without noise, (a) and (b) show the relative position on the pad as a function
of the artan of the charge ratio left (right) to the center pad. The relation is fitted to calculate Xrat from the
charges (see text). Note that the width of the curve is dominated by the bin-size (100 channels), (c) and (d)
show the residuals of the calculated position with the real position, (e) and (f) show the remaining systematic
deviations and their fit (see text).



Figure 3.8: 2-pad ratio algorithm in Y-direction without noise, (a) and (b) show the relative position on the pad
as a function of the arctan of the charge ratio bottom (top) to the center pad. Two wires are clearly seen while
the 2-pad charge ratio for the 3rd is almost 0. The curves shown were generated for continuous spectra like for
the X-coordinate. The position reconstruction gives immediately a standard deviation ((c) and (d)) very close
to the expected value (<ry = 0.72 mm). Correction for systematic deviations ((e) and (f)) is not necessary at
this point ((g) and (h)).
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a weighted mean of the c.o.g. algorithms using 3 and
4 strips, thus prefering the region of each of the two
algorithms where the non-linearities are small. But
the non-linearities depend strongly on the geometry
of the chamber design. The non-linearities displayed
in ref. [30] correspond to a relative large value of
d/wx (similar to ref. [28]) and are very different from
the behaviour in our standard design, where the non-
linearities of the c.o.g. algorithms using 3 and 4 strips
have a similar shape. Therefore the proposed method
is not of advantage for our chamber design.

Another way of finding the impact position is the
usage of a fit. This could be a simple Gauss-fit to the
measured charges on 3 strips, or more refined a pro-
cedure minimizing the integrated Mathieson function
over 3 strips. Unfortunately such a procedure is rela-
tive CPU time consuming. For single-hits the Gaus-
sian can be expected to be a little worse than the ratio
and c.o.g. algorithm. The 2nd procedure should pro-
vide a very similar resolution to the best algorithms.
So one would conclude to use the faster algorithms.
Nevertheless fits might help significantly to deconvo-
lute nearby double-tracks. This is discussed in section
5.3.



Chapter 4

Resolution degrading contributions

4.1 Sources of resolution degra-
dation

There are at least 8 main sources contributing to de-
grade the spatial resolution :

• white noise coming mainly from the preamplifier

• cross talk between neighbouring readout chan-
nels

• calibration uncertainties (offset and nonlinear
gain)

• ADC digitization error of - i - channel

• mechanical tolerances in the chamber construc-
tion

• inclined tracks

• influence of strong magnetic fields (Lorentz an-

gle)

• delta electron production

4.1.1 Electronic noise

Electronic noise can be described as white noise from
the amplification system. The main contribution
comes from the preamplifier. The electronic noise is
usually the major resolution limiting factor and spe-
cial effort has to be done to keep it on the lowest
possible level. It was lately proposed to use so-called
AMPLEX preamplifiers [23, 24, 36]. But new devel-
oppments with on-board technique have been done
e.g. by [33]. Some information on other electronics
used can be found in the papers [7, 8, 15].
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Figure 4.1: Schematic electronic noise (Gauss) distri-
bution. The mean noise amplitude is 1% of the mean
total charge of one track. While the mean noise can
be fairly well measured and subtracted from each pixel
charge, the statistical fluctuation can not be accounted
for. Therefore the size of o~noi»e determines the reso-
lution degradation and not the mean amplitude.

We point out that for the electronic noise not the
amplitude itself is important1 but the amplitude vari-
ation. The amplitude can be measured during the
calibration procedure and be subtracted by software.
But there is no way to correct for statistical noise
fluctuation, which is can be described by a Gaussian
distribution. It is the width of this Gaussian which
limits the resolution.

In the Monte Carlo simulations including noise
shown in this chapter the error contribution was sim-
ulated by a Gaussian white noise. Other effects were
for the time being neglected. The a was assumed

1 though it should still be as low as possible

26
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to be 0.5% (see fig. 4.1) of the mean total cluster
charge 2 and from this distribution noise was added
on each pad. The 0.5% value is guided by the litera-
ture [16], where a total noise contribution from elec-
tronic noise and interchannel gain variation of this
order was demanded to reach a resolution of the or-
der of 50

4.1.2 Cross talk

The problem of cross-talk between neighbouring read-
out channels (pads) was discussed by several authors
[13, 35]. Chiba et al. [35] make the following sim-
plified ansatz. They assume a fixed percentage c of
cross talk between neighbouring channels

Q't = Qi + c(Q,_i -I- Qi+i) , (4.1)

where Qi is the charge induced on the tth cathode
strip and Q\ the charge actually recorded by the
ADC. They observed cross talk of about 3% on neigh-
bouring strips and claim some influence on further
separated strips. The cross talk is of course geometry
dependent and might be minimized to some extend
by leaving some space between neighbouring strips.
[24] reduced to 1.5% by refining the lay-out in that
manner.

It has been found that on the one hand the socalled
zig-zag strip and chevron pads might be used to de-
crease the nonlinearity, but on the other hand by hav-
ing longer borders cross talk is increased. Therefore
the spatial resolution is not better as with rectangular
pads and strips.

4.1.3 Calibration uncertainties

4.1.4 ADC digitization error

The digitization error of the analog-to-digital con-
verter (ADC) is 1/VT2 channel. The number of chan-
nels (bits) necessary to achieve the demanded reso-
lution has to be evaluated very carefully because it
might be an important cost factor. Unfortunately
the long Landau tails of the energy loss distribution
makes it unavoidable to work in a large range of am-
plitudes if one wants not too many overflows. One
has to find an optimum compromise between ampli-
fication gain (signal to noise ratio) and the losses by
overflows.

In the literature the usage of 8-bit [23] and 12-bit
[8, 37, 39] ADC's is reported. The latter assures a
relaxed situation but is expensive. The 8-bit solution
of Benayoun et al. [23] was optimized to have a digi-
tization error just a little smaller than the error com-
ing from the noise (0.85% in their case). However, a
large number of overflows were registrated. But they
showed that overflow events could also be treated
with a comparable resolution to normal events (see
section 3.4.3). The spatial resolution of single-hits in
experimental tests was around 100 fim. To achieve a
better resolution (provided a lower noise level) a 9-bit
ADC might be sufficient.

Lately Gustafsson [33] communicated that the us-
age of nonlinear ADCs might reduce the number of
necessary bits. Such an ADC works almost linear in
the low gain range and will then have a quadratic
gain dependence. Indeed, for the error on the signal
the relative error A (signal)/signal is important and
not the absolute digitization error. Therefore the sit-
uation is relaxed for large signal heights.

Calibration of neighbouring channels to better than
1% is necessary to achieve a resolution of the order of
50 /jm [24]. Standard calibration procedures to find
the electronic noise level and variations in the ampli-
fication gain are described e.g. by [15, 24, 35] and
others and we will not repeat them here. One has in
fact to check the linearity and pedestal of the com-
plete amplification chain by a standard pulser signal.
This is usually put on the preamplifier.

3 The mean total cluster charge corresponds to the mean
value of the Landau energy loss distribution and not to the
most probable value which is much lower.

4.1.5 Detector mechanical tolerances

The influence of mechanical tolerances were discussed
by Khovansky et al. [7] and by Lau et al. [8]. In
[7] simulations for misplacements of e.g. anode wires
were performed. This error will change the width of
the charge distribution and results in a change of the
systematical nonlinearities. Khovansky et al. con-
clude that a misplacement of 0.5 mm will contribute
in a 35 /jm resolution worsening, which means the
contribution of the misplacement to the resolution is
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suppressed by at least a factor of 10. These numbers
are of course very geometry and algorithm dependent
[30] and simulations have to be done with the chosen
lay-out to define mechanical tolerances for the fabri-
cation process.

negligible [30]. Nevertheless the conclusions of this
paper are limited to the specific chamber geometry
and have to be verified for other geometries.

4.1.6 Inclined tracks

10 15
0 (degrees)

Figure 4.2: Resolution changements by inclined tracks
simulated by Brooks [39]. Dependence from 8 (angle
in the X-Z plane, along the wire direction). Fluctu-
ations of the ionizations along the particle track in
the gas affect the symmetry of the induced charge dis-
tribution and therefore degrade the resolution. The
simulations were done without noise contribution.

Lau et al. [8] find from measurements with a micro-
scope that modern photo-etching techniques provide
very precise cathode strip plane production. The ex-
pected precision of this technique is of the order of
the thickness of the plated material {e.g. copper or
gold), in their case a = 12 /im. Similar observa-
tions were communicated by Gustafsson [33]. Ver-
tical placements of anode wires [8] were precise to
±0.1 mm and the wire-cathode distance error was
estimated to be ±0.2 mm. Their simulations [8, 30]
showed that these uncertainties lead to a negligible
spatial resolution error.

Recently Lau and Pyrlik [30] showed with Monte
Carlo simulations that mechanical tolerances have
different influence on the systematic nonlinearities of
the position reconstruction algorithms. For vertical
anode wire displacements of ±0.5 mm they found
that the ratio algorithm exhibited a large dependence,
while for the SECHS and WCOG algorithms it was

Inclined tracks will affect the chamber resolution even
for small angles (< 10°). But there is a big difference
with which plane, X-Z ($) or Y-Z (<j>) (see fig. ??),
the angle appears. Of course one has in general a
combination of both.

J 1 0

t>100 -

10 20 30 40
• (degrees)

Figure 4.3: Resolution changements by inclined tracks
simulated by Brooks [39]. Dependence from <f> (angle
in the Y-Z plane). The longer trace in the gas leads
to an improved signal-to-noise ratio which improves
the resolution. At 4> = 0° the resolution due to noise
is 92 fim.

For an angle 9 of the particle track with the an-
ode wire direction (X-Z plane) one finds a resolution
degradation due to fluctuations in the inonization of
the chamber gas along the track. The fluctuations
will affect the symmetry of the induced charge dis-
tribution. This does not accur for 0°. Results of
Monte Carlo simulations by Brooks 3 are shown in
figs. 4.2 and 4.3. Remark that the figure for the
6—dependence was done without noise contribution.
The fact that for 0s the resolution is already about 12

might be due to some uncorrected non-linearities.

3 Note that in that reference the meanings of 6 and <t> are
invereed to ours.
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Figure 4.4: Resolution degradation with angle measured by Lau et al. [8]. The solid line displays the relation of
eq. 4.3. The dashed line takes m addition into account the effect that due to the angle the track in the chamber
gas is longer and therefore the signal to noise ratio becomes better. The latter dependence is shoum m the inset.

The resolution degradation has to be added quadrat-
ically to the resolution with noise.

The more simple case is the angle in the Y-Z
plane (<j>). The longer trace in the chamber gas gives
a larger amount of charge collected by the anode
wire(s). The signal-to-noise ratio will be larger and
this gives a better resolution (fig. ??). In addition,
the ionization charges might be collected by 2 (or even
more) wires. With a total chamber gap of h = 5 mm
this is already a non-negligible effect compared to the
wire-wire distance s = 2.5 mm, even for track incli-
nations of only 4> = 10°:

h sin 10°
= 0.35 . (4.2)

This means at 10° about 1/3 of the tracks will split
their charges between 2 wires. This effect was used
by Breskin et al. [38] in a chamber with strips in X-
and in Y-direction to achieve a better resolution in
Y-direction 4.

The worsening of the resolution of tracks inclined
relative to the chamber plane was experimentally
studied by several groups [7, 8, 17, 18, 22, 24, 30].
Lau et al. [8] fit their data with

(4.3)

* The improvement was about 30% from what was expected
by the wire spacing.

where <r0 is the resolution for perpendicular tracks, a
the inclination angle and <ra is given by

(4.4)

with 6 determined by a fit. They found with er0 =
58/im b = 353/im, with the remark that b might be
somewhat geometry dependent. The relation and ex-
perimental data are plotted in fig. 4.4). Their value
for a ± 10° is about 85 /an, which corresponds to a
worsening of 27 /jm which is 47%. Khovansky et al.
[7] give a b value very close to this with the same
chamber geometry, but older references [17, 18, 22]
found b 2-3 times higher.

Following the argument that this resolution degra-
dation comes from the fluctuations in the ionization
process, one can assume that the b value depends
strongly on the total gap of the chamber, which was
in the case of references [8, 7] h = 9mm. For our
chamber we take h = 5mm which should limit the
effect. In addition Lau et al. [8] claim that the wors-
ening of the resolution will be compensated to some
extend for small angles (< 10°) by the larger pulse
height due to a longer track in the chamber gas (dot-
ted line in fig. 4.4). Unfortunately their data were not
precise enough to proove this compensation [8]. We
assume that the resolution worsening for our chamber
design will be not more than 25% at 10°. This would
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give 6 = 214/im with <r0 = 50/im.

Recently Lau and Pyrlik [30] showed with Monte
Carlo simulations that the angular effect has a differ-
ent influence on the systematic nonlinearities of the
position reconstruction algorithms. The angular de-
pendent error was approximated by

(4.5)

where h is the total chamber gap, 6 the angle with
the chamber plane parallel to the anode wires, <r0
the resolution for 0° and N the number of primary
clusters or cells which were touched. Among the al-
gorithms giving a good resolution, especially the ratio
algorithm exhibited a larger angular dependence than
SECHS and WCOG algorithms [30]. But for angles
< 5° the effect is almost negligible.

4.1.7 Influence of magnetic fields

.160

5 10 15
Lorentz Angle (degrees)

Figure 4.5: Resolution degradation with Lorentz an-
gle simulated by Brooks [39]. The chamber resolution
is 92 fim including noise. Radial fields of 0.3 T let
expect a Lorentz angle of about 3°.

Strong magnetic fields can degrade the spatial resolu-
tion of a MWPC due to effect on the electrons created
in the chamber gas. In the field the electrons will fol-
low a curved path on their way to the anode. Results
of simulations by Brooks [39] for the PHENIX CSC's
are shown in fig. 4.5. For a radial field the electrons
are deflected in the X-Z plane. The Lorentz angle

in their case is about 3° for 0.3 T and 8° for 0.8 T.
Having a resolution of 92 fan at 0° one can see that
the resolution degradation for small Lorentz angles
(< 5s) is almost negligible (less than 10%).

4.1.8 Delta electrons

The effects of ^-electron production and the influence
on the spatial resolution is rarely treated in the lit-
erature and remains a problem. It is clear that in
order to minimize the problem one has to put as less
material as possible in the way of the charged par-
ticle. CSC's can be manufactured on a thin mylar
or kapton support and are therefore a relative good
solution.

As already mentioned above, experimental resolu-
tions given in the literature for CSC's are usually de-
rived from a Gaussian fit to the residuals between the
measured position and a reference, like a micro-strip
detector with a known resolution of the same order
or better than the CSC. These fits always neglect a
number of events far outside 3<r of the Gaussian. As
the source of the large error is not clear these events
are usually attributed to S electron production. This
background is also not always on the same level 5.
For example, in [8, 15] a rather high background was
found, while in [7,16] it appeared to be relatively low.

4.2 Setting of thresholds to re-
duce noise effects

The setting of thresholds to reduce noise contribu-
tions or effects is a very delicate problem. First of
all we repeat that it is impossible to eliminate the
noise contribution. Nevertheless to some extend the
resolution error due to noise might be minimized by
subtracting from the measured charges on each pad
exactly the average noise on this pad. The variation
in the average noise amplitude itself can of course not
be subtracted, because it is a statistical effect which
is usually treated as white noise with a Gaussian dis-
tribution. We discuss in this section only electronic
noise neglecting cross-talk effects. We will show in

5 This effect might come from different sources, like double-
hits etc.
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the following the influence of a noise correction.

4.3 Resolution with noise con-
tribution

In this section the spatial resolution of different algo-
rithms is compared. First we show in detail how one
obtains results or the charge ratio and c.o.g. algo-
rithm. Their resolutions will be compared with other
algorithms which describe a shape of a function (e.g.
Gauss or hyperbolic). Then the limits of the usage
of 2-pad algorithms is demonstrated. But as we will
see later they will have a role to resolve double-hits.
Finally some specific features important for the reso-
lution optimization will be discussed.

4.3.1 Charge ratio and c.o.g. algo-
rithm using 3 pads

The results with noise for the ratio algorithm in Y-
direction are shown in fig. 4.7. The resolution is not
much worse as it was without noise due to the already
large effect of the wire spacing. The wire position can
still be reconstructed perfectly though some widening
is obvious especially for the middle wire. This will be
discussed below.

The charge ratio and c.o.g. methods were explained
in detail in chapter 3. All simulations were done with
0.5% noise in reference to the mean total charge. The
latter were chosen from a Landau energy loss distri-
bution.

In fig. 4.6 are shown the results for the ratio al-
gorithm for 3 consecutive pads in X-direction. a is
obtained by eq. 3.8 and the position calculated with
eq. 3.9- The resolution is about 48 pm. Taking
into account further corrections of systematic devi-
ations does not improve the resolution. The noise
is dominating. Nevertheless it should be mentioned
that these systematic deviations were only remarked
by doing the simulation without noise. When look-
ing at experimental data such a correction can not be
derived.

in fig. 4.8. The resolution without systematic correc-
tions is only 10 fan worse than it was without noise
(fig. 3.1). But the amplitude of the systematic devia-
tions is now larger with noise. This can be seen in fig.
4.8b by comparing with the fit which is now clearly
visible. The resolution after systematic correction is
59 ftm (4.8c), which is 10 pm (20%) larger than the
charge ratio method.

In Y-direction the result for the c.o.g. is the same
as for the charge ratio algorithm. While without sys-
tematic correction <ry is about 936 jim (fig. 4.9), it
decreases to 737 /im after corrections.

In figs. 4.10 and ?? the obtained resolution with
different position finding algorithms are compared.
All the resolutions <J> are now determined by a fit to
the residuals with 2 Gaussians. The mean resolution
is given by the weighted mean of the <r's of the Gaus-
sians. This method obtains more precise and reliable
values than a single Gaussian fit. This is necessary
because the data samples have intrinsic changes of
the resolution. This will be shown in the next sec-
tion. The fit with 2 or 3 Gaussians is more explained
in the appendix A.5.

The resolution with the charge ratio algorithm is
shown In fig. 4.10a . The weighted mean gives 43
pm which is somewhat smaller than the rms value
calculated by PAW. This is due to a few events which
are far outside 3<r and which increase the rms value.
Below, in the same figure are the resolutions for the
c.o.g. algorithms with 3, 4 and 5 pads. For 3 pads we
find <Tf = 56 fim, being 13 /un or 30% larger than for
the charge ratio method. Using more strips increases
the signal-to-noise ratio and the resolution suffers cor-
respondingly. Note that for the unsymmetric c.o.g.'s
with 4 pads the resolution curve is also unsymmetric.

For the Gaussian algorithm we find ax — 64 faa
(fig. ??) which is already 20 fim worse than the
charge ratio method. In ??b and c the results of
a Gaussian fit is shown. The first is a free fit only
giving a lower limit for ag

 6. The second plot is the
Gauss-fit result after fixing a and the gain from the
first fit and keeping only the position as parameter.
The improvement is unfortunately small. The result
is 10 ftm. above the charge ratio algorithm. The last

For the c.o.g. method with 3 pads we show results
' It is interesting to note that by giving a convenient lower

limit for ag systematic deviation could be minimized.



Figure 4.6: Charge ratio method (with 0.5% noise) using 3 consecutive pads. In (a) one sees the relation between
the normalized position and a from eq. 3.8. The width of the curve is governed by the bin size of 100 channels
but noise becomes visible in the center of the curve. The fit from eq. 3.8 is also shown, (b) gives the resolution
using the fit of eq. 3.9. The ax for all events is about 48 ftm. (c) and (d) show that there are no systematic
deviations visible and therefore further corrections (as for data without noise) does not improve the result of (b).



Figure 4.7: Charge ratio method in Y-direction (with 0.5% noise) for 0° using 3 consecutive pads. In (a) one
sees the relation between the normalized position and a from eq. 3.8. The 3 vertical strips are the data from the
3 discrete wires. The curve shows a fit used to calculate the position. It is generated like for continuous events,
(b) The resolution is 737 pm. (c) shows the that there are only small systematic deviations. And (d) shows that
the wire number can be properly reconstructed.



Figure 4.8: Center of gravity method (with 0.5% noise) using 8 consecutive pads, (a) gives the resolution using
eg. 8.8. The ax for all events is about 192 fitn. (b) shows the systematic deviations which attain a mean
amplitude of about 240 ftm near 1/4 and 8/4 of (he pad. In (c) one sees the resolution after correction with the
fit-polynom of 7th degree in fig. (b). (d) There are no remaining sytematic deviations visible.



Figure 4.9: Center of gravity method in Y-direction (with 0.5% noise) for 0° using S consecutive pads. In (a)
one sees that the resolution using eg. 3.3 is already better than 1 mm. (b) shows systematic deviations and
the fit. (c) gives the resolution after the correction (cry « 737pm). (d) shows that there remain only small
systematic deviations. In (e) the wire positions are properly reconstructed.



Figure 4.10: Resolution for different position reconstruction algorithms. The ratio algorithm (a) shows the best
resolution, (b)-(e) show the degradation of the resolution with the number of pads used in the c.o.g. algorithm
(3, l(left), 4(right) and 5). (f) Gaussian algorithm; (g) Gaussian fit with 3 parameters; (h) Gaussian fit with
amplitude and a fixed; (i) SECHS algorithm. All simulations were done with 0.5% noise contribution and with
wx — 5mm, Wy = 7.5mm, d = 2.5mm and at 0°. The a displayed is the weighted a from a fit with 2 Gaussians
which is also shown in the spectra.



4.3. RESOLUTION WITH NOISE CONTRIBUTION 37

plot in fig. ?? shows finally the resolution achieved
with the SECHS algorithm (see appendix A.2). The
resolution is poor, only 70 fim, in disagreement to ref.
[30]. This is quite surprising as the description with
this function is rather close to the Mathieson charge
distribution (see fig. 2.2).

4.3.2 2-pad algorithms

The 2-pad c.o.g. like and 2-pad ratio like algorithms
working with the charge ratios of the left/center and
right/center pads were described in section 3.4. The
situation with noise is much different from without
noise, because the signal-to-noise ratio becomes very
small when there is only few charge on the corre-
sponding side pad. Figs. 4.11 and 4.13 show the
results in X-direction with 0.5% noise contribution.

For the c.o.g. algorithm one can see on fig. 4.11
that correction of systematic deviations will not im-
prove the width of the peak. The resolution increases
enormously as soon as the impact is on the non neigh-
bouring half of the center pad to the corresponding
side pad. Nevertheless the resolution is good or even
very good on the neighbouring half (see also the fol-
lowing section).

In Y-direction one finds a bad resolution for the
wire which is opposite to the used side-pad (fig. 4.12).
Nevertheless the overall resolution is less than 1 mm
which ist acceptable for ALICE Di-Muon Arm pur-
poses. Systematic corrections have only a small effect.

The resolution for the 2-pad ratio like algorithm is
almost the same, but there one step of systematic cor-
rection has to be made (see fig. 4.13). In Y-direction
one finds again a resolution of less than 1 mm (fig.
4.14).

for a center hit the induced charge on the side pads
is rather small and thus the signal to noise ratio is
small. This results in larger errors for the position
determination near the center of the pad. By the way
in [7] there was found not much difference between
ratio and c.o.g. algorithm.

Our simulations show on the contrary important
differences between ratio and c.o.g. algorithm. The
resolution in dependence of the impact position on
the pad is shown on fig. 4.15a. The data were binned
in ten equidistant sets along the relative position on
the pad. The solid circles are for the charge ratio al-
gorithm, while the solid boxes are for the c.o.g. algo-
rithm using 3 pads. In the pad center the resolution
is the same for both algorithms, but near the bor-
ders the ratio algorithm is 20 /im better. The effect
of decreasing resolution near the center of the pad is
connected with the nonlinearity of the algorithm and
will be more discussed in the next section. A per-
fect linear algorithm would not show differences in
the resolution between the sides and the center of the
pad.

The hatched lines with open symbols in fig. 4.15a
show the results for the 2-pad algorithms. One can
see that the resolution dependence follows closely the
behaviour of the ratio algorithm. On the outer thirds
of the pads its resolution is even slighly better than
the ratio algorithm 7. However, near the center of
the pad the resolution with the 2-pad algorithms is
already 100 (im. One would then switch from the
left/center to the right/center ratio, but then the
complete charge ratio method can immediately be
used. Fig. 4.15b shows with different vertical scale
the resolutions of both 2-pad algorithms. The reso-
lution is for both methods within statistics the same.
Unfortunately it increases when the impact is near
the opposite side to about 700 /im which is far too
bad for most purposes.

4.3.3 Resolution dependence from the
impact position on the pad

4.3.4 Resolution dependence on the
electronic noise

Khovansky et al. [7] and others [24] have shown that
the resolution is not uniform over the strip or pad
but worsening around the pad center. This can be
qualitatively understood that near the edge of the
pad the charge is mainly shared by two pads, while

In fig. 4.16 the resolution achieved with the c.o.g.
for 3 pads and the ratio algorithm is plotted as a
function of the electronic noise <rnolK with the stan-

7 This might come from the fact that no low signal-to-noise
charge from the opposite side-pad is added.



Figure 4.11: 2-pad c.o.g. algorithm with noise, (a) and (b) show the ratio of charges left (right) to the center
pad as a function of the relative position on the pad. The relation is fitted to calculate Xcog from the charges
(see text). Note that the width of the curve is dominated by the bin-size (100 channels), (c) and (d) show the
residuals of the calculated position with the real position, (e) and (f) show the resolution as a function of the
relative impact position on the pad. This shows clearly that the 2-pad algorithm has a good resolution if the
impact is on the part of the pad that is closer to the used side pad.



Figure 4.12: 2-pad c.o.g. algorithm in Y-direction at 0° with noise, (a) and (b) show the ratio of charges bottom
(top) to the center pad as a function of the relative position on the pad. Two wires are clearly seen while the
2-pad charge ratio for the 3rd is almost 0. The curves shown were generated for continuous spectra like for
the X-coordinate. The position reconstruction gives a standard deviation for the residuals ((c) and (d)) below
1 mm. And after correcting for systematic deviations ((e) and (f)) the reconstruction is even slightly improved
((g) and (h)).



Figure 4.13: 2-pad ratio algorithm with noise, (a) and (b) show the relative position on the pad as a function
of the arctan of the charge ratio left (right) to the center pad. The relation is fitted to calculate Xrat from the
charges (see text). Note that the width of the curve is dominated by the bin-size (100 channels) but noise effects
are visible for small values of the arctan. (c) and (d) show the residuals of the calculated position with the
real position, (e) and (f) show the remaining systematic deviations and their fit (see text), (g) and (h) show
the resolution after systematic correction which is now the same as from the 2-pad c.o.g. (i) and (j) show the
resolution as a function of the relative impact position on the pad.



Figure 4.14: 2-pad ratio algorithm in Y-direction at 0° with noise, (a) and (b) show the relative position on the
pad as a function of the arctan of the charge ratio bottom (top) to the center pad. Two wires are clearly seen
while the 2-pad charge ratio for the 3rd is almost 0. The curves shown were generated for continuous spectra
like for the X-coordinate. The position reconstruction gives immediately a standard deviation for the residual
below 1 mm ((c) and (d)). Correction for systematic deviations ((e) and (f)) leads to slight improvements ((g)
and (h)).
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Figure 4.15: Resolution as a function of the impact
position (X/wx) for 2- and S-pad algorithms, (a)
Circles: ratio algorithm, squares: c.o.g. algorithm.
Open symbols and hatched lines: c.o.g.-like 2-pad al-
gorithm. For the latter there are two possibilities us-
*n9 Qi/Qc orQrlQc. Note that the 2-pad algorithm is
even slightly better than the ratio algorithm on each
outer 3/8 part of the pad. Near the center of the
pad the signal-to-noise ratio becomes too bad. (b)
Full symbols: ratio-like 2-pad algorithm, open sym-
bols: c.o.g-like 2-pad algorithm. There is almost no
difference between the two methods. When the impact
is near the opposite side of the used side pad the sig-
nal on this pad is of the order of the noise and there-
fore the resolution is very poor in this region. This
is illustrated with the upper charge distribution spec-
tra. The hatched area is used in the 2-pad algorithm.
The blanc area is not used and lost for the resolution
performance.
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Figure 4.16: Resolution as a function of the electronic
noise level for the ratio and c.o.g. algorithms with 3
pads in the CPC standard lay-out. Solid line: ap-
proximative relation from eg. 3.7 noted by Lau et
al., dash-dotted line and solid squares: resolution with
c.o.g. algorithm, dashed line and solid circles: reso-
lution with ratio algorithm, dotted line and open tri-
angles: difference in % between c.o.g. and ratio algo-
rithm.
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Figure 4.17: Resolution as a function of the total
induced charge normalized by its mean value in the
standard CPC lay-out. Solid line: charge ratio algo-
rithm, hatched line: c.o.g. algorithms with 3 pads.
The curves are for a mean noise amplitude of 0.5%
(see fig. 4-1)- Note that most events are in the range
of 0.5 to 1.5 around the mean value. The mean res-
olutions for both algorithms are the same as in fig.
110.
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dard CPC lay-out. The ratio algorithm (hatched line)
gives throughout better results as the c.o.g. method
(dash-dotted line). The difference in percent between
the two methods is shown as a dotted line. Above
0.3% noise level the ratio algorithm gives resolutions
that are about 30% better. The full line gives a pre-
diction of the resolution with the simple formula of
Lau et al. [8] given in eq. 3.7. The prediction un-
derestimates the observed values. This might come
from a different definition of the noise level. We put
the level on the mean of the total charge generated
by the Landau distribution.

Leaving the noise contribution constant (0.5%) and
plotting the resolution as a function of the normalized
height of the total induced charge on the cathode pads
gives a similar picture. The graph in fig. 4.17 shows
that ratio and c.o.g. method will differ in the spatial
resolution for signal height up to at least 4 times of
the mean value. Most of the statistics is of course
found near the mean value where the ratio algorithm
is about 25% better.

4.4 Comparison of different
chamber lay-outs and their
optimization

In a some publications [6, 7, 9, 16, 35] the opti-
mum ratio of strip width wx (readout pitch) and
cathode-anode spacing d was calculated, measured
or simulated, however surprisingly not always with
the same result. While [6, 9, 16] agree to an opti-
mum width wx of about 1.0 d, others find a higher
ratio of w w 1.4 — 1.6 d [7] and even w « 1.5 — 2.0 d
[35] . With the observations made in the preceed-
ing chapter we think we can say that there might be
a more complicated relation, which is supported by
the calculations of Chiba et al. [35] that there is a
much stronger resolution dependence if one varies d
and leaves wx constant. In fact one has to variate
both parameters wx and d. Keeping one parameter
constant, e.g. d, the best resolution may be found for
some wx, but there might exist better wx — d couples.
The reason is the nonlinearity of the system. The op-
timum would be reached for the linear case 8. This is
what we try to show in he following.

Furthermore Bencze et al. [24] have recently
shown, based on results of Yu et al. [40] and other
work, that nonlinearities might be minimized with
capicative coupling of intermediate strips inbetween
the readout pitch. There exists an optimum width
ratio wj of these intermediate strips for a given ca-
pacitive coupling.

We then choose a standard noise level with a =
0.5% and compare the relation for a as a function of
the relative impact position on the pad and the res-
olution variation on the pad. On fig. 4.18 we show
the two figures for wx = 5 mm and wx = 7.5 mm.
An important feature can be seen by comparing the
2 different pad dimensions. The resolution on the pad
depends strongly on the rise of the a — Xrei relation,
which reflects the nonlinearity of the system. The
nonlinearity increases with the pad size 9 and thus de-
generates the resolution. In fact the resolution would
be best over the whole pad if a — Xret were linearily
related. This observation will help us in the following
to optimize the chamber lay-out for a demanded reso-
lution. Once the noise and error contributing sources
are known or measured a chamber can within some
limits be designed to achieve a distinct performance.

4.5 Conclusions on the resolu-
tion degrading parameters

In this chapter the main sources which influence the
spatial resolution of a pad or strip chamber have been
listed and discussed. They can be classed in 3 groups
with respect to their origin:

• mechanical tolerances

• electronic tolerances (noise, cross-talk, ADC)

• effects coming from the ionizing particle itself:
inclined tracks, delta electrons

Simulations and verification of mechanical toler-
ances have shown that the specifications can be
reached with modern production techniques. Accu-
rate work is demanded which is time consuming but
can be reached in laboratories with good equipment.

8 which is perhaps in practice not exactly reachable leaving d constant



Figure 4.18: Charge-ratio algorithm for different pixel sizes. Above line: relative position inside the pad as a
function of a for wx = 5 mm and wx = 7.5 mm. Bottom: residuals as a function of the relative position.
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The handling of electronic noise, cross-talk etc.
seems to be far more difficult as it is usually the lim-
iting factor of the spatial resolution which is achieved
with CSC's. Therefore special efforts are demanded
on the engeneering and cost side. Considerable
progress has been made in the last years and it seems
that the electronic noise contributions will soon ap-
proach the low level of other error sources. Neverthe-
less it is very important to reduce costs per readout
channel, so that not the costs are the resolution limit-
ing factor. However, it is very important to optimize
the chamber design itself, so that a minimum num-
ber of readout channels is necessary. But low noise
electronics would aim in the same direction: one can
increase the readout pitch if the intrinsic noise con-
tribution is already very low.

Effects connected with the particle itself will de-
pend of course mainly on the experiment. Perhaps
chamber planes can be oriented to face the direction
from where most particles come from. But usually
one would align the detectors with the beam axis. For
the Di-Muon Arm in the ALICE detector the problem
is not important because the angular range is limited
to 10° and most particles are expected at 2° or 3°.
For the production of delta electrons it is of course
advantagous to have as less material as possible in
the way of the particle track.



Chapter 5

Double-hit separation and resolution

seporation 4 pixels

Figure 5.1: Different types of double-hits shown here
with the same signal height. If the separation is S
pads, the two hits can be treated as singles without
resolution degradation.

using a standard fit routine from the HBOOK 1 pack-
age. Unfortunately this procedure is CPU time con-
suming but can be performed in offline analysis. Yu
has stated that looking at the charge ratios Qi/Qe as
a function of Qr/Qc exposes some caracteristic fea-
tures which can help to distinguish between single-
and double-hits.

Nevertheless for both methods a big problem is that
the induced signal heights for two nearby hits may
be very different due to the long Landau tails. So
one has at least 3 unknown quantities, the 2 impacts
positions 2, where in case of the pad chamber this
is a two-dimensional problem (X-Y), and the pulse
height ratio of the two signals. It is clear that the
resolution becomes worse when the two impacts are
at a distance of less than one pad size, or when the
signal heights are very different. In the latter case
the small event stands in the shadow of the big one
and can not be seen.

We will first show in detail how by a combination of
several algorithms double-hit treatment can be per-
formed. The efficiency and spatial resolution is stud-
ied. The results will then be compared with double-
hit deconvolution by fits.

The resolution of double-hits is a central problem
for the usage of CPC's in the ALICE experiment due
to the high particle multiplicity in heavy-ion colli-
sions. CSC's were in the past criticized for not being
capable to separate nearby tracks. The question is
rarely treated in the literature. We only found the
problem treated to some extend by Fenker, Thomas
et al. [15, 16], Gratchev et al. [42] and by Yu [14].
The problem has been treated by the first two groups

5.1 Cluster identification

Clusters from impacts have been identified with a
simple maximum finding routine which makes a scan
over the whole chamber array 3. The threshold for
pixels to be accepted in this analysis was chosen to

1 from the CERN Program Library
2 It is eqivalent to say the distance of the impact and the

mean position of the two hits are unknown.
3 This might be accelerated if one knows the pixels who

gave a signal above a certain threshold.

46
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be about 4 — 5 • <rnoi,e above the mean noise level to
avoid identification of noise as particles. The thresh-
old depends of course on the electronics performance,
the chamber design and the available gain without
creating too many overflows in the ADC's. Never-
theless all clusters with a distance of 3 or more pads
(with the standard geometry) do not overlap and can
be treated as two single-hits.

5.2 Identification of double-hits
using algorithms

*
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Figure 5.2: Notation (XY) for double-hit patterns.
The stars are impacts on the pads. The number pairs
give the pad distance in X- and Y-direction.

The first question is of course how to identify a
double-hit, what is the difference to a single one. This
is not trivial if the impacts points of the two hits are
less separated than the FWHM of the charge distri-
bution, or more practically if the distance is less than
one readout pitch. In principle each hit is subject
of a double-hit check, because for 2 nearby tracks the
signature is almost the same as for single-hits. A clas-
sification scheme for double-hits is shown in fig. 5.2.
The notation indicates the separation of pads in X-
and Y-direction. So 00 stands for two impacts on the
same pad, 10 for impacts on pads neighboured in a
X-row, 01 for impacts on pads neighboured in a Y-
column, etc. If one wants to work with algorithms to
find the impact positions the knowledge of the pads

where the impacts took place is important. For over-
lapping induced charges the hit-pattern of identified
maxima is unfortunately not necessarily identic with
the pad numbers where the charge maxima are ob-
served.

Nearby double-tracks may not be separated by the
measurement of the total charge in the cluster, be-
cause the pulse height can be very different even for
the same particle type due to the long Landau tails
in the energy loss distribution. The only clear in-
formation can come from the width of the observed
charge measurement. But the width can only be de-
termined with some uncertainty due to noise and the
low number of involved pads in each cluster.

We first applied a simple maximum finding loop
to the chamber matrix. This method can already
identify double-hits which still show clearly separated
maxima. They can be treated as single hits if they
are separated by at least 2 pads (20, 02, 12, 21, etc.).
All other maxima a subject of a test if they are not a
close double-hit.

We propose 3 methods using algorithms to test a
maximum on whether it is a double- or a single-hit:

• The cluster size is checked by calculating the ra-
tio of the charge sum in a cluster of 3 x 3 pads
(Q33) around the central pad with a cluster of
5 x 5 pads (Q55). With our standard geome-
try one finds always more than 98% of the total
charge Q33 for a single hit. This will of course
be influenced by the noise contribution.

• The width (a) of the maximum is checked in both
dimensions X and Y with the Gaussian algorithm
{<rgx a n d <Tgy).

• The charge ratio of the right/center pad plotted
as a function of the left/center pad as well as
top/center in combination with bottom/center
gives valuable information about double-hits
[14].

It is clear that some double-hits can not be differ-
enciated from single hits, in the case they are very
close (< 2 mm in both directions) or the energy loss
is very different, so that the smaller signal disap-
pears in the tail of a large peak. Nevertheless there
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might come additional information from other cham-
ber planes connected by the tracking routine.

Peak width calculated with Gaussian algo-
rithm

The efficiency of each proposed method is depending
in a different way on the distance of the two impacts.
The combination of all 3 methods yields in the best
result valid for all distances. Figs. 5.3-5.10 will illus-
trate advantages and disadvantages. The first figure
(5.3) shows the normalized <rfl's, onjwv as a function
of <TgX/wx, calculated with the Gaussians algorithm
(see appendix A.I). The upper left plot shows the
result for 50000 single hits. The majority of events is
concentrated in the black spot. The slight enhance-
ment near <rgy/wv = 0.2 is due the discrete structure
given by the anode wires in Y-direction. This peak
corresponds to the middle wire (see fig. 1.3) in the
case where almost no charge is induced on the top and
bottom pad. In that case the width calculation comes
only from the charge on the center pad and gives a
too small value. The dashed line shows gates that can
be put on the single data. Unfortunately there are
rather broad tails next to the prominent peak due to
noise. If they would not exist one could set the gates
much closer to the peak with important advantages
for the recognition of double-hits. In the experiment
the majority of identified clusters are single-hits, so
these should not be confused with double-hits. The
gates shown let only pass about 0.8 % of single-hits.
The 3 other graphs in fig. 5.3 show agy — agx pairs for
double-hits selected 4 for different pattern situations:
00, 10 and 01. One can see in the figure that the
method is more or less successful depending on the
hit pattern. The localized structures in Y-direction
always reflect the wire structure.

The dependence of <rgx from the distance in X-
direction is displayed in fig. 5.4. For double-hits on
the same pad an almost clean relation between <rgx

and the distance exhibits. Unfortunately as we will
see below is is not trivial to separate these events from

4 The selection ia made when the events are generated. In
truth one has a combination of all these cases. We gener-
ate 50000 double-hits with uniform distance distribution. The
first hit is generated randomly on one pad. The distance
r = y/x2 + Vs to the second hit is then randomly drawn be-
tween 0 and 25 cm. The orientation 4> i» then randomly drawn
between 0° and 180°.

events on neighbouring pads (see fig. 5.4) were the
relation is much less clear. The dashed line marks
again the gate which was set for single hits. For hits
neighboured in Y-direction (01) no surprise occurs,
but for the situation 20 two strange structures appear
for large distances (> 6 mm) and low <rgx. This is
an inconvenience of the algorithm working only with
consecutive 3 pads. The charge is now spread over 4
or even 5 pads, though still appearing with a single
maximum. This situation can in most cases be recog-
nized, because one can find a considerable amount of
charge above noise on the side pads that are further
away from the center pad. We have realized that it is
also in the 10 situation the case for a large number of
hits when the separation is more than 6 mm. The 6
mm is a rather clean border. It is not clear why does
not coincide with the pad width of 5 mm. However
most of the far separated events can be identified.

The dependence of an from the distance in vertical
direction is shown in fig. 5.5. As already mentioned
the localized structures come from the discrete wire
structure. For example for double-hits on the same
pad the two structures above the dashed gate line
come from events with one hit on the top and one hit
on the bottom wire. Therefore the ttgy is large. The
large structure in the middle is from events with one
hit on the top or bottom wire and the other on the
middle wire, or both hits on the middle wire. Finally
the small low structure is created when both hits one
on the top or bottom wire.

Estimation of the cluster size

The cluster size can be estimated by comparing a
simple charge addition around the pad with the max-
imum charge. In the standard chamber lay-out more
than 98.5% of the induced charge is always on the 9
pads (3 x 3) in the neighbourhood of the impact (see
fig. 5.6). Comparing the summed charge on these 9
pads with the charge on the 25 pads (5 x 5) around the
pad with the charge maximum, will give in some cases
information if a second hit is present. The noise on
each pad, which is summed up as well, will of course
limit the reach of this procedure. In fig. 5.7 one can
see the efficiency of the method. The ratio of the 9
pad to the 25 pads (9/25) is plotted as a function of
the normalized Gaussian agx, that was already shown
in fig. 5.3. The dashed lines indicate again the gates
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Figure 5.3: Normalized standard deviations ag in X- and Y-direction calculated with the Gaussians algorithm
for single- and double-hits. The dashed lines mark the gates set on the single-hits. There are 50000 events in
the single-hit plot, only 0.8% are above the gates.



Figure 5.4: Normalized standard deviations <rx from the Gaussian algorithm as a function of the impact distance
of double-hits in X-direction. The dashed line marks the gate that was set on single hits. Note the clean functional
behaviour for double-hits on the same pad. Double-hits can be separated by this method from about 3 mm distance
on with good efficiency. Note that the gate seems even too high. For larger pad distances (20) the caculation of
a does not work properly. The correction is explained in the text.



Figure 5.5: Normalized standard deviations <ry from the Gaussian algorithm as a function of the impact distance
of double-hits in Y-direction. The dashed line marks the gate that was set on single hits. The localized structures
display the discrete wire position. Double-hits can be clearly recognized when the impacts are 2 wires separated.
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which were set to avoid that single-hit get misiden-
tified. A gate of 0.9 on the ratio 9/25 asures that
99.8% of the single-hits are above this condition (left
top graph in fig. 5.7). Double-hits on the same pad
are not recognized and also for double-hits on neigh-
bouring pads the efficiency is not good. Only when
the double-hits are already separated by 2 pads (20)
the efficiency becomes large. For hits separated by
less than 5 mm the method is not useful.

Recognition by charge ratios

The following graph corresponds to a double-hit
recognition method that was already described by Yu
[14]. Figure 5.8 shows the charge ratio of the right to
the center QT/Qc as a function for the left to the cen-
ter Qi/Qc- This is in fact similar to the usage the the
above discussed 2-pad algorithms and the charge ra-
tio algorithm. For single-hits one sees a clear relation
of the two charge ratios which depends on the posi-
tion of the impact on the pad. It is very interesting to
note that the width of this curve reflects the accuracy
of the charge measurements and thus directly the res-
olution of the detector without any external reference
like a microstrip detector. The shape of the curve de-
pends of course on the chamber design, i.e. on d/wx.
Nevertheless for a given chamber lay-out the relation
is fixed. Double-hits, sufficiently separated and not
too different in amplitude, will destroy this relation.
This can be seen on the other plots in the figure. By
gating on the single-hit curve one has a possibility
to separate double-hits. For hits with the same am-
plitude this is possible from a double-hit distance of
about 0.4 * wx [14], which would be in our case 2 mm.
However the efficiency will suffer due to the possibil-
ity of very different amplitudes (Landau tails). The
plot for double-hits on the same pad shows that this
works only for a small part of the data, while for
hits on neighbouring pads (10) the efficiency is much
higher.

The data shown in fig. 5.8 for single hits can be
fitted by

(5.1)

where a is found to be a = 0.012 in the standard lay-
out. The function is shown in fig. 5.8 as a solid line.
In the case of double-hits many events are clearly off
the function. By projecting the events on the function

it is easier to set a gate. This is shown in fig. 5.9. Hits
on the right side of the dashed line are double-hits.
The standard deviation from the functional behaviour
is about 0.0126 in relative units (charge ratios of the
side pad to the center pad) corresponding to a single-
hit resolution of 43 pm achieved with the charge ratio
algorithm.

In fig. 5.10 the same method is used in Y-direction.
Charge ratios between the bottom and the center pad
Qb/Qc as a function of the top and the center pad
Qt/Qe are displayed. Now the wire structure is re-
sponsible for clean structures. For single-hits at 0°
the wires show up at 3 points. The upper left point
where the charge Qt is large is from hits on the bot-
tom wire. The opposite situation is given for the point
on the right where the charge on the top wire Qt is
large. When the hit is on the middle wire then the
charge on the top and bottom pad is at minumum and
maximum for the center pad. This corresponds to the
concentration near the origin. However the the situa-
tion where the impact is perpendicular to the cham-
ber plane (X-Y) is a very special one. In the case
an angle with the Y-Z plane appears the ionization
charges may be shared by two neighbouring wires 5.
In that case the charge ratios will be inbetween the
single wire points. But they will always be between
neighbouring wires and not between the bottom and
top wire as one can see in comparison with double-
hits on the same pad (fig. 5.10). The dashed line
can therefore work as a gate to separate single- from
double-hits. This becomes especially efficient when
the impacts are on neighbouring pads in Y-direction
(01).

Efficiency

The efficiency to recognize double-hits with the stan-
dard lay-out and 0.5% noise is shown in figs. 5.11-
5.13. The first graph (5.11) shows the efficiency as
a function of the X-distance of the 2 impacts. Only
double-hits that show up with one maximum in the
cluster pattern are considered. When the two hits
are on the same pad the efficiency is 50% when the 2
hits are separated by only 2 mm. When the distance
is 3 mm or more the efficiency is over 98%. Double-
hits identified with a distance closer than 1.5 mm

5 We restrict ourselves to small angles and a narrow gas gap
(= 2d), therefore not more than 2 wires may be touched.



Figure 5.6: Difference of induced charge between a cluster of 25 and 9 pads around the pad containing the charge
maximum as a function of the charge ratio of the 2 clusters. For single-hits a clear structure is visible which
15 different for double-hits. The long vertical contribution comes from the long Landau tails. Even if the ratio
is close to 1 the difference might be relatively large. The dashed line shows the actual gate which can be clearly
improved to be more efficient.



Figure 5.7: 'Cluster size' (9/25) as a function of normalized Gaussian standard deviation agy. Dashed lines
indicate the gates set to separate single- from double-hits. The methods becomes only efficient when the 2 impacts
are at least on different pads.



Figure 5.8: Plot for charge ratios of right to center as a function of the left to center pad (X-coordinate). For
single-hits this plot has a proper functional behaviour which is displayed in the graphs as a solid line (see eq.
5.1). The width of the particle distribution around this line is a direct measure of the single-hit resolution. All
events above this band are double-hits. The separation achieved is also of the order of 2-3 mm.



Figure 5.10: Plot for charge ratios of the bottom to center as a function of top to center pad. The localized
accumulations of events in the single-hit plot reflect the wire structure. The center wire position is near the
origin. Events between the top or bottom wire and the center wire can appear if the track is inclined. But events
between the top and the bottom wire can only come from double-hits (at least for angles < 30°). The dashed
lines mark therefore the gate on single-hits. This method is very efficient if the vertical separation is more than
one wire.



Figure 5.9: Top: Plot of the linearizedQr/Qc-Qi/Qc
behaviour (see eq. 5.1). The structure for Q,ide/Qc

near 0.15 is an effect of the gating. All events above
a distance of 0.048 (dashed line) are identified as
double-hits with a separation of more than 0.4 • wx

which is 2 mm in our case. Bottom: Projection on the
X-axis. The standard deviation is about p^ = 0.0126
corresponding to 43 (*m resolution with the charge ra-
tio algorithm.

(about 20% efficiency) benefit of a sufficient distance
in Y-direction, mainly events that are separated by 2
wires.

The situation is similar for impacts on 2 neighbour-
ing pads (10), though the rise to over 98% efficiency
is slightly lower. For double-hits separated by 2 pads
in X (20) the efficiency is decreasing for larger dis-
tances. Above 10 mm distance between the impacts
the statistics is very low, only very few double-hits
have still only one maximum in the cluster pattern.
Nevertheless there remains a problem due to the us-
age of algorithms for double-hits on different pads.

The efficiency to recognize double-hits on neigh-
bouring pads in Y-direction (01) is rather high and
of course almost constant for the X-coordinate. The
large efficiency is due to the wire structure. For the
(11) pattern the efficiency is not as good as expected
from (10) and (01). Here the algorithm method has
to be improved. It is surprising that the efficiency is
decreasing for larger distances.

Taking finally together all efficiencies for local pad
situations one gets the last graph in fig. 5.11 for the
efficiencies as a function of the impact distance in X-
direction. Remember that only double-hits giving one
maximum are included in the graph. For distances
less than 3 mm the efficiency is about 70%. For larger
distances it is always more than 95%. The decreasing
efficiency for large distances is statistically negligible
and is due to imperfections of the algorithms. For
distances of more than 10 mm only double-hits with
very different amplitudes can still give only one max-
imum in the cluster pattern.

The efficiency as a function of the Y-coordinate is
shown in fig. 5.12. It can be clearly seen that the effi-
ciency increases to almost 100% when the distance in
Y is more than 5 mm or 2 wires. The total efficiency
of course very similar to the X-coordibate.

The next plot 5.13 shows the efficiency as a function
of the distance r = y/x2 + y2 of the 2 impacts. When
the distance is more than 6 mm the efficiency is above
95%. It is clear that especially for the (11) pattern
situation the method must be improved.



Figure 5.11: Efficiency of double-hit recognition with algorithms as a function of the impact distance in X-
direction. Only double-hits that show up with a single maximum are considered in the graphs. The different pad
constellations were triggered during the event generation and would be unknown in experimental data. The last
graph shows the efficiency for all double-hits. See text.



Figure 5.12: Efficiency of double-hit recognition with algorithms as a function of the impact distance in Y-
direction. Only double-hits that show up with a single maximum are considered in the graphs. The different pad
constellations were triggered during the event generation and would be unknown in experimental data. The last
graph shows the efficiency for all double-hits. See text.



Figure 5.13: Efficiency of double-hit recognition with algorithms as a function of the impact distance r =
y/x2 + y2. Only double-hits that show up with a single maximum are considered in the graphs. The different
pad constellations were triggered during the event generation and would be unknown in experimental data. The
last graph shows the efficiency for all double-hits. See text.



Figure 5.14: Residuals for double-hits with one maximum in the hit pattern in dependence of the hit pattern (00,
10, etc.). The fits shown are S added Gaussians with parameters P1-P9 printed on the right hand side. The
resolution a quoted on the left side on each plot is the weighted mean of the to narrower Gaussians. The 3rd
Gaussians is also displayed as solid line. The resolution for these events is too bad. They must by considered
as lost (0 efficiency) or as background.



Figure 5.15: The same data as in fig. 5.14 plotted as a function of the impact distance in X-direction. The
systematic deviations are discussed in the text.
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Figure 5.16: Global resolution for all double-hits with one maximum in the hit pattern (compare with fig 5.14).
The fit is as described above. The bottom graph reveals the systematic deviations as a function of the impact
distance in X-direction.
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Resolution 5.3 Separation by fit

In figs. 5.14-5.17/ir«t results of the resolution using
the 2-pad ratio like algorithm are shown. The graphs
in fig. 5.14 show the resolutions fitted by 3 Gaus-
sians for the following pad situations: 00, 10, 20, 01,
11 and 02. The mean a of the residuals is a weighted
mean of the 2 narrower Gaussians. The 3rd Gaus-
sian not taken into account is superimposed. These
contributions are too large and must be regarded as
lost.

For double-hits on the same pad the position re-
construction with the 2-pad algorithms gives a res-
olution <roo = 246/im. for each hit. For hits on
neighboured pads (10) the resolution is already worse,
trio = 264(tm. Comparing with the plots on fig. 5.15
reveals that there are still systematic deviations in
regard on the distance between the 2 impacts espe-
cially for 10. These are due to the pattern structure in
combination with the 2-pad algorithm. Further cor-
rections are necessary. The resolution becomes even
worse for the 20, 01, 11 and 02 situations. These con-
tributions are statistically less significant, but they
still will give an important background.

However for the structures like 01, 11 or 02 a much
better resolution on the X-coordinate can be achieved
using normal 3-pad algorithms. But to use them one
has to provide the pattern structure.

The graphs on figs. 5.16 and 5.17 combine all pat-
tern situations shown in 5.14 and 5.15. The first
figure shows the combination of all double-hits giv-
ing only one maximum. The overall resolution for
the peak is <rau — 376ftm with a broad background.
The below graph shows the systematic deviations as
a function of the impact distance in X-direction.

Most of the broad background is coming from 20,
01, 11 and 02 patterns as one can see on fig. 5.17
where only 00 and 10 are taken into account. The
resolution is now ^oo+io = 306/un with a low contri-
bution from a broad 3rd Gaussian shown as the solid
curve. Nevertheless this result might be improved
somewhat be correcting systematics.
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Figure 5.18: Comparison of position resolution pre-
dicted and observed in events having two nearby
tracks. The deconvolutton is made by fitting the
Mathieson charge distribution to the data. Single-
track resolution in this particular run was 80 pirn.
From Fenker et al. [16].

Fenker et al. [16] simulated and measured the res-
olution degradation as a function of the distance of
the two impact points. Their result is shown in fig.
5.18. The resolution for single hits was 80 fim in
that experiment. The resolution became about a fac-
tor of 5 times worse if the tracks were rather close
together and was slowly decreasing to the single hit
resolution when the distance increased to more than
1 strip width. For very close hits (less than 500 /an)
the double-track resolution becomes suddenly much
better (only about 160 //m), which is in fact trivial
because the tracks are less separated than the double-
hit resolution itself and could therefore be treated
like a single hit. The mean value would then still
give a much better a as the 400/im before. This sim-
ple effect was not reproduced with their Monte Carlo
due to some double counting of noise 6 [16]. Nev-
ertheless the result will be strongly geometry depen-
dent. Of course narrow charge distributions (small
anode-cathode pitch) and high pad granularity will

6 Single experimental events were superimposed instead of
generated events, each having its own noise contribution. This
is not true for events which are on the same pad, i.e. very close
to each other.
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give the best results. In [16] the anode-cathode pitch
was 2 mm and the strip width 2.5 mm, far different
from the standard lay-out chosen in this report. The
double-hit resolution would therefore be expected to
be worse.

Other work was done by Gratchev et al. [42] with
the same CSC as reported in [24]. The readout pitch
of that chamber was 5 mm wich is the same as width
in X-direction in our standard design. They fitted
the charges induced on the pads by the integrals of
the Mathieson formula (see eqn. 2.10 and 2.11). The
identification of double-hits is also done by comparing
a fit with single-hit hypothesis and a fit with double-
hit hypothesis. Their results as a function of the im-
pact distance of the 2 hits are shown in fig. 5.19. At
a distance of 2 mm the efficiency is still more than
80%. The resolution is degraded from 50 to 500 /un
as soon as the 2 impacts are at a distance of less than
one readout pitch. 2 3

Distance (mm)

5.4 Discussion

We showed that double-hits can be separated to some
extend. Double-hits with a distance of less than
one pad remain a problem due to unresolveable am-
biguities. The necessary CPC lay-out for the AL-
ICE experiment might finally be dominated by the
double-hit separation power of the chambers. This
demands reflections of what effeciency is necessary
for the double-hit resolution. Detailed studies with
events coming from GEANT are necessary.

Nevertheless one should keep in mind that the
probability of double-hits on the same pad is much
smaller than for partly overlapping clusters with size
3 x 3 pads which can be treated. So the efficiency is
perhaps much better as it seems at first sight.
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Figure 5.19: Double-hit treatment by a fit procedure
by Gratchev et al. in a CSC with 5 mm readout pitch.
Top: Efficiency of double-hit reconstruction vs. their
distance. The solid line shows simulation results and
the points are experimental data. Bottom: Position
resolution vs. distance.



Chapter 6

Cathode Pad Chambers for Di-Muon
tracking in the ALICE detector

6.1 Introduction

The Di-Muon Arm of the ALICE detector at LHC
aims at the detection of muon pairs from the decay
of <//¥ and T mesons (see chapter 1). In the ad-
dendum to the ALICE letter of intent [2] the first
GEANT simulations showed that about 200 charged
particles are expected per central Pb-Pb collision on
the first tracking chamber after the absorber (see fig.
1.1). These particles will arrive practically at the
same time on the chamber plane 1 and have to be
analysed in parallel. The spatial particle distribu-
tion in the chamber plane will be far from uniform.
A concentration of events shows up for small angles,
i.e. around the beam pipe. Nevertheless the sim-
ulation and optimization of the absorber is not yet
finished and more refined studies show now that one
should expect about 300 particles per central Pb-Pb
collision. Of course GEANT can only estimate the
number of charged events within a certain precision.
For security one should design the tracking chambers
to work still properly with a 2-3 times higher par-
ticle rate. Therefore the Di-Muon collaboration de-
manded to optimize the chamber design for « 900
charged particles with ax < 100/jm for all particles
and a detection efficiency of over 95% [43]. The res-
olution determination must contain the treatment of
double-hits. The single-hit resolution would of course
be better.
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Figure 6.1: Energy loss distribution with Landau
shape generated by GEANT. The noise amplitude of
0.5% refers to the mean energy loss marked by the
arrow.
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Figure 6.2: Spatial hit distribution in the first track-
ing chamber plane generated by GEANT. Top: hit
distribution as a function of the radius. Bottom: hit
density per cm2. With a pad size of 5 * 7.5 = 3.75
mm2 the maximum pad occupancy is about 6 %.

1 In the actual design the first chamber will have a surface
of about 2.6 m2.
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Figure 6.3: Wire occupancy in the first tracking
chamber for one central Pb-Pb collision generated by
GEANT. 1 channel per wire. The chamber will be
halfed in two parts (left and right) for technical rea-
sons.

Figure 6.5: Induced charges on the pad with noise
after pedestal subtraction. Only a small part of the
chamber is shown (see fig. 6-4)-



Figure 6.4: Hit pattern (1 channel per pad) in the first tracking chamber for one central Pb-Pb collision generated
by GEANT. The pad size is 5 * 7.5 mm2. The inner empty zone is around the beam pipe.



Chapter 7

Conclusions

We draw here conclusions on the usage of CPC's
in general and for the ALICE experiment. We try
to list the work which needs to be done to define
the final lay-out for the Di-Muon Arm in the ALICE
experiment.

7.1 Summary on Cathode
Strip/Pad Chambers

7.2 Cathode Pad Chambers for
ALICE

70



Chapter 8

Acknowledgements

Somebody is greatly acknowledged for comments on
the text. M. Benayoun, A. Diazeck, H. Fenker, J.
Guillot, H.-A. Gustafsson, K. Lau, P. Leruste, J.L.
Narjoux, M. Sene, R. Sene, S. Szafran, A. Volte and
A. Willis are thanked for discussions and supplying
us with helpful informations.

All further comments or questions on this report
are greatly encouraged and welcome. Please send
them to

Ralf Wurzinger
E-Mail: wurzinge@ipnosb.in2p3.fr

or

Yves Le Bornec
E-Mail: Iebornec@ipnosb.in2p3.fr

71



Appendix A

Appendix

A.I Gaussian algorithm for 3
strips

In references [28,44, 30] formula are given to find the
impact position by assuming the charge distribution
to have the form of a Gaussian. We show here how
the formula is derived. While Endo et cd. [28] found a
resolution worse than with the COG algorithm, Lau
et al. [30] found a resolution very close to the ratio
algorithm with their chamber geometry.

Qi, Qc and QT are the measured charges on 3 con-
secutive strips or pads. The middle pad has its center
at position Xe = 0. The two others are at Xi = —wx

and Xr = +wx with wx the strip width. From the
Gaussian

Q, = ,«-<*<-*•»; (A.I)
with a being the amplitude, Xo the mean and t =
/, c, r, one gets 3 equations from the 3 strips to find
the 3 unknown parameters a, Xo and ag

Qi = „«-<-+*•>/*. (A.2)

Qe = at-xll'l (A.3)

Qr = ae-lw'-x'W . (A.4)

Taking equation A.3 one can express a and In a

Qc
a = (A.5)

(A.6)=> In a =

Equations A.2 and A.3 can be combined to eliminate

(A.7)
a oj

=> a] = • ( - 1 ^ ° ) 2 (A.8)

j i Qr (*"* ~ Xo)2 . . n .
and I n — = — 5 (A-9)

" -
. (A.10)

Inserting In a from eq. A.6 one finds for eq. A.8

9 ~

(A.ll)

and similar from eq. A. 10 follows

..,2
(A.14)

Combining the right hand sides of eqn. A.13 and A.14
leads to

Qr

This gives finally the mean position Xo

v wx lnQj- lnQr

(A.15)

(A.16)

(A.17)

(A.18)u 2 2 1 n Q c - l n Q r - l n Q ,

in agreement with [28, 30]. For testing clusters if they
are single or double-hits the calculation of the induced
charge's ag might be important. Inserting eq. A.18
in A.13 gives

(A.19)

(A.20)

which can be reduced to

On =
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A.2 Hyperbolic Secant Squared
(SECHS) algorithm for 3
strips

Lau et al. [30] found the best resolution with their
chamber geometry with the hyperbolic secant squared
(SECHS) algorithm for 3 strips. It is in fact a very
close approximation to the induced charge distribu-
tion used in [30]. In addition the algorithm seems
to be much less sensitive to the incident angle of the
track and as well on mechanical tolerances as e.g. the
ratio algorithm. As we use the Mathieson formula for
the charge distribution [11] one would even expect a
somewhat better resolution using an algorithm using
his formula. But anyway the two models are not very
different. It is shown here how the formula is derived.

Qi, Qc and Qr are the measured charges on 3 con-
secutive strips or pads. The middle (Qc)pad has its
center at position Xc = 0. The two others are at
Xi — —wx and Xr = +wx with wx the strip width.
The hyperbolic secant squared function is [30]

Qi = (A.21)

with at being the amplitude, XQ the mean and i =

l,c,r. One gets 3 equations from the 3 strips to find
the 3 unknown parameters a\, XQ and a?

Q, =

Qc =

Qr =

cosh (n(wx +

cosh

cosh2(jr(u;r -

(A.22)

(A.23)

(A.24)

Dividing equations A.22 and A.24 by the one for the
central pad (A.23) one obtains

cosh2(7r(tt;g +

and

Qi

Qc

Qr

V K - X0)/a2)

(A.25)

(A .26)

Taking the squareroot and subtracting eq. A.26 from
eq. A.25 gives

(A.27)

— cosh(ir(u;r — Ao)/a2)cosh(7r(tux

Using cosh(a ± 6) = (cosh a cosh b ± sinh a sinh 6) one
finds

(A.28)

(A.29)

2sinh(jriux/a2)v

and therefore

Xn = —arctanh (A.31)

a2 is calculated like follows. Summing the squareroots
of eq. A.25 and A.26 gives similar to eqn. A.27 and
A.28

(A.32)

(A.33)

(A.34)

Note that a^ is proportional to the width. For the
graph in fig. 2.2a we found a2 = 1.79FWHM.

A.3 Algorithm for the Math-
ieson/ Gatti formula for 3
strips

The parameterization of the Mathieson formula to cal-
culate the impact position using 3 consecutive strips
has not been found in the literature 1. This is sur-
prising as one would expect to have the smallest sys-
tematic deviations using a formula that suits best the
real charge distribution. We therefore note its eval-
uation. As the width is fixed by the parameter Kz
(see eq. 2.5) there are only two unknown parameters.
Nevertheless the relation is more complicated. First
we repeat that Mathieson's charge distribution (eq.

1 Fenker et al. [15] seem to use such a parametrization but
do not give the formula in their paper.
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2.1) can be easier written using 1 — tanh3 = 1/cosh3

and cosh3 = 1 + sinh3

qa ' 1 + (K3 + 1)sinh3(A:2A) ' ( A 3 5 )

qa is the total charge, A = X/d and #1,2,3 are geome-
try dependent constants as defined in chapter 2. Thus
there is only one hyperbolic function in the equation
which simplifies the following calculus.

The charge on the 3 strips is given by

Qi = 1 + ( y 3 + ^ m h 2 ( ^ X | ) • (A-36>

with Qi and A", as above. One finds for the charges

on the 3 strips

Qi =

Qc =

Qr =

( # 3 Xo))
(A.37)

(A.38)

(K3

. (A.39)

The second equation (A.38) is used again to express
the total charge

qa = ~ ( 1 + (K3K\
with sinh(—x) = — sinh(z). Using the theorems
sinh(z ± y) — sinh z cosh y ± cosh x sinh y one gets
from eqn. A.37 and A.39

(A.40)

Qr

. . , K2 K2
(sinh —r-wx cosh ——X

d d

+ cosh —j-wx sinh —
a a

= 1 + {K3 + 1) *

(A.41)

(sinh -y-wx cosh —— Xo
a a
,K2 . K2

— cosh —y-wx sinh —y
d d

(A.42)

Inserting eq. A.40 in eqn. A.41 and A.42 yields

(1-0
= (sinh ——wx cosh ——Xo

a a
IS TS

+ cosh -—it), sinh —~X0)
2

a a
(A.43)

/ • u -^2 , K2 ,
(sum -~rwx cosh —r-u

d d

cosh —3-u»x sinh —v-X
d d

To keep the equations clear the following abbrevia-
tions are introduced for known terms:

( A 4 5 )

(A.46)

(A.47)

(A.48)

(A.49)

( A 5 0 )

a2

03 =

a4 =

as =

Qc
Qi
K2/d

sinh -^-ui,
a

, A:2
cosh-j-u;,

a

Eqn. A.43 and A.44 become much simpler:

aj 4* a2 sinh asA"o ^

(04 cosh a3Xo + as sinh 03X0)2 (A.52)

Oj -f- 62 sinh 03X0 =

(04 cosh asA"o - as sinh 03X0)2 . (A.53)

Calculating the right sides and adding eqn. A.52 and
A.53 gives

ai + h + (a2 + 62) sinh2 03X0 =

2(a^ cosh2 a3X0 + a\ sinh2 a3X0) . (A.54)

With cosh2 = sinh2 +1 one finds

(a2 + b2 - 2a\ - 2a\) sinh2 a3X0 =

2a^ - ai - 61 . (A.55)

(A.44)

d I 2a3, -ai-bi
=> Ao = -rr-arcsinhi/ r—^r~? ?r •

K2 y a2 + b2- 2(a\ + a3)
(A.56)

A.4 Lorentzian algorithm for 3
strips

Attempts with a Lorentzian shaped function were
made by [27,28,30]. The function is a rather poor ap-
proximation of the charge distribution (see fig. 2.2).
Especially the tails of the function are much wider
and therefore overestimate the induced charge on the
side strips. Systematic deviations are consequently
very large and the resolution poor. Nevertheless we
show how the center of gravity is calculated from this
function.
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The Lorentzian or Breit-Wigner function describes

the charge profile as follows

+ (r/2)» '
(A.57)

with parameters as above except T being the FWHM.
For the mean positions Xi of 3 consecutive strips we
have

Qi =

Qe =

Qr =

(r/2)2

,,2

(A.58)

(A.59)

(A .60)
vx - Xo)2 + ( r /2 ) 2 •

Dividing eq. A.58 and A.60 by eq. A.59 eliminates a

9L

Qc

Qc

(A.61)

(A.62)

Solving both equations for (r/2) 2 gives

( r / 2 ) 2 = ^ — ^ (A.63)

(r/2)2 = ^ K - X O ) 2 - X 0
2 Q C ( A 6 4 )

Combining eqn. A.63 and A.64 yields after few steps

Qt(wx+2X0) _ Qr(wt - 2X0)

Q c - Q / " Qc - Qr

After multiplication one finds for Xo

wx Qr - QiXo =

(A.65)

(A.66)

A.5 Determination of the spa-
tial resolution from the
residuals by 2 or 3 Gauss-
fits

the fig. A.I for the single-hit results from the ratio
algorithm (see section 4.3). The fit with two Gaus-
sians has a 10 times better x2 • A weighted mean is
calculated for the resolution

er = (A.67)

where a, is the tth amplitude.

Though in fig. A.I the difference for the 2 a's is
only 7% there are more important cases where con-
tributions from very different o-'s are added. The
method will then become meaningfull. Note that the
RMS calculated by PAW more than 10% larger than
the mean <r from the fit. This is due to 0.2% of events
outside the defined spectrum range. Nevertheless one
sould also give the percentage of events which lies in-
side 3<r of the largest Gaussian to know with what
efficiency the resolution was obtained.
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Figure A.I: Resolution determination using 1 or 2
Gauss-fits.

In the literature one finds usually that the resolu-
tion is determined from a single Gaussian fit to the
residuals. But even for the simplest case (without
double-hits or delta electrons) nonlinearities lead to
a nonuniform resolution over the pad (see fig. 4.15).
Therefore the residuals can not be well described by a
simple Gaussian. Nevertheless one gets much better
fit by combining 2 or 3 Gaussians. This is shown in

A.6 List of subroutines
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