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ABSTRACT

The effects of random dilution of junctions on a two-dimensional Josephson-j unction

array in a magnetic field are considered. For rational values of the average flux quantum per

plaquette / , the superconducting transition temperature vanishes, for increasing dilution,

at a critical value xs(/), while the vortex ordering remains stable up to XVL > *Si much

below the value xp corresponding to the geometric percolation threshold. For XVL < X <XP,

the array behaves as a zero-temperature vortex-glass. Numerical results for / = 1/2 from

defect energy calculations are presented which are consistent with this scenario.



Vortex glass states in disordered three-dimensional superconductors have been the focus

of much recent interest [1-5]. In the absence of screening, they are believed to have a true

superconducting phase, with vanishing linear resistivity, at finite temperatures. By contrast,

in two dimensions, vortex glass models [2] and experiments on superconducting films [5]

show that vortex glass order is destroyed at any finite temperature with a nonzero but

exponentially small resistivity. This zero-temperature vortex glass can be characterized by

a thermal correlation length exponent v? which determines, for example, the current density

scale, Jni ~ 7>1+lri where nonlinear behavior shows up in the current-voltage characteristics

[2,5]. Recent estimates give vr ~ 2 for various vortex glass models [2].

Randomly diluted Josephson junction arrays (JJA), have been used to model disordered

superconductors [3,6,7]. In zero field, the superconducting transition temperature vanishes at

the percolation threshold [8] xp, where x is the concentration of diluted junctions. For x > xp

there are only uncoupled finite clusters and long-range phase coherence is destroyed. At xp,

the infinite percolating cluster shows up in the scaling behavior of the dynamic conductivity

[6] and nonlinear resistivity [7]. In the presence of an external field, a diluted JJA is an

experimentally controllable model to investigate phase coherence and vortex glasses in two

dimensions. For rational values of the flux quantum per unit cell / , an ordered (x = 0) JJA

has a ground state consisting of a periodic pinned vortex lattice, with additional discrete

symmetries resulting from commensurability effects [1,9]. The melting of this vortex lattice

at a temperature 7V/,, driven by domain-wall excitations, competes with the superconducting

transition at Ts driven by the Kosterlitz-Thouless vortex unbinding. For / = 1/2, these

transitions either coincide or have very close transition temperatures [1], TVL ~ Ts- Similar

behavior is expected for other low rational values of / . In the presence of random-dilution

disorder, two natural questions arise: (i) are there two dilution thresholds, x$ and xy^, for

phase coherence and vortex lattice order respectively? Does a vortex-glass phase occur over

a significant range x > XVL ?

In this work, we argue that for rational values of / , the superconducting transition



temperature of the array vanishes, for increasing dilution, at a critical value xs{f). The

vortex-lattice ordering remains stable up to XVL(/) > ^s(f) but both values are much

below the value xp corresponding to the geometric percolation threshold. For XVL < x <

xp there is a zero-temperature vortex glass. These features are verified numerically for

/ = 1/2, using a bond-diluted frustrated XY model on a triangular lattice, and extensive

zero temperature calculations. Domain-wall energy calculations give an estimate of a wide

range, XVL < x < xp , for a zero-temperature vortex glass below the geometrical percolation

threshold xp = 0.652. We find x$ = 0.14(1) and XVL — 0.17(1) consistent with the proposed

scenario. In the vortex-glass phase, v? ~ 1.9 , as estimated from the size dependence of

defect energies excitations. Interestingly enough, this estimate is very close to the value

obtained for the gauge-glass model [2] which may suggest a common universality class.

We consider a two-dimensional Josephson-j unction array in a magnetic field B described

by the Hamiltonian of a frustrated XY model

where 8, is the phase of the condensate wave function in a grain at site t and Jy is the

Josephson coupling. The summation is taken over all nearest neighbors of a regular reference

lattice. The dimensionless line integral of the vector potential Ay about each elementary

reference-lattice plaquette of area S is £ p Ay = 2irf, where the frustration parameter / =

BS/$0 measures the number of flux quanta $0 per plaquette. A bond-dilution concentration

x corresponds to Jy being zero or 7, with probabilities x and 1 — x, respectively. Since any

closed loops of nonzero bonds J have an area which is an integer multiple of the elementary

area S, the properties of this model are periodic in / with period 1, and it is therefore

sufficient to consider 0 < / < 1.

For / = 0, the Hamiltonian reduces to the standard diluted XY model, which is known

to be superconducting for [8] x < xp. When / ^ 0, there must also be a threshold XVL for

vortex-lattice disordering [4] below the percolation threshold, XVL < xp. In the undiluted

case x = 0, the ground state for rational / = p/q (q > 2) consists of a pinned vortex lattice



[9] with a q x q unit cell. For small dilution x « XVL, the long-range order of the vortex

lattice persists, provided an infinite cluster of these cells exist. Since xyi(f) corresponds

roughly to the percolation threshold for cells of size q x q, the percolation threshold for q x q

cell dilutation is reached much below the unit bond-dilution threshold. Alternatively, long-

range order of the vortex lattice requires connectivity over at least q bonds, as in bootstrap

percolation [10], which is known to lead to a percolation threshold below the unit bond

percolation. Since vortex lattice disordering leads to suppression of phase coherence [1], XVL

is an upper bound for the superconducting threshold xs- This implies that the transition

temperature should vanish at an xs < xpf and that the thresholds are as illustrated in

Fig. 1. At least for low-order rational values of / , we would expect xs(f') < xs(f) if

f < f since / ' requires a higher connectivity. For xyi(f) < x < xp, there is no long-

range order, and this phase should correspond to a two-dimensional vortex glass, where a

true phase transition is known to occur only at T = 0 [2,11]. An intervening glass phase

near percolation threshold is also expected from mean field theory [3]. This phase can be

characterized [2] by a critical exponent 9 that determines how low-energy excitations AE(L)

from the ground state behave at long length scales L. For a T — 0 vortex glass AE ~ Le,

with 6 < 0, and thermal excitations of scale f ~ J>-«T destroy the glass order at any

finite temperature, leading to an identification of the thermal correlation length exponent

as uj- = 1/|0|. Our numerical results for / = 1/2, described below, are consistent with this

behavior, and provide an estimation of uj-.

We have carried out a detailed numerical study for / = 1/2 at zero temperature, using a

bond diluted frustrated JJA on a triangular lattice, where the critical dilution threshold for

bond percolation [8] is xp = 0.652. For this value of / , vortex-lattice ordering can be conve-

niently described in terms of a Zi chirality order parameter \ — H<ij>{Q\ — &j — AJ)/(2TT),

where summation is taken about an elementary plaquette of the actual lattice, and the

gauge-invariant phase difference is restricted to the interval [—TT, +TT]. In the undiluted case,

the ground state consists of a pinned vortex-lattice corresponding to an antiferromagnetic



arrangement of x — ±1/2. To study the stability of the ordered phases, we use a defect

energy renormalization analysis [12] at T — 0. A defect is created in a system of size L x

L by imposing a change in the boundary conditions in one direction. The change AE(L)

in the ground state energy for small systems is calculated for a large number of samples

by directly searching for the minimum energy. We used an improved algorithm based on

Ref. [13]. Typically, 3000 configurations of disorder have been used for each system size. To

study both phase coherence and vortex-lattice order, we consider two types of defects: (i)

Prom the energy difference between periodic Ep and antiperiodic Ea boundary conditions

in the phases 0* we obtain AE\ = Ea — Ep, which is a measure of phase coherence, and

is related to the renormalized stiffness constant J(L) — p AEi/2n2, where p = 2/\/3 is a

geometrical factor for the triangular lattice. In the thermodynamic limit, J is finite in the

phase coherent state and vanishes in the incoherent state; (ii) a domain-wall defect energy

is obtained as AE2 — ET — Ep, where Er is the ground state energy with reflected boundary

conditions (13], corresponding to the energy cost for a domain wall in the vortex lattice.

In the presence of disorder, AEi and AE2 fluctuate between samples, with a distribution

that can be characterized by its moments. Stability of the ground state against thermal

fluctuations requires that the average [AE], where [ ] denotes a disorder average, is finite or

increases with L for the U(l) and Zi symmetries respectively. Fig. 2 shows the behavior

of the [A£i] as function of L for increasing dilution. For small x, it increases with L, in-

dicating the existence of long range phase coherence [14]. For sufficiently large x it clearly

decreases for increasing L, indicating a disordered phase. The change in the behavior yields

an estimate of xs = 0.14(1) . Fig. 3 shows a similar plot for [AE?]. The increasing trend

with L for small x corresponds to a vortex-lattice ordered phase, which persists for a small

but finite range above X5. For large x, it decreases with L, and yields an estimate of XVL —

0.17(1). Thus XVL > ^ s . as indicated in Fig. 1. The disordered phase for XVL < X < XP

can be regarded as a vortex glass, since it lacks long range order in the vortex lattice.

The stability of the glass phase against thermal fluctuations is determined by the size



dependence of the second moment of the energy excitations u\ = J[AEf] — [A£j]2 ex L°.

Here 9 > 0 indicates a glass phase at nonzero temperature, whereas 9 < 0 implies that

arbitrarily low energy excitations at long length scales can be thermally excited, destroying

the glass phase at any finite temperature [12]. The size dependence of w, for a value of

x = 0.3 in this region [15] is shown in Fig. 4 and clearly indicates a negative 9 for both w\

and lua, and so the vortex glass only occurs at T = 0 . The exponent uT = 1/ | 9 | of the

superconducting thermal correlation length £ oc T'"7 can be estimated from the slope of

W\ in a loglog plot, giving i*r ~ 1-9. Interestingly enough, this estimate is very close to the

value obtained for the gauge-glass model [2], suggesting a common universality class, but

further data would be necessary to check whether vr is 1- dependent.

At finite temperatures, thermally excited vortices and disorder effects can significantly

reduce the ordered phases for x < z v t ( / ) since bond dilution introduces correlated ran-

domness in the flux, as in the case of an array with disorder only in the positions of the

grains [16]. Unlike positional disorder, random dilution does not explicitly affect the phase

difference 0j — 9j between two superconducting grains in Eq. (1). Its relevance can be studied

through two coupled frustrated XY models

# = -iZ<ij>[cos{9i-9j-Aij)

+ cos(<& - fa - Aij - ntij))

i-<fc) (2)

where Uj is 1 or 0 with probability x and 1 — x respectively. In the limit h —* 00, the

phases are coupled 0< = 4>u and the original model in Eq. (1) is recovered. The second term

has the same form as the Hamiltonian describing positional disorder in a superconducting

array in the presence of magnetic field [16], with a particular bimodal distribution of Uj. A

detailed analysis in the small h limit combined with known T ^ 0 results [1,9] for x = 0

and the above calculations at T = 0, suggest the phase diagram of Fig.l. For coupled

XY models without disorder [16], the coupling h renormalizes to large values even when

initially small, while the phase transitions can be described in terms of vortices in the



average phase variable (^ + <&)/2. Guided by this, we consider initially the two XY models

in Eq. (2) to be independent, and consider the particular rational value, / = 1/2, where the

relevant excitations, chiral domain walls and vortex charges, are better understood [1,16].

In this case, the disorder variables act as random bonds on the chiral order parameter Xt

and as random dipoles on the vortex charges. If the transition in the pure case is single

(simultaneous disordering of the chiral and XY-like variables), the differently-acting disorder

can thus separate the two transitions, with vortex unbinding at temperatures below the

chiral transition [16]. In fact, Monte Carlo simulations for the frustrated XY model on a

square lattice with positional disorder, are consistent with the splitting into two transitions

[17]. For the triangular lattice considered here, we have estimated the chiral transition

temperature at x — x$, where Ts — 0 (Fig. 1), from the peak in the chiral susceptibility and

found TVL — 0.27(3) which can be compared with the estimated separation [20] ATe = 0.01

at x = 0, if one assumes a double transition, which clearly shows that disorder tends to

separate the transitions. The chiral transition is expected to be in the universality class of

the random bond Ising model, where recent studies have shown that the specific heat has

a broad peak with a very weak log log(T — Tc) divergence but the other exponents remain

with the pure Ising model values [18]. This is consistent with Monte Carlo simulations of

the frustrated XY model on a site-diluted square lattice [19], where it is found that the

specific heat has a broad peak which does not clearly grow with lattice size, in contrast to

the undiluted case which grows almost logarithmically. Even when a finite coupling between

the two terms in the Hamiltonian of Eq. (2) is taken into account, the effects of disorder

on the chiral order parameter should still remain, since the coupling term should essentially

lock equivalent vortices and chiral variables in both phases 0< and fc. For other values of / ,

we expect similar qualitative behavior, as illustrated in Fig. 1, but with the chiral transition

replaced by the thermal disordering transition of a vortex lattice with a higher order discrete

symmetry.

Experimentally, the vortex glass phase for XVL < X < XP could be identified through the



change in the current-voltage characteristics [5] extracting the critical exponent uT. Another

signature would be the disappearance of ordered-phase resistance-minima at / = p/q when

x is in the /-insensitive vortex-glass region xvi(f = 1/2) < x < xp.
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FIGURES

FIG. 1. Schematic phase diagram of a diluted JJA as a function of temperature T and dilution

x, for an average rational frustration / , showing a superconducting phase (S) a normal ordered

vortex-lattice phase (N) and a vortex-glass phase (VG). A single transition is assumed at x = 0.

If the transitions are already separated at x = 0, dilution would further increase the separation.

FIG. 2. Finite size behavior of defect energy [Ei] probing the superfluid density for increasing

dilution x and various system sizes L. The change in the L dependence determines the threshold

xs.

FIG. 3. Finite size behavior of defect energy [Ei] probing the vortex-lattice lattice stability

for increasing dilution x and various system sizes L. The change in L dependence determines the

threshold

FIG. 4. Finite size behavior of the second moment of the defect energy distribution v)\ and W2

in the region XVL < x < xp for x = 0.3. The negative slope of logwi x logL gives an estimate of

1/IAT.
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