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ABSTRACT

We consider a Bose-Einstein condensate (BEC) of N atoms of repulsive interaction ~ £/o,
in an elliptical trap, axially pierced by a Gaussian-intensity laser beam, forming an effective
(quasi-2D) toroidal trap with minimum at radial distance p = pp. The macroscopic angular
momentum states $i(p, 0) ~ y/N$i(p)etl9 for integer / spread up to p < pmax ~ (NUo)1^4 »
Pp. The spreading lowers rotational energies, so estimated low metastability barriers can
support large / < lmax ~ (NU0)

1/4,£, 10 for typical parameters. The /-dependent density
profile |$/(^)|2 — |$0(p)|2 is a signature of BEC rotation. Results are insensitive to off-axis
laser displacements p0, for po/pmax < 1-
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Bose-Einstein condensates (BEC) of atoms in magnetic traps have been the focus of

intense recent activity [1-12]. Coherence of the BEC wavefunction was demonstrated by

formation of atomic interference fringes, on switch-off of weakly-coupled traps [2]. Non-

destructive tests of phase-coherence, through the Josephson-like effects have been proposed

[6-9], including novel self-trapping phenomena [7,8]. Other phase-coherence signatures in

trapped BEC would be of much interest.

In bulk superfluids/superconductors, equilibrium quantized vortices [13,14], provided

classic evidence of phase coherence. In multiply-connected axial-hole geometries (e.g. thick

superconducting cylinders [15] or superfluids in narrow rings), superflows with wavefunction

$i(9) = |$|e tW, and | $ | uniform [16-18] maintain integer-/ metastable quantized rotational

states. BEC / ^ 0 states in a He II like uniform-density limit have been considered [17,18],

with the BEC rigidly restricted to flat-potential regions by (narrow-ring) rigid walls. How-

ever, one needs to go beyond this 'square-well container' limit to capture the characteristic

iV-dependent spread of BEC in a polynomial trap. The Gross-Pitaevskii equation (GPE)

[19] for a non-uniform BEC includes both (repulsive) atomic collisions that spread BEC, and

trap potentials, that confine it. GPE vortex solutions centered in (simply-connected) har-

monic traps have been found [10,11], but could be unstable to outward vortex displacements

[12].

The investigation of N-atom non-uniform metastable states, of macroscopic angular mo-

mentum Nlh, in multiply-connected toroidal traps are thus important as possible signatures

of BEC phase coherence. Central theoretical issues include the existence of such GPE states;

the mixing of /-states by nonlinear GPE terms; the effects of off-center (azimuthally asym-

metric) displacements of the toroidal hole; the existence of metastability barriers, and the

decay-channel limiting of accessible /-values.

In this Letter, we consider N atoms in the BEC, of interatom scattering ~ Co > 0 in

an elliptical trap, with an axial 'hole' (or strong potential barrier) drilled by an intense

off-resonant laser beam, forming an effective toroidal trap. The T = 0 GPE is solved for

a particular quasi-2D toroidal trap, with the Thomas-Fermi approximation (TFA) [3-5]

outside an effective core, and a polynomial solution inside it. The cylindrical-coordinate

wavefunctions ^i(py6,z) ~ >/N$i(p)etl0 are used as bases for variational states. A dimen-



sionless expansion parameter 8, that is small for strongly interacting and dense trapped

BEC, appears naturally. We find that the / = 0 state $i=o(p) of energy Eo ~ 8~l peaks at

the toroidal axis, spreading out to a radial distance p = pmaz ~ 8~1^2. The centrifugal force

induces a density fall-off |$/(/>)|2 - |$/=o(/»)|2 ~ /2«$3[ln(<5~2) - p2
majp

2], that is a rotation

signature of the / ^ 0 BEC states, of rotational energy Ei — Eo ~ I2(ln8)8 ~ 12/Pmax-

Off-axis displacements ~ po of the toroidal 'hole' are unimportant if po/pmax <S 1- The

self-interaction (/o|$|2, rather than destroying /-states, provides metastability barriers EB

against /->/—1 reductions. Other decay channels, by emission of unit-vortices, or of Bogoli-

ubov quasi-particles, have comparable thresholds, EB ~ 0(1). Increasing the BEC spread

Pmax lowers the / ^ 0 cost, Ei — Eo ~ '2/Pmax> s o ~ 0(1) barriers EB ^ Ei — Eo can still

maintain large / values, / ;$ lmax ~ 8~ll2. These quasi-2D trap results, as well as a square-

well container limit, are recovered, from a general rf-dimensional, anharmonic-trap scaling

analysis. We now outline arguments for the above conclusions.

i) GPE and l-statts: The macroscopic condensate wavefunction ^l(p, 0y z) = y/N$(p, 9, z)

obeys the GPE in cylindrical coordinates:

[ 2m [dp2 + pdp + p2 dO* + dz2) +

VtraP(p,9) + Vtrap(z) + UoW] * = £*, (1)

where Uo = 4nh2a/m and a (m) is the atomic scattering length (mass) and E is the (single-

particle) energy. Vjrap(p,^)(VrtrOp(2:)) is harmonic with curvature ^(u;*). However, Vtrap(z)

rises sharply for \z\ j£ Lx/2, as in Fig. 1. The interacting BEC cloud is blocked from

expanding beyond \z\ ;$ I*/2, spreading, for u}^p2
max » u2L2

z, only in the p-direction with

increasing N. The wavefunction is quasi-2D, uniform ~ lj\/Ll in the z-direction. An off-

resonant gaussian-profile laser barrier of high intensity Vc, and narrow width 2<r, directed

along the z-axis, yields an axially symmetric 'doughnut' trap Vtrap(py0) -> Vr
<rop(p), where

(2)

The BEC wavefunction is, with / = 0,1,2,...,



We scale lengths (energies) in the Vc = 0 harmonic trap length r^ = (h/mu^)1^2 (energy =

fiu>ll/2), so p == p/rn,a = a/r^E, = E,/^huj^Vc = Vc/iftu>||. Then Eq. (1), in dimensionless

form, is

r /<P id\ i2

N\UP)\2} UP) = EIHP), (4)

with N <x N defining a central dimensionless parameter,

S = N~1/2 = {No/N)1'2 ; No = L.jAa. (5)

As shown in Fig. 2, the toroidal trap potential Krap(p) = p2 + Ke~^ ^2a of Eq. (4) has a

minimum around the (circular) toroidal axis at p = pp = \Z2a[\n(Vc/2a2)]1f2 : VJrop(^) «

(Pp/^2)(P ~ PP)2 + K>> where Vp = p2, + 2a2. A non-interacting BEC in such a minimum

has a gaussian width rp = r\\(<T/pp), i.e., the 2D 'volume' occupied is ~ rjj. The interacting

BEC spreads (as seen later) to pmax ~ N , with a volume p^j. ^> rjj. Thus S of Eq. (5)

is essentially the BEC volume ratio, 8 ~ r j j / p j^ <C 1. Note that £ ~ 1 for the 'square-well'

container [17,18,20], where the BEC cannot expand.

We have solved Eq. (4) numerically. In the regime f « 1, and for a sufficiently low-

width laser-hole, a <S <J~2/13, we find analytic results can be obtained. Dropping derivatives

~ S <g 1 in Eq. (4), we have, for p such that pmax > p> pc> pmin, the TFA wavefunction

2 , (6)HP) = (j) ^ [1 + [£, - I2Ip2 - Vtrap(p)}

where t\=. E\ — EQ is the / / 0 energy per particle above the ground state and $i(pmax) =

^i(Pmin) — 0- The wavefunction is zero for p > pmax\ it is matched for p < pc to a polynomial

solution <bf inside an effective 'core' pc > pmin. $i{p) peaks at p = ppeak « p~p + (52/p*)l2.

The energies are determined by normalization,

fPm" dpp\Hp)\2 + /Pc ^ l * ? ^ ) ! 2 = 1. (7)
Jo. JoPc

With the first integral dominating, we have to O{62),

; Eo = 2Ate = (4N)1 /2 . (8)



Here, A = \n(pmax/pc),pc ~ a[\n(Vc/ Eo)}^2, so the results are only very weakly dependent

(A ~ lnpc ~ ln[ln[K;/<7]]) on the toroidal core region and how it is modeled. The interaction

pushes the BEC far beyond the toroidal axis, to p = pmax{l) 3> pp, and with pm = pmax{l =

0), we have

\ 12X2

PmaM) = Pjl + — ) ? Pm * (4 > N)i/4 = E^. (9)

The local density difference due to centrifugal effects ~ l2/p2 in Eq. (4) is

2 ? 2 3 2 % (10)

with fy crossing $ 0 at ^ « pm/\/2A.

Returning to the p < pc series solution, ^ ( p ) = Z)Loa2«P2l+'> w e ^ n ^ t n a t the co-

efficients are a0 ~ a4/Vc
2,a2 ~ a 4 /K, with a4 ~ a3/2*. The TFA $,(p) falls off as

~ (p — pTOin)!^2, with p m i n ~ \Z2<r[ln(V^/£o)]1^2- The wavefunctions and derivatives can

be matched at a pc = [(I + 4)/(/ + 7/2)]pmm > pmin, and the $f integral in Eq. (7) is

Figure 2 shows |$/(/>)|2 versus p, for / = 0 and 10, for parameters as given later. The

analytic approximation (solid line) closely matches the (dashed line) numerical solution of

Eq. (4). The centrifugal reduction and shift of the density peak (~ 10% for / = 10), is a rota-

tion signature, possibly detectable by phase contrast imaging [1]. The super-current density

is j ~ h/(im2irp)ty*gg'ty = N\$i(p)\2v3g, where the azimuthal velocity v3g = (hl/2irmp), and

j vanishes at the origin as j ~ p2 / + 3 . The laser hole 'pins' the azimuthal velocity of average

angular momentum (9i\(h/i)d/d9\tyi) ~ Nlh, suppressing displacement instabilities [12].

ii) Metastability barriers: The nonlinear term in the GPE could cause mixing of /-states

and /—>l—1 decays, but instead, induces barriers. A GPE trial function for full superposition

is V{p,0)/y/N = [C/$/(p,0) + Cj-i$/-i(p,0)], with variational constants, |C,|2 + |C/_i|2 = 1.

With an external angular velocity il = nu>||/2 in the hamiltonian H -> H — hVtt, the free

energy functional F(^f) (whose variation is Eq. (1)) is given by,

(11)



where /,,,. = £JV<(|*,(p)|2|*,,(p)|2», with ((...)) = f^dpp4-1..., and d = 2 at present, and

Et(£l) = Ei- iCl. The /-state (C,,C,_,) = (1,0) is separated from the /-1-state (0,1) by

a barrier of height FB/N = EB = E - £((ft), larger than the splitting, A£ , = (2/ - 1)A<J.

The 'full-overlap' barrier EB = EBl is at \Ct\
2 = |C,_i|2 = j + O{82),

EBl = 2E0[l - A(/2 + (/ - 1 ) V ] - (A£, - ft). (12)

— _ ~ 1 /2

Thus £?BI ~ EQ ~ N , and the /-state (1,0) is preserved by metastable barriers for

Si = 12\/VN < EBi or / < N1 . These barriers arise because interatomic collisions

disfavor the transition-state slowing down of a minority fraction (< 1/2) of the rotating

flow.

We now consider a superposition of non-uniform /-states, overlapping only at an interface,

lowering the /,/ — 1 interspecies scattering. With I//,I/J_I, the fractional volumes occupied,

and i/o = (f; -f f/_i — 1) > 0 the overlap fraction, we take $p(p) —>• $p(p)gp(p) where the

step-function gi-i(p) (gi(p)) is unity for «//_i^ > p2 > p\ (for p2
m > p2 > (1 - vi)p2

m) and

zero otherwise. Repeating the previous argument with these wavefunctions, we find that

the intra-species scattering is increased by the confinement to a reduced volume vpp
%

m <

Pn, so the TFA energies are raised, Ep{v) ~ IPtP{v) ^ Ep{u = l)/vp. The inter-species

scattering gives I(j-i(v) ~ uoN jvivi-\. The lowest interface-overlap barrier EB2 obtains

for approximately equal volume fractions vi — i//_i ^ 1/2, and for an annular overlap

volume of radius pm/y/2 and thickness ~ f. Thus u0 — \/2£pm; EB2 is a fraction of the

full-overlap barrier, EB2 ~ (\/2(/pm)EBi. (Gradient contributions omitted in TFA would

be comparable). Here £ ~ l / [# |*i(£p) |2] l / 2 ~ 1/^J/2 is a 'healing length', so EB2 = 2\/2 ~

0(1), maintaining /-states for / < /m o l 2 = (2v/2/A)l/2«S-1/2,~ Rl/*. The external angular

velocity induces an / -> / —1 transition only above critical values, |f2| > \£lci\ — \(EB — AE()\.

This Clci ~ EBi estimate exceeds an fic/ ~ \AEi\ estimate [4] based on the splitting alone.

Wedge-shaped / — I regions, expanding azimuthally, would have ~ (2£/pm)EBi interface

costs, and similar lmax ~ N scaling. 2D phase-slip saddle-point solutions [18,20] would

also provide such barriers.

iii) Off-center toroidal hole: In practice, the toroidal 'hole' of Fig. (1) could be drilled off

the elliptical-trap axis, or the laser could fluctuate in profile and position. With a displace-



ment p = (po,0) of the ~ p2 elliptical trap, Vtrap{p) -> Vtrap + p2 — 2p0pcos6, modifying the

TFA solution of Eq. (6). Repeating the above argument, the BEC cloud becomes anisotropic,

extending to pm = p0 cos 0 + Eo' , but global averages of the energy/angular momentum

are unaffected, to order ~ po/pm <S 1. Although CiCf_{ terms (previously zero by elie

orthogonality) now enter in Eq. (11), the barriers EBI,2 to /-decay are similarly insensitive.

iv) I-decay channels: An /-state could decay through (rectangular) unit-vortex loops, with

straight segments of vorticity Jx = — 1 reducing core vorticity by / —• / — 1, that pushes the

Jt = 1 segment outwards by a repulsive energy ~ —(/ — l)lnp. With |$(pc)|2 oc (pc — pm) ~

pc ~ a, the nucleation cost near the core is EBZ ~ ( N\$i(pc)\
2 ~ a. Then Si = \12S < EBZ

accesses this decay channel only for / > /mOi3 ~ y/dN /vA- (As vs$p ~ hl/2nm is a

constant, v,e should not induce a loop-expanding current-drive force [14].)

Another possible decay channel is a successive reduction N -> N — 2 of BEC /-state

atoms, producing surface pairs of dissipative quasi particles [11] of Bogoliubov excitation

energy 2A, and angular momentum / ± q [17,18], that slow down to fall into the / = 0

ground state. A detailed analysis [16] for toroidal traps is beyond the scope of this paper;

however, for Si ;$ A, the quasiparticle channel is not accessed for / ^ VAN . In other

contexts [21], quasiparticle damping is small.

v) Numerical estimates: Parameters chosen are u>|| = 132rads~ I,(lnA'),r|| =

6.3/im,L, = 25/im,2<r = 12/im,a = 50A,Vc = 63nA', and m = 2 x 10"26kg (~ sodium).

Then pp = 17.5fim, No « 103, and for N = 106, we have 5 = l/y/N = 0.03. Physical

magnitudes are then Eo = 32nA',A = 2, Si = 0.031/2nA',^m = 50/xm,^ = 0.8nm,vs$(p) <

vt${pc) = 0.12lmms~l
 t fid = 30 Hz, and lmaX2 ~ 10. Thermal excitations activated over

NEB free energy barriers are exponentially dilute, at low temperatures.

Finally, we present a general ^V-scaling argument. Consider a (/-dimensional toroidal

trap that, for distances f well away from the core, is Vtrap ~ hutr
a, with r = r/rt and

rt = (fi/mwi)1'2. For a = 2 the trap is harmonic; for a -> oo, a square-well container results,

VtraP = 0(oo) for r < rt(r > rt). Then defining N = (NU0/hu>t)rf,$(?) ~ $(f)/rf /2, £, =

Etlhut, the TFA wavefunction, $, = ([E, - fa - (l2/f2)]/N)^2 is almost flat, \*i{r)\ ~

|$o| w (Eo/N)1/2, with BEC spreading until f ~ fm, when the confining potential rises

to the energy, Ei ~ f̂ . With normalization ((|^/(^)|2)) — |^o|2r|J, = 1, we obtain fm =



integral //,/_i ~ N((|$i(f)|2 |$j_i(f)|2)) defines a full-overlap metastability barrier EB\ ~

//,;_! ~ (N/fjJ,); while for a d — 1 dimensional 1,1 — I interface of thickness £, FBI/N =

£fl2 = {llrm)EB\. The vortex nucleation threshold is £ B 3 ~ ^f^-2yV|$|2 ~ r%~2K The

/-state energies £/ exceed these barriers only for / greater than /maxi ~ /y(2+o)/2ia+ 'JmaxJ ^

" Vmart ~ /V '. For a = <f = 2, we recover our results, with /m a r 2 ~ /mo*3 ~

N . For a —• cxD,fm = 1, i.e. a restricted rm = r,, and the familiar He II healing length

f ~ (NUo)~lf2 is recovered, with energies Ei ~ N + /2, and barriers E B I ~ V̂

Nl/2,EB3 ~ 0(1). The /-bounds are /m a r l = ^V1/2,/mai2 ~ Nl/\lmax3 ~ 0(1): narrow-ring

containers [17,18,20] would suppress vortex-loops and make quasi-ID phase-slips [20] the

lowest decay thresholds, Fg2 ~ N3^2UQ. Barriers vanish in the ideal gas limit, UQ ~¥ 0.

Experimental preparation of / ^ 0 states could be through stirring normal states by

a laser 'paddle-wheel' [1] and cooling below transition; or by rotating the trap [22] with

ft > ftc/, below Tc. Experimental detection might be through the / / 0 density profiles, or the

Sagnac effect [18] in large azimuthal-velocity regions around the core. Another interesting

setup is a double-toroidal trap, with N\ = NJi — 1(A 2̂ = N, /2 = 0) for toroid 1(2), where

the toroids initially are separated by a blocking laser sheet, whose removal could result in

inter-trap 'macroscopic quantum coherence' [23].

In conclusion, / ^ 0 macroscopic angular momentum states of condensates, with /-

dependent density profiles, can exist in toroidal traps, maintained by atomic collisions, and

robust to toroidal hole displacements, and to estimated decays, for / not too large. The

observation of these states would be a signature of macroscopic phase coherence of trapped

Bose-Einstein condensates.
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FIGURES

FIG. 1. Schematic plot of quasi-2D 'doughnut' toroid geometry with laser along the z axis.

The trap potential rises sharply (dashed boundary) at Lz. Here pc,pp, and pmax are the effective

core radius, toroidal axis, and extent of the shaded BEC cloud respectively.

FIG. 2. Trap potential (right vertical axis, dash-dot line) Vtrap(p) versus cylindrical-coordinate

radius, p,(with bars denoting scaling in harmonic trap energy/length). pp is the effective toroidal

trap minimum. Scaled BEC density |$j(/>)|2 Oeft vertical axis) versus p from analytic (solid line)

and numerical (dashed line) results. Parameters are as in text.
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