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Abstract
A gyrokinetic eigenvalue code has been developed for computing global ion tem-

perature gradient (ITG) -related instabilities in tokamak configurations. Although
trapped ion dynamics are not yet considered in this model, it contains full finite Lar-
mor radius and finite orbit width effects of circulating ions. Non-adiabatic trapped
electron dynamics are included through a bounce-averaged drift kinetic equation.
Differences between the local ballooning approximation and the global approach are
presented and discussed. The possible coupling between the trapped electron mode
(TEM) and the toroidal-ITG mode is also investigated. Finally, the evolution of
the spectrum of these different instabilities is studied for varying central negative
magnetic shear configurations.

I n t r o d u c t i o n : For studying microinstabilities in tokamak-like plasmas, most linear

kinetic studies were carried out for high toroidal wave numbers using the ballooning

representation[l] which leads to a one-dimensional integral equation along the magnetic

field lines. Except for very few cases, these calculations do not include a higher order WKB

procedure for determining the radial structure. Thus these results usually stay local to a

magnetic surface and there remains some questioning on the actual radial extent of these

modes. For low toroidal wave numbers where the ballooning representation breaks down

and the full two-dimensional problem cannot be reduced, very little linear computation

has been carried out. This limit is of interest as it describes larger wavelength fluctuations

which could lead to higher turbulent transport. Until recently the only published results

from true global, linear computations came from a spectral code by Marchand, Tang and

Rewoldt[2]. This model contains no finite Larmor radius (FLR) effects and is based on

a second order expansion with respect to the radial excursion of trapped particles, which

leads to spurious modes[3] and thus to a difficult search of physical eigenfrequencies. At

the present state full non-linear simulations already exist[4][5], nonetheless there remains

a need for global linear studies as they enable to determine more accurately the conditions

of marginal stability and in this way, if possible, to find stable configurations. This has

prompted us to undertake the development of a new, global, spectral gyrokinetic code. A

summary of the present state physical model as well as of first results is given here. More

details are found in Ref.[6].
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Physical Model for the Spectral Approach

G e o m e t r y : At present the geometry of the system is still approximated by a large

aspect ratio torus with circular, concentric magnetic surfaces. Therefore finite pressure

effects such as the Shafranov shift are not taken into account. The safety factor profile

qs(p), the ion and electron temperature profiles Tej{p) as well as the density profile N{p)

are chosen arbitrarily and in this way are represented by simple polynomial functions of

the radial variable p. Here (p, 9, <p) is the standard set of toroidal coordinates.

K i n e t i c e q u a t i o n s : Although the basic mechanism of ITG instabilities can be de-

scribed by fluid models, the more detailed behavior of these perturbations also contain

specifically kinetic characters, such as wave-particle interaction (e.g. Landau damping)

and FLR effects. In order to take them into account - this being essential if one is in-

terested in determining accurately conditions of marginal stability- appropriate kinetic

equations for each species must be considered. Assuming a collisionless plasma, these

can be derived by reducing the Vlasov equation, linearized for electrostatic perturbations,

using different scaling laws. In particular, as microinstabilities have low frequencies i.e.

small compared to the cyclotron frequencies fie,i, one can for all particles carry out a

gyroaveraging procedure.

In the case of ions the Larmor radius can be comparable or larger then the wavelengths

perpendicular to the magnetic field, giving rise to the above mentioned FLR effects. The

appropriate equation of motion is thus given by the gyrokinetic equation (GKE) [7]:

D
9--Dt u.t.GC

where D/Dt\u t GC stands for the total time derivative along the unperturbed trajectories

R(t) of the guiding centers (GC), including drifts related to the gradient and curvature of

the magnetic field. Furthermore, 9 represents the fluctuating, non-adiabatic part of the

particle distribution function written in gyro-center variables, FM the local Maxwellian

distribution of equilibrium, u* the diamagnetic frequency related to the temperature and

density inhomogeneities and < <j> >g the gyroaveraged electrostatic potential.

In first approximation the mobile electrons have been assumed to respond adiabat-

ically to the low frequency microinstabilities and therefore to follow a Boltzmann dis-

tribution. However in the non-trivial tokamak geometry, the trapped electrons in fact

have a toroidal precessional drift which can become comparable to the phase velocity of

the perturbation. To take into account the resonances which may arise, a more detailed
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description has been considered. As electrons have significantly smaller Larmor radii

then ions for similar temperatures, FLR effects can usually be neglected (at least when

studying ion-driven instabilities), so that the drift kinetic equation (DKE) instead of the

GKE is sufficient. Furthermore, due to the high thermal velocity of these particles, this

equation can be averaged over the periodic motion in the poloidal plane, giving rise to

the so-called bounce-averaged DKE[8]:

D
dt d(p\ T

Here D/Dt\u t B stands for the total time derivative along the unperturbed trajectories of

the banana (B) orbits, 9 b for the fluctuating, non-adiabatic part of the bounce-averaged

GC distribution function, <<P>b for the average toroidal precessional drift and < cf> >(, for

the bounce-averaged potential.

The equations of motion are solved by integrating along the unperturbed trajectories.

In the case of ions the modulation of the magnetic field along the trajectory was neglected,

so that in particular the dynamics of trapped ions was discarded. In its present state our

model therefore still does not enable to describe trapped ion modes (TIM). In this context

Fourier representation appears naturally as it enables to integrate explicitly the unknown

potential <f>. For example, when gyroaveraging the potential one obtains

dk<t>(k,t)elk-r >g= j dkJ0{-~-J(f>(k,t)elkR,

where Jo is the zero order Bessel function containing the full FLR effects and having used

the relation R=r + v x e\\ /Q, between the GC and particle position. In fact, instead

of a decomposition into plane waves, a Fourier representation in terms of toroidal wave

components was chosen as it is more adapted to the geometry of the system:

where K is a radial, m a poloidal and n the fixed toroidal wave number. Note that a

Fourier series decomposition instead of a Fourier transform is considered not only in the

periodic direction 0 but also along the radial coordinate p, this being justified by the finite

dimension of the system. The fixed frequency is noted u>.

E i g e n v a l u e e q u a t i o n : The equations of motion are completed with a relation for <f>.

This is provided by the quasineutrality equation (justified when studying low frequency

microinstabilities), which leads to the actual eigenvalue equation for (uj,<f>). It turns out
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to be advantageous to solve this eigenvalue problem staying in the discrete Fourier space

(«;,m). Indeed, the equation is then naturally discretized and contains no singularity as

the one appearing in the kernel of the integral equation when solving in the continuous

configuration space (p, 0). The eigenvalue problem can formally be written in matrix

form:

M (w) %= 0.

This is not a standard problem as the matrix M has an intricate dependence in the

eigenvalue u. The characteristic equation for u:

D{u) = det M (w) = 0, to complex,

is solved by taking advantage of the analyticity of D(u) and using a practical method

proposed by Davies[9]. By sampling D(u) along a closed curve in the complex frequency

plane, this approach allows not only to find the number of enclosed zeros using the prin-

ciple of argument (Nyquist), but the value itself of these roots with great accuracy. In

this way the full unstable spectrum of a given system can be computed quite effectively.

Results

Benchmarking with time evolution PIC code: The spectral code has been
extensively benchmarked against another global, linear gyrokinetic code developed simul-

taneously at the CRPP, based on a time evolution particle in cell (PIC) method[10][ll].

In the regime where trapped ion dynamics (contained in the PIC model) are not impor-

tant, i.e. for frequencies above the average ion bounce frequency, and for not too short

wavelengths (PIC model is only valid to second order in Larmor), comparisons have shown

very good agreement. Details of this validation can be found in Ref.[12].

Comparison with local ballooning calculations: Results from the global
spectral code have also been compared to those obtained by Dong et al.[13] applying the

local ballooning approximation to the same physical model. In this case only the adiabatic

response of trapped electrons is taken into account so that the instabilities are essentially

toroidal-ITG. To carry out such a comparison, the profiles for the global code must be cho-

sen such that they match the local ballooning parameters on a reference magnetic surface.

Here these parameters are given by the safety factor qs, the temperature ratio r = Te/T,-,

tn = LnjR =characteristic length of density/ major radius, rji = LnjLT{ =charac.length

of density/ charac.length of ion temperature and the normalized poloidal mode number
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Figure 1: Growth rate 7 as a function of ke^Li (only adiabatic response of electrons). Circles
and stars represent global results for a/Xn = 56.5 and a/\Li = 113.0 respectively, a being
the minor radius of the plasma. Labels below the circles and above the stars indicate the
corresponding toroidal wave number. Ballooning results are reported here with a dashed line.

kg= nqs\Li/po, where A ,̂- is the average ion Larmor radius on the reference magnetic

surface p = po- Note that both, a high temperature plasma with a perturbation having

low toroidal mode number n, or a low temperature and high n, can lead to a same value kg

and thus be iso-dynamical with respect to the local ballooning calculation. Fig.l presents

the growth rates obtained when carrying out such a comparison along an n-scan. A hot

as well as a cold plasma scenario have been considered when running the global code

and in both cases the corresponding results indeed join the local ones for sufficiently high

toroidal mode numbers, i.e. n > 10. Ballooning results are from Fig.3 of Ref.[13]. The

typical role over of the growth rate around Ar#~ 0.5 is the consequence of FLR effects.

Effect of trapped electrons on the toroidal-ITG: The effect of non-
adiabatic trapped electron dynamics is essentially twofold. In case of a flat density profile

it simply strengthens the growth rate of the toroidal-ITG instability, which thus keeps its

dominantly ion driven character. For non-flat density profiles (low values of en and r/,)

the toroidal-ITG can either couple and convert to, or simply be taken over by a trapped

electron mode (TEM). This TEM may remain unstable down to fiat ion temperature

profiles, thus effectively removing the threshold on t]i predicted for the pure toroidal-ITG

when only adiabatic electrons are considered. In this way our global results qualitatively
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Figure 2: Real frequencies ur and growth rates 7 of the most unstable eigenmodes as a function
of rji holding in particular en = 0.2=const and r]e = 2 =const, computed with non-adiabatic
trapped electrons (full lines). For 77,- < 1 the toroidal-ITG converts to a predominantly TEM
(mode 1) and starts to propagate in the electron instead of the ion diamagnetic direction. A
weaker instability propagating essentially in the electron diamagnetic direction (mode 2) is also
present. For comparison, results with only adiabatic electrons are reproduced with dashed lines.
Note how non-adiabatic trapped electron dynamics have removed the threshold on 77,.

confirm the picture given by Romanelli and Briguglio [14] solving a local dispersion rela-

tion. As an illustration, results of an r^-scan are presented in Fig.2.

N e g a t i v e s h e a r s c a n : The global spectral code has been applied for studying

the stabilizing effect of negative magnetic shear. Motivation for such studies come from

experimental evidence on different tokamaks[15][16][17] of the formation of a transport

barrier in regions of shear reversal accompanied by a reduction in core fluctuation am-

plitudes. Fig.3 presents the results of such a shear scan having fixed n = 10 and the

profiles such that r = 1, tn — 0.25, rji = r/e = 2.5, kg= 0.35, on, — 45% (fraction of

trapped particles) on the magnetic surface p — p0 where the modes tend to be centered

(steepest gradients). The safety factor profile is varied such that q3{po) = 1.5 is held

fixed while shear varies from s (p0) = +1 to — 1. For positive values of shear the

spectrum contains eigenmodes propagating in the ion diamagnetic direction, i.e. having

a dominantly toroidal-ITG character, as well as instabilities propagating in the electron

diamagnetic direction, i.e. having essentially a TEM character. In this case, the TEM's

are completely suppressed at negative shear s= — 1, while the toroidal-ITG modes are

still present, their growth rate being nonetheless attenuated by a factor ~ 4 with respect
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Figure 3: Real frequencies wr and growth rates 7 as a function of shear s for a sampling of
unstable eigenmodes, non-adiabatic trapped electron dynamics being taken into account. For
s= +1.0 the unstable spectrum contains simultaneously positive and negative frequencies. At
s= —1.0 only the ITG-type modes remain destabilized, however with a significantly reduced
growth rate compared with the highest one around s= +0.5.

-0.6 -0.4 -0.2 0 02
(r-R)/a

e.) s= - 1 .

0.4 06

Figure 4: Mode structures of most unstable toroidal-ITG-type eigenmodes along shear scan



- 8 -

to s= 0.5. Negative shear stabilizes the toroidal-ITG by twisting the convective cells

more rapidly into a vertical position where they are less effectively driven[18]. This ap-

pears clearly in the poloidal mode structures of Fig.4 (axis of symmetry on the left). The

TEM's are stabilized by reversal of the average toroidal precessional drift of the trapped

particles. Thus realistic negative magnetic shear alone does not seem to be sufficient to

explain the dramatic improvement of confinement in negative central shear discharges.

Experimental results[16] point towards the E x B flow shear for being responsible for the

full stabilization of microinstabilities[19].
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Study of second stability for ITG modes

M. Fivaz, 0. Sauter, K. Appert, S. Brunner, T. M. Tran, J. Vaclavik

Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse
EPFL, PPB, 1015 Lausanne, Switzerland

Abstract The second stability regime for ion-temperature-gradient (ITG) modes is studied
in details with a global linear gyrokinetic Particle-In-Cell code which takes the full toroidal
MHD equilibrium data. The trapped-ion and the toroidal ITG regimes are explored. We
perform simultaneous ideal MHD stability computations for both kink (n = 1) and ballooning
(n = oo) modes. We use the results to find partially optimized configurations that are stable
to ideal MHD modes and where the ITG modes are stable or have very low growth rates.
Such configurations are expected to have very low level of ITG-induced transport.

Introduction. Unstable ITG modes are now commonly held responsible for anomalous
ion heat transport in tokamaks. The ion temperature gradient provides free energy to the
instability and the magnetic field gradient provides an efficient destabilizing mechanism on
the outer side of the torus. These modes are stable when the ion temperature gradient is below
a critical values (first stability regime). At high pressure, the plasma diamagnetism can reduce
of even reverse the gradient of the equilibrium magnetic field, which then becomes favorable
everywhere in the plasma; the ITG modes can then be completely stabilized [1] in what can
be called a second stability regime. This effect is sometimes referred to as "Shafranov-shift
stabilization".
Previous calculation [2] [3] [4] are undetailed and were done using the ballooning approxima-
tion and (except [2]) with the "s — a" approximation to the equilibrium magnetic field, a high
aspect ratio, circular shifted magnetic surface approximation. The ballooning approximation,
though, breaks down at low n or low magnetic shear, and cannot describe slab-like modes
that are not localized on the outer side of the torus, i.e. that do not "balloon". The "s-a"
model also breaks down at realistic aspect ratio and in non-circular plasmas.
We study here in detail the conditions that lead to the second stability for ITG modes,
using a global approach (no ballooning approximation) and the full MHD equilibrium data.
We focus on cases where a low magnetic shear stabilizes the local, short wavelength MHD
ballooning modes. We use the code GYGLES (GYrokinetic Global LinEar Solver)[5] [6],
which uses a radially global approach in toroidal geometry. The simulation model is based on
the linear gyrokinetic equations for the ions in which the full guiding center trajectories are
kept. We assume the electrons to respond adiabatically and the equilibrium perturbation to be
electrostatic and quasineutral. The gyrokinetic equations are linearized around an equilibrium
local Maxwellian distribution function. The code uses a Particle-In-Cell method with finite
elements defined in magnetic coordinates. The code can simulate routinely global modes of
all (very short to very long) toroidal wavelengths, can treat realistic (MHD) equilibria of any

Global parameters

Temperatures

Density profile

Norm, current density

Scan parameters
Parameters at 5 = SQ

Ro = 3 m, a/R0 — 1/.36, elong. 1.6, triang. .3,
vac. field Bo(Ro) = 3 T, p w 4.8 mm (deuterium)

( [ ] )dTi/ds cos [ |^f-]) for \s - so| < 2As, 0 elsewhere( [ ] )
KT'= -h \og(Tmul), s0 = .6, As = 0.1, Ti(s0) = 10 Kev, Te = T,

2\4= no(l - s2)

[]
ja = Tmul * (-14 * jo + -24), Asj = 0.15

[
( )

jo € [.8,100], Tmu/€ [1.1,1.8]
Ro/LT = KTRo/a, Rp/Ln = 2.8, q = 1.5, shear s ta 0.2

Table 1: Specification of the equilibria studied.
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Figure 1: Profiles from table (1).

size and runs on a massively parallel computer.
The inclusion of electromagnetic perturbations can affect (usually stabilize further) ITG modes
at high /? [7] [4] [8] [9]. This effect is not included here; we focus rather on the stabilizing effect
of the modification of the equilibrium at high /? using realistic (MHD) equilibrium magnetic
structure.

Parametric study. We introduce a radial variable s = i/W/^a, where \& is the equilibrium
poloidal magnetic flux and ^ a its value at the plasma boundary, the plasma major and minor
radii RQ and a and the normalized temperature gradient •̂ Q- = ^ j , s. Locally on the outer
plasma mid-plane, one can derive from the MHD equilibrium condition a criterion for magnetic
gradient reversal:

R dp ,
a " ^ > l

The reversal parameter a is such that a = 0 at low pressure and a > 1 when the magnetic field
gradient is reversed on the outer mid-plane. It is therefore a local parameter characterizing the
magnetic field gradient at the most unfavorable point. It differs by a factor q2 from the usual
a parameter from "s — a" equilibria and that is important in MHD ballooning computations.
The table (1) defines a set of JET-size equilibria where the profile of RO/LT is inspired by
a high-confinement JT60-U discharge [10] and peaks at a given magnetic surface at s — so,
thus confining the unstable modes around that surface. In what follows, RO/LT and a refer
to their values at s = SQ. Both a and RO/LT can be chosen by varying the parameters jo and
Tmu[. In the region where the modes lie, the safety factor does not depend on RO/LT and
a. The magnetic shear 5 is low, 0 < s < 0.2, where the modes lie. This has the effect that
all these equilibria are stable to MHD ballooning modes; in particular, equilibria with high
pressure gradients lie in the second stability zone [12].
We use this set to do a generic study of ITG stability as a function of RO/LT and a at fixed
safety factor profile, in both the regimes of toroidal ITG (high toroidal mode number n, mode
frequency = u > u>b = trapped-ion bounce frequency) and the trapped-ion regimes (low n,
W < Ub).

The profiles of the surface-averaged current I*(s) and of the pressure p(s) — rii(s) {Te(s) + T{(s))
are first used to solve the Grad-Shafranov equation with the code CHEASE [11], yielding the
magnetic field structure that is then used by GYGLES to compute ITG stability.

Results. Figure (2) shows the contours of the growth rates obtained for n = 12 and n = 48 in
the (a,Ro/LT) plane. The frequency of these modes increases with RQ/LT and with n, while
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Figure 2: Contours of the growth rate (in kHz). Left: n=48, Toroidal ITG regime. Right:
n=12, Trapped-ion mode regime. The crosses (o), circles (x) and diamond (o) represent
respectively equilibria that were found stable, unstable to toroidal modes, and very weakly
unstable to slab-like modes.

the ion bounce frequency Ub is fixed. As a results, the n = 12 modes are in the trapped-ion
regime with u < wj,, except at high RQ/LJ, where they have a small toroidal ITG character.
Conversely, the n = 48 modes are in the toroidal ITG regime, except at very low values of
RO/LT-
We call "first stability zone" the stable zone, marked "P"' on Fig. 2, that lies below a critical
temperature gradient. Above this gradient, the mode is stabilized for increasing a as VB
decreases and is reversed for a > 1, leading to the "second stability zone" for ITG modes,
marked "IInd" on the same figure. In the toroidal ITG regime, these equilibria are fully stable,
while in the trapped-ion regime, a weakly unstable slab-like ITG mode remains. The second
stability regime is therefore strictly stable to toroidicity-related modes only (at least at low
shear), but the slab-like modes are not expected to cause much anomalous transport, as they
are radially narrow and very weakly unstable. The structure of the eigenmodes marked (a)
(a trapped-ion mode) and (d) (a slab-like ITG mode) on Fig. (2), are shown in Fig. (3).
The contours of growth rates corresponding to mixing-length estimates of the heat diffusivity
XJL = 1,3 and 5 m2/s are shown in bold in Fig. (2). While these values should not be taken
as more than rough estimates, they show that the scan covers most of the experimentally
relevant range of 0.1 — 10 m2/s.

MHD stability calculations. The CHEASE code was used to compute the stability of
MHD ballooning modes. All the equilibria presented here are stable to these modes at the
surface s — so; this was achieved by lowering the magnetic shear to a 0 < s < 0.2, so pushing
the equilibria with high values of a into the second stability regime for ballooning modes.
Kinetic effects on these modes were not considered [4]. This demonstrates the existence of
a simultaneous second stability regime for ITG modes and for MHD ballooning modes. The
code ERATO [13] was used to compute the stability to kink modes. The points (a), (c) and
(e) on Fig. (2), the latter at a = 1.1, are stable to the global n=l kink mode; stability at
values of a that are roughly 50% higher is obtained if an ideal wall is added at rwau/a — 1.2,
assuming sufficient toroidal rotation and wall stabilization effect. In particular, the equilibrium
corresponding to the point at RQ/LT — 16.3 and a = 1.8 is MHD-stable with an ideal wall
and is only weakly unstable to ITG modes; it is the most interesting global case in our scan.
The corresponding profiles are those of Fig. (1).

Conclusions. We studied the simultaneous access to second stability for ITG modes and for
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Figure 3: Eigenmodes corresponding to the points (a) and (d) shown in Fig. (2).

ballooning modes. The MHD ballooning modes are stabilized by low shear on the surface of
interest in all the configurations presented. The stabilization of ITG modes is well described
by the local magnetic field gradient reversal parameter a, and any ITG-induced transport
should be strongly reduced for Q « 1.
Global kink modes are stable without ideal wall up to relatively high values of a, a = 1.1 for
RO/LT = 16.3. When a ideal wall at rwau/a=l.2 is included, one obtains stability at a = 1.8
for the same temperature gradient. This equilibrium has therefore good MHD properties
and should have sustainable ITG transport (X_L ~ 1 rn2/s, Fig. (2)) while its temperature
gradient is three times higher than the critical gradient at low (3. By optimizing the plasma
shape and profiles, we expect to find in the near future improved optimized high-performance
configurations that are stable to all ideal MHD modes and stable or weakly unstable only to
global ITG modes.
We finally note that some experimental discharges seem to have accessed a w l [6].
This research work was supported in part by the Swiss National Science Foundation and the
Cray-EPFL PATP project. The computations were done on the Cray-T3D parallel supercom-
puter of the EPFL-PATP.
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Simulations of Ion-Temperature-Gradient modes in helical
symmetry

L. Villard, M. Fivaz, J. Vaclavik
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Abstract. We present the first simulations of Ion Temperature Gradient (ITG) modes
in straight helical configurations. A linear particle-in-cell gyrokinetic global code initially
developed for toroidal axisymmetric geometry [1, 2] has been modified to treat the case
of helical symmetry. The model is based on gyrokinetic ions, adiabatic electrons and
electrostatic quasineutral perturbations. The code simulates the full plasma cross-section.
The potential is represented on a magnetic coordinate system and discretized with finite
elements. Analytical extraction of the fast poloidal variation is done on a straight field
line coordinate, allowing a speedup of one or two orders of magnitude. A / = 1 vacuum
field configurations is studied. The very low shear and small \7B drifts imply that for a
wide range of parameters the most unstable ITG modes are "slab-like".

Introduction. Anomalous transport in magnetically confined plasmas is widely be-

lieved to be attributed to micro-instabilities of low frequency drift-wave type. Over the

past years the efforts in the theoretical analysis have focused on axisymmetric configura-

tions of the tokamak type. In contrast, very little has been done for stellarators: previous

works on drift waves [3] - [6] have so far been limited to simple cold ion electrostatic mod-

els with local and ballooning approximations. The present work is the first that addresses

the question of Ion-Temperature-Gradient (ITG) modes in helical geometry. The specific

objective is to get an understanding of ITG modes and to compare with the tokamak

results. The longer term goal is to understand whether or not transport in stellarators,

if determined by such micro-instabilities, can be different from that in a tokamak.

Helical Geometry. In this paper we shall consider helical symmetry (i.e. straight

stellarators). Let r,tp,z be the cylindrical coordinates. Helical symmetry implies that

all scalar equilibrium fields can be expressed as functions of two variables: r and ( =

ip — hz, where h is the helicity. A toroidal configuration of Nper field periods and major

radius Ro is thus modeled by a helicity h = Nper/R0. Let us introduce the following

coordinates: a helical system (x',y') with x' = rcos( , y' = rsin£, and a magnetic

coordinate system (s,0) with s = {{4> — ipmin)/'(VWz — VWn))1/2, where tp is the helical

flux, 6 = arctan(y'/(x' — x'm)), where the magnetic axis position is (x' = x'm,y' = 0). In

addition to the "poloidal" coordinate 0, we introduce the straight field line coordinate x

q=— —de y = - —d9 (1)
q 2TTJO B-V0 X qJo BV0 { '

where the integrals are on a ift = const surface. Note that with this definition the

rotational transform per helical period length L = 2n/h is t = \jq + 1.

The equilibrium magnetic field is given by the representation

u u = (hre^ + e,) /( l + h2r2) (2)

with F a function of 0 so that B satisfies the helical symmetry and V • B = 0. In this
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paper we shall restrict ourselves to vacuum fields. They can be expressed as

</> = \Fhv2 - r £ bJKlhr) cos(/C) (3)

where F is a constant and // is the modified Bessel function of order /.

Gyrokinetic model. The plasma ions are described with a linearized gyrokinetic

model with the usual ordering: w/0 ~ fc||/fc_i_ ~ e0/Te ~ p/Ln ~ P/LT ~ O(eg), where

p is the ion Larmor radius, $7 is the ion cyclotron frequency, L^1 = \VIn E\,E — no,T.

Another small parameter is P/LB ~ O(CB), with LB = B/\VB\. Consistent with the

gyrokinetic ordering, the perturbations of interest have k\\ << k±. We use this property

to extract the poloidal phase variation of the mode

f{x,t) = f{s,8,t)eiS ct>{x,t) = 4>{s,0,t)eiS S(s,0,z) = moX{so,9) + kz - uQt (4)

where k = hn/Nper, n is the "helical" mode number, the magnetic surface 5 = SQ is chosen

near the expected maximum mode amplitude, m0 is an integer close to —nqo/Nper, and

q0 = q(so). Note that a perturbation having a single Fourier component m in the straight

field line poloidal angle x has

Bz , ,m n

* h( + 0 (5)

The transformed quantities (</>, / ) are expected to have a slow poloidal variation, the

fast variation having been extracted by the phase factor. This technique will allow us

to study high n modes with the same computational performance as low n modes. The

quantity u>0 is not the eigenfrequency but serves to shift the simulated frequencies; this

is particularly useful to study modes near the marginal stability with 7 << LO.

The unperturbed trajectories of the guiding centres (GC) have three constants of

motion: the kinetic energy, the magnetic moment and the helical canonical momen-

tum $0 = $ + (mi/qi)v\\F/B. The equilibrium ion distribution function / 0 is assumed

isotropic Maxwellian with density and temperature constant on a magnetic surface. The

perturbed distribution function is evolved along the unperturbed trajectories. The elec-

trons are assumed to respond adiabatically. The quasi-neutrality condition, in which the

polarization density is approximated by a differential expression valid up to (k±p)2, close

the system of equations:

dH vjj + v]_/2 dv\\ 1

dt il dt 2

df .dS ~ - E / flf~ f*f~
1-L ^^ J± •*

B V

E(R, v±) = - — / g<j>(x)6(x. - R
Z7T

«||, » i P - x +

dv^
dt

\ d\

•S(R-)),/

P)e t (5(

)\\ 2Vxdv

'V-sWdRt

•e|| (6)

(8)

(9)
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where Q = (iVS + V).
The distribution function / is discretized in a 4-D reduced phase space {x1, y'', i>||,

The potential <f> is discretized with quadratic spline finite elements in (s,8). The new

version of the code has been benchmarked against the axisymmetric version by consid-

ering a straight field configuration (T — Bo = const, 6/ = 0). We have checked that the

results coincide and are independent of the helicity h. Convergence with the timestep,

the mesh and the number of particles, and power consistency have been demonstrated.

Results. We consider the following / = 1 configuration: F — IT, b: = 0.5T,

a = 0.5m, h — lm"1 , flat density, Te = T;, dlnTi/ds profile peaking at s — s0 = 0.5

with Lr/a = 0.1, Ti(s0) = AkeV. This configuration has a flat q profile: qaxis = —1.0405,

kedge = —1.0464, implying that %m(s) ^ const. The magnetic gradients are rather small:

Ls/a ~ 8 (therefore comparable to those of a tokamak of aspect ratio 8).

Simulations have been performed for various helical mode numbers n. The real fre-

quencies u> and the growth rates 7 are shown in Fig. 1,left. For low n, both u> and 7

increase linearly with n. A plot of the mode structure (Fig. 1,right) shows a rather pure

m poloidal dependence. For n > 2, u> > u>b and we do not expect to be in the trapped

ion regime: this has been checked by artificially suppressing the v\\ and v± variation in

Eq.(7) and the result is unchanged. Even for n < 2 we could not find a trapped ion

mode, probably because of the small trapped particle fraction (~ 0.25). Therefore, for

n < 12 the mode is a slab-ITG. As n is further increased, the mode structure becomes

more complicated. In fact, in many cases, several modes are present in the simulation,

indicating that two (or more) modes have similar 7 but different u>. The interpretation

of the PIC simulation results is therefore more difficult. In some cases we were able,

by initializing different perturbations and shifting the frequency, to identify two compet-

ing modes. Another characteristic of the high n modes is that as n increases the mode

amplitude tends to become higher in the unfavourable VB region (low field side). An

example is shown in Fig.2,left. This behaviour is similar to that of the toroidal ITG in

tokamaks. Here we have a "helical-ITG", but the mode structure does not show such a

broad m spectrum as in a standard tokamak: even at high n, we do not have overlapping

of several m's having resonance surfaces in the gradient region: either the whole plasma

is resonant (e.g. for m = 25, n — 24) or it is not, because of the flat q. Another effect

comes into play at high n: finite Larmor radius. For n — 28 we have k±p ~ 1 at s = s0.

The large damping tends to suppress the mode, and this is the reason of the decrease of

7 for high n. This FLR effect is also responsible for the change in the mode localization

(Fig.2,right): at high n it peaks at s ~ 0.6 where T,- is smaller, whereas at low n it

peaks at s ~ 0.4. Thus kgp is nearly constant at the maximum radial mode localization,

therefore u is also nearly constant for n > 22.

Conclusion. These first simulations of ITG modes in a helical configuration indicate

that the modes potentially creating the highest transport are slab-ITGs at relatively low

n. The small VB and the very low shear are typical for such straight stellarators: these

seem to be favourable properties to minimize ITG-based transport.



- 16 -

1.4

1.2

1

,0.8

* * * * * * * *
* * * *

0.5

0.4

0.3

0.2

0.1

1 0

-0.1

-0.2

-0.3

-0.4

-0.5

/
/

/
/

(' j

\ \
\ \
\ \

\

n=2

f J •* * \- ^V ^
1 \ K ' '

^ • x — • — . _ — •

\

v \

X ^ V

j) • '•
' : •

( 1 '
/ /

/ /

/

50 -0.2 0.2 0.4
x[m]

0.6 0.8

Figure 1: Left: frequency u (stars) and growth rate 7 (crosses) as function of the helical
mode number n. Right: contours of the perturbed potential 4> for n = 2.
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On Resonance Absorption and Continuum Damping
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ABSTRACT. The absorption of power is studied with fluid and gyrokinetic plasma models, when
two Alfven or ion-ion hybrid resonances provide for a weak damping in a partially standing wave-
field. Examples chosen in slab and toroidal geometry show that the the fluid predictions based
on resonance absorption are generally very different from the Landau damping of mode-converted
slow waves. They in particular suggest that the continuum damping of toroidal Alfven eigenmodes
(TAE) and the power deposition profiles obtained in the ion-cyclotron range of frequencies (ICRF)
using fluid plasma models are very misleading.
PACS numbers: 52.35.Bj, 52.35.Py, 52.50.Gj, 52.65.Tt

Ever since Landau's lesson, which lead to the discovery of the damping associated with the wave-
particles resonance, it has been recognized that the integration over time of partial differential equation
singularities requires a careful treatment that guarantees in effect that the causality remains preserved.
By analogy, when the fluid wave equations are integrated in presence of an Alfven or ion-ion hybrid
resonance, a residual absorption of power appears which may be evaluated either by taking into account
an arbitrarily small dissipation of the plasma or by adding artificially an imaginary part to the frequency.
Studying the propagation of the fast-magnetosonic wave in the ion-cyclotron range of frequencies (ICRF),
Budden [1] for example determined the fraction of the power absorbed, transmitted and reflected by a
resonance-cutoff pair using a fluid plasma model, without specifying the mechanism actually responsible
for the power dissipation.

If the plasma temperature is sufficiently large, the resonant layers where the fluid equations are singular
coincide with the location where the fast wave energy can be converted to slow kinetic waves owing
their existence to the finite Larmor radius (FLR) excursion of the ions [2]. The change of polarization
accompanied with a rise in the electric field component parallel to the magnetic field is then generally
responsible for the power dissipation, with resonant wave-particle interactions that occur as the slow wave
propagates away from the conversion layer. Using an FLR expansion [3, 4, 5] and solving the full non-
local problem [6], it has been found that the total power converted from a fast wave traveling in a single
pass through a resonance depends only weakly on the slow wave parameters; the resonance absorption
from fluid plasma models then coincides to a good degree of accuracy with the Landau damping of the
slow wave described by the gyrokinetic models.

The aim of this letter is to draw attention to the fact that this is not in general true when two
resonances are present in the same global wavefield, this even when the slow wave is damped in the
vicinity of the mode conversion surface. In particular, the continuum damping of Alfven eigenmodes
(AE) [7, 8] and the resonance absorption of ICRF driven wavefields calculated with toroidal fluid plasma
models [9, 10] are shown to be dramatically different from our gyrokinetic calculations, suggesting that
AE mode stability threshold and ICRF power deposition profile predictions are very questionable when
using fluid models.

To illustrate the concept first in a simple shearless slab plasma, Fig.l shows an Alfven wave heating
scenario similar to the TCA tokamak [11] {B0=l.5 T, ne,0 = 2.3 x 1019 m~3, TD, 0 =350 eV, fant = 2 MHz,
kv = —5 m"1, kz = 2.9 m"1). An antenna current is imposed in the vacuum region on the right (x —
xa = +19 cm) and launches an evanescent fast wave into the plasma (|x| < xp = 18 cm). After reflections,
a global wavefield is created oscillating in phase in the entire cavity bounded by perfectly conducting
walls (|x| = xw = 21 cm). A parabolic variation of the density ne(x) = UD(X) = nei0[l — 0.95(x/xp)

2]
generates two Alfven resonances at |x| = xr = 9.2 cm, which are set to electron temperatures that differ
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Figure 1: Alfven wave heating scenario in a TCA-like slab plasma driven with an antenna from the right.
The wavefield Re(Ex) (top) and the integrated power P{x) (bottom) calculated using a fluid model are
compared with their gyrokinetic counterparts obtained for a rising temperature Te$ = 150, 300, 600,
1200 eV. The conversion layers are set to temperatures that differ by more than a factor two with an
asymmetric profile of the form Te(x) = Tefi[l - 0.95(z/18)2]2[l - 0.5(i/18)]2.

by more than a factor two Te(x) = Te(0[l - 0.95(x/a;p)2]2[l - 0.5(z/arp)]
2, keeping that of the deuterons

equal on both sides TD{x) = TDfi[\ - 0.95(a;/a;p)2]2 eV. Using the full wave code ISMENE [12, 13] to
compute the perpendicular wavefield (Ex,Ey) with a cold-fluid plasma model (see Ref.[13], eqs.6.1-6.2),
sharp variations appear at the resonances which have been numerically resolved in Fig. 1 (top) by adding
a small imaginary part 8 = 0.02 to the antenna frequency u; = 27r/ont(l + iS). Apart from details in the
vicinity of the resonant layers, a change of the artificial damping 6 6 [0.002; 0.02] does neither affect the
integrated power P(x) = f*x /m[^-/m(E* • e • E)]dx' in Fig.l(bottom) nor does it modify the relative
power fraction absorbed at each resonance (table 1, fluid), suggesting that the power resonantly absorbed
does not depend on the manner how the equations are regularized.

This fluid calculation has now to be contrasted with the gyrokinetic results from the same code, when
all the wavefield components (Ex,Ey,Ez) are solved in terms of a second order FLR expansion of the
plasma dielectric tensor (see Ref.[13], eqs.6.17-6.20). Fig.l(top) shows that a mode-converted kinetic
Alfven wave (KAW) propagates inwards from both sides and gets immediately damped by Landau inter-
actions with the electrons in the neighborhood of the conversion layer. The short wavelength oscillations
in the edge region (\x\ > 12 cm) come from the surface quasi-electrostatic wave (SQEW) which is directly
excited at the plasma boundary, but is unimportant for the subsequent analysis. Rising the electron tem-
perature in the center Te,o = 150,300,600,1200 eV while keeping that of the ions fixed, Fig.l(bottom)
shows that the integrated power profile P{x) is changing: not only the total power absorption is mod-

Te,o [eV] j
150
300
600
1200

fluid model

fxd-x, [%
78
51
44
17
30

] rj+lm
22
49
56
83
70

Table 1: Fraction of the power absorbed by each resonance, based on the fluid and gyrokinetic power
deposition profiles in Fig. 1 (bottom)
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Figure 2: Current drive scenario proposed in Ref.[17] for ITER. The global wavefield Re(En) (top) and the
integrated power profile P(s) (bottom) both show that the mode-conversion predicted by the gyrokinetic
PENN calculation (right) is not reproduced with resonance absorption in the fluid LION code (left),
suggesting that fluid predictions can be very misleading.

ified, but also the fraction absorbed by each resonance is dramatically different (table 1). This strong
dependence on the temperature is of course not reproduced with the fluid plasma model and is in ap-
parent contradiction with the small dependence on the slow wave parameters which has previously been
observed in other comparisons. The paradox is solved by realizing that a small change in the "single
pass" mode-conversion efficiency, which is rendered visible because of the temperature asymmetry, is here
strongly amplified when the global wavefield carries fast wave energy from one resonance to the other.

This phenomenon, which has for simplicity been illustrated with the simple slab calculation above,
becomes particularly important in tokamaks and stellarators where the magnetic curvature and the finite
frequency in the ion-cyclotron range couple different poloidal and toroidal harmonics, forming global
modes which can interact with resonant surfaces throughout the plasma radius. Alfven eigenmodes get
damped by resonances, but the continuum damping predicted using fluid plasma models [7, 8] sometimes
disagrees by an order of magnitude with the gyrokinetic predictions and the experimental measurements
[14, 15]. ICRF heating scenarii generally involve a multitude of resonances with large poloidal mode
numbers \m\ > 20. Global fluid calculations suggest that they are generally not excited because the
geometrical coupling is very weak for low antenna mode numbers |mant | ~ 5. The gyrokinetic calculations
from Ref.[16] however show that large poloidal mode numbers appear because of the toroidicity, when
the fast and KAW wavelengths match at a resonance kfast = k>iow where the thermal electron velocity
exceeds the parallel wave phase velocity w/(k\\vth,e) < 1-

The second example illustrates this in Fig.2 with a current-drive scenario proposed in Ref.[17] for
the international thermonuclear experimental reactor (ITER) (Bo=6 T, q0 = 1.03, /3tor = 2.7%, ne,o =
lAnDfi = 3.5nT>0 = 1.4 x 1020 m~3, Tefl = TD,o = TTfi = 19 keV, fant = 20 MHz, ntor = 21).
The lukewarm fluid LION code [9] calculation in Fig.2(left) suggests that the fast wave emmitted by
an antenna on the low magnetic field side of the torus, first propagates inwards past the magnetic axis
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and forms a partially standing global wavefield that extends throughout the torus. The coupling to high
poloidal mode numbers is however sufficiently weak that the resonance absorption remains negligible and
the power gets almost homogeneously absorbed by the fast wave electron Landau damping and transit-
time magnetic pumping (TTMP). This fluid prediction is dramatically different from the gyrokinetic
result obtained from the PENN code [16], which shows that strong mode-conversion takes place where
the partially standing fast wavefield meets the K AW scalelength in the neighbourhood of fluid resonances
with large poloidal mode numbers m ~ 25. The power is then mainly deposited by the electron Landau
damping of the KAW, in the plasma edge region where the resonance absorption computed with fluid
plasma models remains negligible. Apart form questioning the validity of fluid plasma models for weak
absorption, this mode-conversion at the plasma edge provides for a plausible mechanism explaning the
degradation in the heating efficiency which has been observed in the experiments [18].

In summary, both examples chosen above in slab and toroidal geometry show that fluid plasma
models cannot be used to correctly predict the power absorption and the continuum damping when
two resonances or more are present in a partially standing wavefield. This is in particular true for the
prediction of Alfven eigenmode dampings and the modeling of the power deposition profiles during ICRH,
where more sophisticated gyrokinetic descriptions are required - at least.

One of the authors (A.J.) acknowledges useful discussions with F. Zonca. This work was supported
in part by the Swiss and the Swedish National Science Foundations and the calculations were performed
on the CRAY C-94 super-computer in Linkoping.
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Abstract
Elongated plasmas up to K=2.5 have been obtained in the Lausanne Tokamak
TCV1. For K < 2.3, the normalized current limit, lN=I[MA]/a[m]B[T], increases
with elongation and is limited by the standard ideal limit at qa=2. However for
K>2.3, a disruption occurs at larger values of qa(K), such that the current limit
stays about constant at IN-3 1 . The modes observed at the disruption are typically
m/n=2/l and 3/2 modes. The observed disruption limit is consistent with the
prediction of the n=l ideal MHD limit presented in Ref.2 for analytical plasma
shapes. We have computed the ideal and resistive MHD limit for the actual
experimental plasma shapes and profiles. We find that the shots which
disrupted are indeed very close to the ideal n=l external kink p-limit. We also
see that, including resistivity, the 4/3, 3/2 and 2/1 modes are unstable even well
below this limit, which agrees with the experimental data. For 2.5<K<3, we have
varied the profiles over a wide range and our results confirm the prediction of
Refs.2 and 3, which is that only by keeping qa just above 3 and decreasing the
plasma inductance, li, one can find stable configurations.

Introduction
The upper P-limit, p=2<p>voi/[ioB0, in an axisymmetric plasma is determined by
the ideal MHD limit and is quite well described by the Troyon limit4:

p [%] = cT IN = cT I [MA] / (a [m] B [T] ) (1)
The effective value of the Troyon factor CT is typically around 2.5 to 4 depending
on the pressure and current profiles. The P-limit described by Eq.(l) is not valid
for reversed shear profiles, where plasma rotation and wall stabilization effects
are necessary to obtain stable high-P plasmas. At very high elongation, which
maximizes the plasma current for a given minor radius a, and near the plasma
current limit, Eq.(l) is not valid either as has been shown in Ref.2. Therefore, to
determine how much we can really increase P when increasing the elongation K
is one of the main objectives of the TCV experiment (Tokamak Configuration
Variable)5. In the last campaign, highly elongated discharges (K>2.3) have been
obtained, many of which disrupted when approaching a given normalized
current IN ~ 3.051, close to the prediction of Ref.2. In this work, we compute the
ideal and resistive p-limits using the plasma shape and profiles of TCV
discharges. As is shown below, we recover the results of Ref.2, and those of
Ref.3 for higher K. Moreover we find that the 4/3, 3/2 and 2/1 modes are the most
unstable resistive modes, in agreement with experimental data.

Experimental results and comparison with numerical results
The experimental high elongation discharges are summarized in Figs.l and 2.
For K=2.3, the theoretical current limit, at zero p, is equal to I N = 2 . 8 5 ,

This Work is supported in part by the Swiss National Science Foundation
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determined by qa>2. However at higher elongation all discharges disrupt for IN
> 3. This had already been predicted2 at the time when TCV was designed, as
shown by the solid lines in Fig.l. In that case, two plasma shapes were analyzed
in more detail at K=2.5, a Racetrack and a D-shaped plasma. We see that the P-
limit does follow Eq.(l) at low IN, however decreases much below the qa=2 limit.
As the discharges in Fig.l are all in ohmic regime, p is not a free parameter
and is typically around 2.5% as seen in Fig.l. Therefore the experimental points
are near the D-shape limit, even though the actual shape is closer to a
Racetrack, with however a non-negligible triangularity.

We have studied in more detail two shots at K«2.5, one which did not disrupt,
12413, and one which did disrupt, 12414. The time traces are shown in Fig.3,
where one sees that, in the shot 12414, first a 4/3 mode occured, causing a minor
disruption, then a 3/2 and finally a 2/1 mode locked and caused the disruption.
This sequence is typical with or without the occurence of the 4/3 mode. In the
shot 12413, two 4/3 modes occured, causing two minor disruptions, as seen on
the SXR measurement, but as no 2/1 mode appeared the discharge survived.
One can see that K, IN and P were all slightly lower in the shot 12413. These two
discharges are quite typical of high elongation ohmic discharges.

O 2 <K<2.3 A 2.3<nc<2.4 O 2 .4<K<2.5 O 2 .5<K<2.58
~i—i—i—|—i—i—i—i—i—i—i—i—i—|—i—i—i—i—I—i—i—i—na—i—i &\—I—i—i—i—i—I—i—i—i—r

0 0 .5 1 1.5 2 2 .5 3 3 .5 4
IN = I[MA]/(a[m] B[T])

Fig.l: Ideal limit for a D-shaped and a Racetrack plasmas as in Fig.4 of Ref.2.
The symbols show TCV results for K>2.

The equilibria 12413 at t=0.76s and 12414 at t=0.794s have been reconstructed
using LIUQE6 and coupled to the equilibrium code CHEASE7. Then we have
used ERATO8 and KINX9 to study the ideal limit, and MARS10 and a cylindrical
A1 calculation to study the resistive MHD modes. All these codes are coupled to
CHEASE. As qa is relatively low, to have stable n=0 plasmas, the inversion
radius is relatively large. Therefore it is difficult to separate the stability limit of
the internal 1/1 kink mode from the external kink limit. This is why we have
flattened the q profile such as to keep q>1.05 everywhere, while keeping li equal
to the experimental value (=0.6-0.65). Note that the central q profile is not
accurately measured in TCV. Therefore we have varied the current and
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pressure profiles, around the experimental profiles, to take into account
experimental uncertainties. For both the 12413 and 12414 discharges we find the
same ideal P-limit, shown as a hatched region in Fig.2. The marginal P is not a
line as it depends slightly on the profiles. We see that the shot 12414, as well as
all the shots with IN^3 which disrupted, are very close to the ideal limit,
whereas the shot 12413 is further away, consistent with the experiment.
However the modes grow on a resistive time-scale and we have checked that the
ballooning and n=2, n=3 kink P-limits are much higher.

O 2 <K<2.3 A 2.3<K<2.4 O 2.4<nc<2.5 O 2.5<nc<2.58
4

J)-ihape,K=f2.5
I ' ' ' i • ' ' I • ]

Ideal limit using 12414
plasma shape and profiles

2.6
Racetrack

2.8
N

3 3.2
I[MA]/(a[m] B[T])

3.4

Fig.2: The symbols show TCV results for different elongation. All shots with
IN^3 disrupted. The hatched region represents the ideal marginal limit, while
the region underneath is unstable to resistive modes.

Therefore we have analyzed these equilibria with the resistive MHD code MARS
and found both the 12413 and the 12414 discharges unstable to n=l, 2 and 3, with
the largest growth rate for the n=l mode consistent with the experiment. The
resistive unstable region, in Fig.2, is the whole region underneath the ideal
limit down to very low P as it depends mainly on the current profile. We have
also computed the A1 values, using the experimental q profiles and a cylindrical
approximation. We find the 4/3, 3/2 and 2/1 unstable, whereas the other modes,
e.g. 5/4, 5/2, 4/2 and 3/1, are stable. This is consistent with the experiment, as in
all the discharges analyzed so far, only 4/3, 3/2 and 2/1 modes have been
observed.

In order to increase the operational space, we tried to change the plasma shape
and to use different current profiles, reversed shear and low li. We find, as first
mentioned in Ref.2 and confirmed in Ref.3, that only by keeping qa^3 fixed and
reducing IN as much as possible, one obtains stable configurations for K up to 3.
This reduces li and is therefore good for the n=0 stability as well, but reduces the
P-limit to a value below 2-3%. The optimal current profiles are very similar to
profile (c) in Fig.3a of Ref.2, such that one has finite shear in the center and low
shear up to the q=2 surface and li is below 0.5. These types of current profiles
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will probably require the help of the ECRH system, which is now available on
TCV, in order to be able to obtain stable K=3 discharges.

Conclusion

We have shown that the high elongation, K>2.3, discharges in TCV which
disrupt are at or very close to the ideal MHD limit. We have also shown that the
modes occuring just before the disruption or causing minor disruptions are
conventional resistive modes, even though the modes with large island width
can be further destabilized by the neoclassical perturbed bootstrap current. In
order to reach elongations larger than 2.5, while remaining vertically stable,
one will need to control the current profile to decrease li below 0.5.
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Fig.3: Time traces for shots 12414 and 12413. The 12414 disrupted due to a 2/1
locked mode very near the ideal limit, as shown in Fig. 2.
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Abstract : A simple configuration consisting in a set of toroidal, helical and vertical field coils is
used to calculate free boundary equilibria with nonzero plasma current and approximately helical
plasma boundary. The amount of helical boundary deformation is controlled by the ratio of the
current in the helical field coils to the current in the toroidal field coils. When this ratio is increased
the (m,n) = (2,1) external kink is stabilized at /? ~ 1% for inverse rotational transform profiles in
the region q < 2.

1. Introduction

In a previous work [1], we investigated the global ideal magnetohydrodynamic (MHD) stability of
plasmas with a prescribed (fixed) helical boundary deformation and non vanishing toroidal current
with respect to the (m,n) external kink modes n — 1,2,3 and m = n + 1. L = 2, 3 single helicity
and mixtures (of both) configurations were studied by systematically varying parameters such as
the type and amount of helical boundary deformation, the aspect ratio, the number of equilibrium
field periods, the toroidal current density and the pressure profiles. Once these parameters were
fixed, sequences of equilibria differing in the amount of helical boundary deformation and such that
1 < 9 < 2, were calculated with the fixed boundary version of the VMEC [2] code. The stability
analysis was performed with the TERPSICHORE [3] code. It was shown that increasing the helical
boundary deformation leads to the stabilization of (m, n) external modes with n — 1,2,3, m = n + 1
at values of ft ~ 1 — 2%. These modes are unstable in the circular tokamak at the same value of /?.
If S is a measure of the plasma boundary deformation, then windows of stability [<£mtn 8max] may
exist and depend strongly on the equilibrium parameters.
We reconsider here the study of the (2,1) mode with equilibria calculated with a free boundary code.
The aim is twofold:
1) to test how difficult it is to obtain free boundary equilibria with single helicity bounadry defor-
mation at nonzero plasma current and positive j3.
2) to check the results of the fixed boundary calculations in the sense that we search for stability
windows when the amount of current in the helical coils is monotonously increased.

2. Equilibrium calculations

The calculations of the free boundary equilibria was performed in several steps. First, a system
of coils producing a toroidal (TF), a vertical (VF) and a helical field (HF) is designed; the helical
conductors are wound on a torus according to the following winding law

t ( + i({i)) fi + 2 ^ (1)v :

with u and v the geometrical poloidal and toroidal angles of a particular coil segment, A^er the
number of field periods, / = 1, ..L an index specifying a particular coil and a the pitch modulation
coefficient of the helical coils. The magnetic field B is determined from the Biot-Savart law and a
field line tracing code is used to find the coil geometrical parameters and currents such as to obtain
closed helical flux surfaces in vacuum. The field produced by these external currents is given then
as input to the free-boundary version of the equilibrium code VMEC [4]. At finite /3 and nonzero
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plasma current, the plasma cross section is distorted; the currents in the coils are adjusted until the
plasma cross section recovers an approximate helical shape.
Several types of coils systems (stellarator-, heliotron- and torsatron-like) were considered. We illus-
trate the results with the example of a L=2 stellarator-like configuration (Nper = 4) with 16 TF coils
two piars of 2 HF coils and one pair of VF coils. Sequences of equilibria were calculated with the
following parameters

Ro = 5.0 [m] rt = 1.8 [m] rh = 1.4 [m] rv = 7.0 [m] zv = ±2.1[m] a = -0.150

It = -1.6 x 105[A] Iv = 1. x 104[A] (2)

, 5 = 1 % , parabolic pressure profile , J'(s) ~ (1 — s20)8

The subscripts t, h and v refer to the TF, HF and VF coils respectively, Ro is the major radius, r and
z are the coils radii and verical positions, / refers to the coils currents and J' is the toroidal plasma
current density. The equilibria belonging to one particular sequence differ in the amount of HF coil
current h- The coil system is illustrated in Fig.l and plasma cross sections for two values of Ih are
shown in Fig.2. In this case the plasma current was J = 1.27 • 105[y4]. If the conventional (tokamak)
definition of normalized beta j3pj — /?/IN with IN = J [MA]/(a [m] Bo [T]) where a and Bo are the
averaged minor radius and the magnetic field intensity on the axis respectively, is used we obtain
PN ~ 4 — 6.

3. Stability calculations

Let (me,Nperne) and (m/,7i/) represent the Fourier components in Boozer coordinates (TERPSI-
CHORE) of the equilibrium and perturbation quantities respectively. As the equilibrim configura-
tions has several field periods, a partial decoupling of the perturbation components occurs, depend-
ing on the values of the toroidal mode numbers. The coupling between two perturabtion compo-
nents (mn,nn) and (771/2,̂ /2) is nonzero if the following relations hold between the mode numbers:
[l]me = mn i ^ / 2 and Nperne = nn dtzrift. This means that the perturbation toroidal mode numbers
are distributed in families of non-interacting modes.
If the mode studied is (m, n) = (2,1) and if jVper = 4, the contribution of the coupling (me, Nperne) x
(2,1) x (mj, ni) to the potential energy SWP is nonzero only if nj = 3, 5, 7, 9, etc. When the numerical
study is carried in the parameter region corresponding to 1 < q(s) < 2, then a particular attention
should be given to those (mi,ni) perturbation components which are resonat i.e. mi > ??/ > n — 1.
Depending on the q profile, these components can be destabilized and could lead a priori to impor-
tant couplings with (2,1). The contribution of a particular (m/j,n/i) x (m^n^) coupling to SWP is
determined by the amplitude A^ene of the (me, Nperne) equilibrium coupling term - c.f. [1]. Typical
equilibrium quantities appearing in these couplings are yfg (the Jacobian), |B2|me,ne and in gen-
eral combinations between the coefficients of the metric tensor [5]. If Nper = 4 the coupling between
(2,1) and (m;, m) resonant components with n/ = 3,5 requires (me, Nperne) components with ne = 1
and me > 4; the coupling with resonant (mi,ni) having n/ = 7,9 requires ne = 2 and me > 8.
The systematic study performed in [1] for fixed helical boundary shapes, showed that the A^ene am-
plitudes of the (me, Nperne) components involved in couplings between (2,1) and resonant (mi,ni)
are negligible (compared to the dominant equilibrium components) for any equilibrium quantity
(y/9m n > |52 |meine, etc) and for any boundary deformation 6. If the free boundary equilibrium
has an approximate helical boundary shape, the above mentioned property remains valid - see Fig.3.
Thus, the study of a particular mode would not require the inclusion in the calculations of the res-
onant perturbation components (n and n/ € the same family). This hypothesis was verified in the
sense that the ratio of any of the (m,n) x (mi,ni) coupling contributions ((m;,n/) resonant) to 5WP

to the dominant contributions to 8WP is very weak i.e. < 10~4.
At the beginning of the equilibrium sequence presented in Fig.4 i.e for Ih = 0.6 x 105 [A] the q profile
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Figure 1 : stellatator-like configuration
with 16 TF coils, two pairs of 2 HF coils
and one pair of VF coils
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n

amplitudes for the free boundary equilib-

rium described by Eq.(2) The x-axis corresponds to the ne equi-
librium mode number. The points marked with '*' represent
the equilibrium components responsible for couplings between
the (2,1) mode and the (?ni,ni) perturbation components with
mi > ni > 1 (only the ne < 2 i.e. n/ < 9 are shown). All other
equilibrium components are marked with 'o\
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Figure 2 : Free boundary equilibrium flux surfaces produced with VMEC. Each column represents the
cross sections at one toroidal angle and each of the two rows are associated with one value of Ih.
The coil system is represented in Figure 1. The equilibrium parameters are those of Eq.(2); the two
equilibria correspond to the points just before and just after the stability window in Fig.4
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Figure 4 : Study of the (2,1) mode: (a) plasma current density profile, (b) q(s) profile, (c) sequence
of most unstable eigenvalues ^ ) n ( A ) when the coil geometry and plasma parameters are given by
Eq.(2) and the lines that follow. The aspect ratio is 1/e ~ 10 and the toroidal plasma current is
J = 1.27 • 105[A]. The inverse rotational transform profile is represented for Ih = 0.60 x 105A (-),
1.0 x IO5[A] (- -) and Ih = 1.30 x 105[.4] (•). The stability window is delimited by the two vertical
lines and is associated with values of Ih between 1 x 105[A] and 1.3 x 105[A]

is such that the (2,1) component is already destabilized. The effect of increasing Ih is to lower the
inverse rotational transform. The (2,1) component is strongly destabilized and becomes the domi-
nant perturtbation component - we speak then about the (2,1) mode. The most unstable eigenvalue
w ^ n ( 4 ) decreases until a minimum is attained, after which it starts increasing again; this is the
stabilizing effect associated with an increasing (near)helical boundary deformation. Depending on
the equilibrium parameters, a stability window Isib = [/™tn, I^ax] may appear in the sense that all
(m, 1) components with m > 1 are stable and the (1,1) component is not yet destabilized. Fig.4 (c)
illustrates a stability window bounded by /£"" ~ 1.0 x 105[.4] and I^ax ~ 1.3 x 105[.4].
When the resonant perturbation components i.e. (m/,3) with m.\ > 3, (rn/,5) with m/ > 5, etc are
taken into account and the stability calculations are performed again for those equilibria in the stable
window, then several unstable eigenvalues may appear for each h € /s/&. Each of these eigenvalues
is associated to one of the resonant (m(,n;) modes (component whith largest amplitude). We sys-
tematically checked each of the (2,1) x (mi,ni) and (1,1) x (mi,ni) coupling contribution to SWp
and found that they are indeed negligible i.e. < 10~4 compaied to the dominant contributions.
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Abstract. The formulation of the guiding centre drift orbits is extended to relativistic particles

in canonical coordinates with arbitrary time dependent electric and magnetic fields. The transforma-

tion to these coordinates from general flux coordinates is cumbersome for practical applications. This

transformation is straightforward for Boozer magnetic coordinates which are canonical if the perturbed

magnetic field is constrained to the form SB = Vx(TB) .

A Hamiltonian formalism in canonical coordinates constitutes the most transparent

and compact approach to treat the guiding centre drift orbit problem. In this paper, we

extend to relativistic particles the formulation in a canonical coordinate system that is

valid for arbitrary three dimensional (3D) time dependent electric and magnetic fields

[1,2]. For a 3D equilibrium calculated in a different coordinate system, we demonstrate

that the transformation to the canonical coordinates is too complicated for useful appli-

cations. For Boozer magnetic coordinates [3], the transformation is simple. However, the

perturbed magnetic field structure cannot be arbitrary for this system to retain canonical

properties.

To define canonical coordinates in a torus with arbitrary time dependent electric and

magnetic fields requires that these coordinates (r, 8, Q satisfy the property that the vec-

tor potential and the magnetic field be expressed as [1]

A = $(r, 9, C, t)V9 - V(r, 9, C, t)V( , (1)

B = Bg(r, 8, C, t)V9 + Bc(r, 9, (, t)V( . (2)

where r is the radial variable 9 is the poloidal angle and £ is the toroidal angle. In other

words, the coordinates are canonical when the radial components of A and B in the

covariant representation vanish. As B = V X A, the magnetic field in the contravariant

representation is B = V£xVV> + V $ x V 0 . The canonical momenta in the drift ap-
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proximation are given by P = p\\B/B -f eA. The corresponding relativistic Hamiltonian

is

H = H{p,x,t) = Jpf.c2 + 2fiBmoc
i + mfc* + eX(x, t) = jm0c

2 + eX{x,t) , (3)

where p|| = P||/eB is the parallel gyroradius, x is the electrostatic potential, p. is the

magnetic moment, e is the particle charge, c is the speed of light, mo is the particle rest

mass and 7 is the relativistic gamma factor. Applying the Hamiltonian formalism, we

derive the equations of motion in the drift approximation [2]

r = -rdt D ide
eB2\dB

) rJ
em

\ d& r,O,t
+P\\

dBe

r.fl.t/ '

r,0,t

(4)

;

\ dr

\ dr +P\\
t

dr
dBe

P,C,i

\ B<,r
«,,>/ " D [dr m/ dr

. dPll 1 /dtp

1.(11
D\dr

L(0±
D\d6

dBc

dB
KC.ti

1 ffj. eB 2

e5 , \ dB

eS 2\ dB

(
7 Ve r,B,t

KCti

e,d,t
(7)

:,t 7 V e m 0

where D = B^dQ/dr + Bedi/>/dr + p\\ (BcdBe/dr - B9dBJdr\

Now we consider a 3D static equilibrium with nested magnetic flux surfaces. The

magnetic field in the contravariant representation is B = VaXVV" and in the co-

variant representation is B — V»7 + /?Vs where a ~ C, — q{s)[8 + X(s,0, £)], rj =

|io[J(5)0 - I(s)C + Q(s, 0, C)] and /? = ^o[/'(5)C - J'{a)9 - u(s, 0, C)], where q(s) is the in-

verse rotational transform, 2TTI(S) and 2nJ(s) are the poloidal and toroidal current fluxes,

respectively. The periodic function A is determined from the condition j • Vs = 0. The

periodic functions Q and u are still unspecified. It is usually the case that a 3D equi-

librium is known in a different set of coordinates (s,u,v) (calculated for example with

the VMEC code) and a transformation procedure to the desired canonical coordinates
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(s,9, 0 must be prescribed. To do this, we identify 9 = u + h(s,u, v) and £ = v + k(s,u, v)

where h and k are periodic functions of the known poloidal and toroidal angles u and

i>, respectively. For straight field lines, X(s,9,Q — 0. The functions a, 77 and /?, being

scalars, are invariant with respect to coordinate transformations. From the relations for a

and rj, we obtain h(s, u, v) = Qv(s, w, v) — Q(s, 0, Q — q(s)I(s)X(s, u, v)/[J(s) — q(s)I(s)]

and k(s,u,v) = q(s)Qv(s,u,v) — Q(s,0,Q — J(s)X(s,u,v)/[J(s) — q(s)I(s)] where the

function Q(s,9, Q = Q[s,9(s,u,v),C(s,u,v)] must still be specified. Invoking the ex-

pression for /?, we obtain that uc[s, 9c(s,u, v),(c(s,u,v)] = uv(s,u,v) + J'(s)h(s,u,v) —

I'(s)k(s, u, v) which we combine with the condition that the covariant radial component

of B must vanish in the canonical coordinate system to derive the differential equation

dQc

ds
- , , J'(s) - q(s)r{s)

)I(s) J(s) - q(s)I(s)

' ^v y J(s) - q(s)I(s) " V " ' - ' - ' -

The resolution of this equation for the transformation from an arbitrary coordinates

system to canonical coordinates is an extremely cumbersome procedure that makes the

applicability of this formulation virtually impractical.

Boozer magnetic coordinates [3] are defined for 3D systems in which the unperturbed

magnetic field forms perfect nested magnetic flux surfaces. These coordinates are also

canonical if the time dependent portion of the magnetic field is constrained to have the

form [4] SB = Vx[T(«,tf ,^ ,f)B]. This form is adequate to describe that radial com-

ponent of any perturbed magnetic field [4]. Furthermore, the Boozer coordinates satisfy

X(s,$,</>) = 0 (straight field lines) and Q(s, i?,<£) = 0 which allows a straightforward

determination of the periodic functions h and k and consequently the mapping from

VMEC-like coordinates. The vector potential is A = $(s)Vt? - ip(s)V(f> + T(s, •&, </>, t)B.

The canonical momenta are P# — e[$(s) + pcfJ-oJ(s)] and P$ = — e[ip(s) + pc(iol(s)]

where the effective gyroradius is pc — p\\j{eB) + T [5]. Inverting these relations, we have

s = s(P#, P4,) and pc = pc(P$, P^>)- Applying the Hamiltonian formalism, we obtain the

equations of motions

Db

1 fn eB 2\ dB eB2p\\ dt 1
s,4>,t 7 \ e m o " / uv iy<j> 77710 ov s,<t>,ti
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Ho J(s) [dx

Db Vd4>
1 f\i eB 2\ dB

(9)

—
•a,<t>,t

Ids m0 "/ ds
(10)

t 7 \e mo , J (11)

av

1 F^// x
^ 6 L as

, J [̂

1 F
o<f>

where

- I{a)J\a)\IW{s)J{s) - *'(

In conclusion, we have extended the formulation of the guiding centre drift orbits in

canonical coordinates valid for arbitrary time dependent electric and magnetic fields to

relativistic particles. However, the transformation from a general flux coordinate system

to these canonical coordinates is too cumbersome for parctical applications. The trans-

formation to Boozer magnetic coordinates, on the other hand, is straightforward and

this coordinate system is canonical for perturbed magnetic fields constrined to the form

SB — V x ( T B ) . The relativistic guiding centre drift equations of motion are explicitly

derived in this system.
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