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Abstract

A gyrokinetic eigenvalue code has been developed for computing global ion tem-
perature gradient (ITG) -related instabilities in tokamak configurations. Although
trapped ion dynamics are not yet considered in this model, it contains full finite Lar-
mor radius and finite orbit width effects of circulating ions. Non-adiabatic trapped
electron dynamics are included through a bounce-averaged drift kinetic equation.
Differences between the local ballooning approximation and the global approach are
presented and discussed. The possible coupling between the trapped electron mode
(TEM) and the toroidal-ITG mode is also investigated. Finally, the evolution of
the spectrum of these different instabilities is studied for varying central negative
magnetic shear configurations.

Introduction: For studying microinstabilities in tokamak-like plasmas, most linear
kinetic studies were carried out for high toroidal wave numbers using the ballooning
representation[1] which leads to a one-dimensional integral equation along the magnetic
field lines. Except for very few cases, these calculations do not include a higher order WKB
procedure for determining the radial structure. Thus these results usually stay local to a
magnetic surface and there remains some questioning on the actual radial extent of these
modes. For low toroidal wave numbers where the ballooning representation breaks down
and the full two-dimensional problem cannot be reduced, very little linear computation
has been carried out. This limit is of interest as it describes larger wavelength fluctuations
which could lead to higher turbulent transport. Until recently the only published results
from true global, linear computations came from a spectral code by Marchand, Tang and
Rewoldt[2]. This model contains no finite Larmor radius (FLR) effects and is based on
a second order expansion with respect to the radial excursion of trapped particles, which
leads to spurious modes[3] and thus to a difficult search of physical eigenfrequencies. At
the present state full non-linear simulations already exist{4][5], nonetheless there remains
a need for global linear studies as they enable to determine more accurately the conditions
of marginal stability and in this way, if possible, to find stable configurations. This has
prompted us to undertake the development of a new, global, spectral gyrokinetic code. A
summary of the present state physical model as well as of first results is given here. More
details are found in Ref.[6].



Physical Model for the Spectral Approach

Geometry: At present the geometry of the system is still approximated by a large
aspect ratio torus with circular, concentric magnetic surfaces. Therefore finite pressure
effects such as the Shafranov shift are not taken into account. The safety factor profile
gs(p), the ion and electron temperature profiles T, ;(p) as well as the density profile N(p)
are chosen arbitrarily and in this way are represented by simple polynomial functions of

the radial variable p. Here (p,8,¢) is the standard set of toroidal coordinates.

Kinetic equations: Although the basic mechanism of ITG instabilities can be de-
scribed by fluid models, the more detailed behavior of these perturbations also contain
specifically kinetic characters, such as wave-particle interaction (e.g. Landau damping)
and FLR effects. In order to take them into account - this being essential if one is in-
terested in determining accurately conditions of marginal stability- appropriate kinetic
equations for each species must be considered. Assuming a collisionless plasma, these
can be derived by reducing the Vlasov equation, linearized for electrostatic perturbations,
using different scaling laws. In particular, as microinstabilities have low frequencies i.e.
small compared to the cyclotron frequencies Q. ;, one can for all particles carry out a
gyroaveraging procedure.

In the case of ions the Larmor radius can be comparable or larger then the wavelengths
perpendicular to the magnetic field, giving rise to the above mentioned FLR effects. The
appropriate equation of motion is thus given by the gyrokinetic equation (GKE) [7]:
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where D/Dt|_, - stands for the total time derivative along the unperturbed trajectories
ﬁ(t) of the guiding centers (GC), including drifts related to the gradient and curvature of
the magnetic field. Furthermore, g represents the fluctuating, non-adiabatic part of the
particle distribution function written in gyro-center variables, Fijs the local Maxwellian
distribution of equilibrium, w* the diamagnetic frequency related to the temperature and
density inhomogeneities and < ¢ >, the gyroaveraged electrostatic potential.

In first approximation the mobile electrons have been assumed to respond adiabat-
ically to the low frequency microinstabilities and therefore to follow a Boltzmann dis-
tribution. However in the non-trivial tokamak geometry, the trapped electrons in fact
have a toroidal precessional drift which can become comparable to the phase velocity of

the perturbation. To take into account the resonances which may arise, a more detailed



description has been considered. As electrons have significantly smaller Larmor radii
then ions for similar temperatures, FLR effects can usually be neglected (at least when
studying ion-driven instabilities), so that the drift kinetic equation (DKE) instead of the
GKE is sufficient. Furthermore, due to the high thermal velocity of these particles, this
equation can be averaged over the periodic motion in the poloidal plane, giving rise to

the so-called bounce-averaged DKE[8]:
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Here D/Dt|,, g stands for the total time derivative along the unperturbed trajectories of
the banana (B) orbits, g, for the fluctuating, non-adiabatic part of the bounce-averaged
GC distribution function, <¥>; for the average toroidal precessional drift and < ¢ > for
the bounce-averaged potential.

The equations of motion are solved by integrating along the unperturbed trajectories.
In the case of ions the modulation of the magnetic field along the trajectory was neglected,
so that in particular the dynamics of trapped ions was discarded. In its present state our
model therefore still does not enable to describe trapped ion modes (TIM). In this context
Fourier representation appears naturally as it enables to integrate explicitly the unknown

potential ¢. For example, when gyroaveraging the potential one obtains
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where Jj is the zero order Bessel function containing the full FLR effects and having used
_’

the relation R=7 + ¥ x e_|’| /2 between the GC and particle position. In fact, instead

of a decomposition into plane waves, a Fourier representation in terms of toroidal wave

components was chosen as it is more adapted to the geometry of the system:
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where & is a radial, m a poloidal and n the fixed toroidal wave number. Note that a
Fourier series decomposition instead of a Fourier transform is considered not only in the
periodic direction @ but also along the radial coordinate p, this being justified by the finite

dimension of the system. The fixed frequency is noted w.

Eigenvalue equation: The equations of motion are completed with a relation for ¢.
This is provided by the quasineutrality equation (justified when studying low frequency

microinstabilities), which leads to the actual eigenvalue equation for (w, ¢). It turns out



to be advantageous to solve this eigenvalue problem staying in the discrete Fourier space
(k,m). Indeed, the equation is then naturally discretized and contains no singularity as
the one appearing in the kernel of the integral equation when solving in the continuous

configuration space (p,8). The eigenvalue problem can formally be written in matrix

form:
“

_}
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This is not a standard problem as the matrix M has an intricate dependence in the

eigenvalue w. The characteristic equation for w:
D(w) = det M (w) =0, w complex,

is solved by taking advantage of the analyticity of D(w) and using a practical method
proposed by Davies[9]. By sampling D(w) along a closed curve in the complex frequency
plane, this approach allows not only to find the number of enclosed zeros using the prin-
ciple of argument (Nyquist), but the value itself of these roots with great accuracy. In

this way the full unstable spectrum of a given system can be computed quite effectively.

Results

Benchmarking with time evolution PIC code: The spectral code has been
extensively benchmarked against another global, linear gyrokinetic code developed simul-
taneously at the CRPP, based on a time evolution particle in cell (PIC) method[10][11].
In the regime where trapped ion dynamics (contained in the PIC model) are not impor-
tant, i.e. for frequencies above the average ion bounce frequency, and for not too short
wavelengths (PIC model is only valid to second order in Larmor), comparisons have shown

very good agreement. Details of this validation can be found in Ref.[12].

Comparison with local ballooning calculations: Results from the global
spectral code have also been compared to those obtained by Dong et al.[13] applying the
local ballooning approximation to the same physical model. In this case only the adiabatic
response of trapped electrons is taken into account so that the instabilities are essentially
toroidal-ITG. To carry out such a comparison, the profiles for the global code must be cho-
sen such that they match the local ballooning parameters on a reference magnetic surface.
Here these parameters are given by the safety factor g,, the temperature ratio v = T, /T;,
€n = Ln/R =characteristic length of density/ major radius, n; = L,/Lt, =charac.length

of density/ charac.length of ion temperature and the normalized poloidal mode number
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Figure 1: Growth rate v as a function of kgAr; (only adiabatic response of electrons). Circles
and stars represent global results for a/Ap; = 56.5 and a/Ar; = 113.0 respectively, a being
the minor radius of the plasma. Labels below the circles and above the stars indicate the
corresponding toroidal wave number. Ballooning results are reported here with a dashed line.

]:9= ngsALi/po, where Ap; is the average ion Larmor radius on the reference magnetic
surface p = po. Note that both, a high temperature plasma with a perturbation having
low toroidal mode number n, or a low temperature and high n, can lead to a same value l;;
and thus be iso-dynamical with respect to the local ballooning calculation. Fig.1 presents
the growth rates obtained when carrying out such a comparison along an n-scan. A hot
as well as a cold plasma scenario have been considered when running the global code
and in both cases the corresponding results indeed join the local ones for sufficiently high
toroidal mode numbers, i.e. n > 10. Balloo:xing results are from Fig.3 of Ref.[13]. The

typical role over of the growth rate around kg~ 0.5 is the consequence of FLR effects.

Effect of trapped electrons on the toroidal-ITG: The effect of non-
adiabatic trapped electron dynamics is essentially twofold. In case of a flat density profile
it simply strengthens the growth rate of the toroidal-ITG instability, which thus keeps its
dominantly ion driven character. For non-flat density profiles (low values of ¢, and 7;)
the toroidal-ITG can either couple and convert to, or simply be taken over by a trapped
electron mode (TEM). This TEM may remain unstable down to flat ion temperature
profiles, thus effectively removing the threshold on 7; predicted for the pure toroidal-ITG

when only adiabatic electrons are considered. In this way our global results qualitatively
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Figure 2: Real frequencies w, and growth rates v of the most unstable eigenmodes as a function
of 7; holding in particular €, = 0.2=const and 7. = 2 =const, computed with non-adiabatic

trapped electrons (full lines). For #; < 1 the toroidal-ITG converts to a predominantly TEM
(mode 1) and starts to propagate in the electron instead of the ion diamagnetic direction. A
weaker instability propagating essentially in the electron diamagnetic direction (mode 2) is also
present. For comparison, results with only adiabatic electrons are reproduced with dashed lines.
Note how non-adiabatic trapped electron dynamics have removed the threshold on 7;.

confirm the picture given by Romanelli and Briguglio [14] solving a local dispersion rela-

tion. As an illustration, results of an 7n;-scan are presented in Fig.2.

Negative shear scan: The global spectral code has been applied for studying
the stabilizing effect of negative magnetic shear. Motivation for such studies come from
experimental evidence on different tokamaks[15]{16][17] of the formation of a transport
barrier in regions of shear reversal accompanied by a reduction in core fluctuation am-
plitudes. Fig.3 presents the results of such a shear scan having fixed n = 10 and the
profiles such that 7 = 1, ¢, = 0.25, ; = n. = 2.5, l’cvg= 0.35, ay = 45% (fraction of
trapped particles) on the magnetic surface p = py where the modes tend to be centered
(steepest gradients). The safety factor profile is varied such that g¢,(pp) = 1.5 is held
fixed while shear varies from § (po) = +1 to —1.  For positive values of shear the
spectrum contains eigenmodes propagating in the ion diamagnetic direction, i.e. having
a dominantly toroidal-ITG character, as well as instabilities propagating in the electron
diamagnetic direction, i.e. having essentially a TEM character. In this case, the TEM’s
are completely suppressed at negative shear 5= —1, while the toroidal-ITG modes are

still present, their growth rate being nonetheless attenuated by a factor ~ 4 with respect
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Figure 3: Real frequencies w, and growth rates 7 as a function of shear s for a sampling of
unstable eigenmodes, non-adiabatic trapped electron dynamics being taken into account. For

S= +1.0 the unstable spectrum contains simultaneously positive and negative frequencies. At
5= -1.0 only the ITG-type modes remain destabilized, however with a significantly reduced

growth rate compared with the highest one around 5= +0.5.
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Figure 4: Mode structures of most unstable toroidal-ITG-type eigenmodes along shear scan

S=41....—1.




to 5= 0.5. Negative shear stabilizes the toroidal-ITG by twisting the convective cells
more rapidly into a vertical position where they are less effectively driven[18]). This ap-
pears clearly in the poloidal mode structures of Fig.4 (axis of symmetry on the left). The
TEM’s are stabilized by reversal of the average toroidal precessional drift of the trapped
particles. Thus realistic negative magnetic shear alone does not seem to be sufficient to
explain the dramatic improvement of confinement in negative central shear discharges.
Experimental results[16] point towards the E X ]3 flow shear for being responsible for the

full stabilization of microinstabilities[19].

References
[1] J.W.Connor, R.J.Hastie, and J.B.Taylor, Physical Review Letters 40, 396 (1978).
[2] R.Marchand, W.M.Tang, and G.Rewoldt, Physics of Fluids 23, 1164 (1980).
[3] W.M.Tang and G.Rewoldt, Physics of Fluids B 5, 2451 (1993).
[4] S.E.Parker, W.W.Lee, and R.A.Santoro, Physical Review Letters 71, 2042 (1993).

[5] M.Kotschenreuther, W.Dorland, M.A.Beer, and G.W.Hammett, Physics of Plasmas
2, 2381 (1995).

[6] S.Brunner, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, 1997.
[7] P.J.Catto, Plasma Physics 20, 719 (1978).
[8] M.Rosenbluth and M.L.Sloan, Physics of Fluids 14, 1725 (1971).
[9] B.Davies, Journal of Computational Physics 66, 36 (1986).
[10] M.Fivaz et al., Physical Review Letters 78, 3471 (1997).
[11] M.Fivaz, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, 1997.

[12] S.Brunner et al., in Theory of Fusion Plasmas, Int. Workshop, Varenna, August 1996
(Editrice Compositori, Societa Italiana di Fisica, Bologna, 1997), p. 101.

[13] J.Q.Dong, W.Horton, and J.Y.Kim, Physics of Fluids B 4, 1867 (1992).
[14] F.Romanelli and S.Briguglio, Physics of Fluids B 2, 754 (1990).

[15] F.M.Levinton et al., Physical Review Letters 75, 4417 (1995).

[16) L.L.Lao et al., Physics of Plasmas 3, 1951 (1996).

[17] Y.Neyatani and the JT-60 Team, Plasma Physics and Controlled Fusion 38, A181
(1996).

[18] T.M.Antonsen Jr. et al., Physics of Plasmas 3, 2221 (1996).
[19] T.S.Hahm and K.H.Burrell, Physics of Plasmas 2, 1648 (1995).



