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Abstract The second stability regime for ion-temperature-gradient (ITG) modes is studied
in details with a global linear gyrokinetic Particle-In-Cell code which takes the full toroidal
MHD equilibrium data. The trapped-ion and the toroidal ITG regimes are explored. We
perform simultaneous ideal MHD stability computations for both kink (n = 1) and ballooning
(n = o0) modes. We use the results to find partially optimized configurations that are stable
to ideal MHD modes and where the ITG modes are stable or have very low growth rates.
Such configurations are expected to have very low level of ITG-induced transport.

Introduction. Unstable ITG modes are now commonly held responsible for anomalous
ion heat transport in tokamaks. The ion temperature gradient provides free energy to the
instability and the magnetic field gradient provides an efficient destabilizing mechanism on
the outer side of the torus. These modes are stable when the ion temperature gradient is below
a critical values (first stability regime). At high pressure, the plasma diamagnetism can reduce
of even reverse the gradient of the equilibrium magnetic field, which then becomes favorable
everywhere in the plasma; the ITG modes can then be completely stabilized [1] in what can
be called a second stability regime. This effect is sometimes referred to as “Shafranov-shift
stabilization™.

Previous calculation [2] [3] [4] are undetailed and were done using the ballooning approxima-
tion and (except [2]) with the “s — a” approximation to the equilibrium magnetic field, a high
aspect ratio, circular shifted magnetic surface approximation. The ballooning approximation,
though, breaks down at low n or low magnetic shear, and cannot describe slab-like modes
that are not localized on the outer side of the torus, i.e. that do not “balloon”. The “s-o”
model also breaks down at realistic aspect ratio and in non-circular plasmas.

We study here in detail the conditions that lead to the second stability for ITG modes,
using a global approach (no ballooning approximation) and the full MHD equilibrium data.
We focus on cases where a low magnetic shear stabilizes the local, short wavelength MHD
ballooning modes. We use the code GYGLES (GYrokinetic Global LinEar Solver)[5] [6],
which uses a radially global approach in toroidal geometry. The simulation model is based on
the linear gyrokinetic equations for the ions in which the full guiding center trajectories are
kept. We assume the electrons to respond adiabatically and the equilibrium perturbation to be
electrostatic and quasineutral. The gyrokinetic equations are linearized around an equilibrium
local Maxwellian distribution function. The code uses a Particle-In-Cell method with finite
elements defined in magnetic coordinates. The code can simulate routinely global modes of
all (very short to very long) toroidal wavelengths, can treat realistic (MHD) equilibria of any

Global parameters Ro =3 m,a/Ry =1/.36, elong. 1.6, triang. .3,
vac. field Bo(Ry) =3 T, p =~ 4.8 mm (deuterium)

Temperatures ZT%?E = —2KT (1 + cos [%’—;—:"-D for |s — so| < 2As, 0 elsewhere
KT = ﬁ log(Tmuw), so = .6, As = 0.1, T;(s0) = 10 Kev, T. = T;
Density profile ni(s) = no(1 — s?)*

Norm. current density | /*(s) = jo(1 — s2) + j, exp [—i—’%’f’;ﬁ]
J
Jo = Tt * (14 % jo +.24), As; = 0.15
Scan parameters Jo € [.8,100], Trnu € [1.1,1.8]
Parameters at s = so | Ro/Lt = &k1rRo/a, Ro/L, = 2.8, ¢ = 1.5, shear § =~ 0.2

Table 1: Specification of the equilibria studied.
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Figure 1: Profiles from table (1).

size and runs on a massively parallel computer.

The inclusion of electromagnetic perturbations can affect (usually stabilize further) ITG modes
at high 3 [7] [4] [8] [9]- This effect is not included here; we focus rather on the stabilizing effect
of the modification of the equilibrium at high # using realistic (MHD) equilibrium magnetic
structure.

Parametric study. We introduce a radial variable s = /¥ /¥,, where ¥ is the equilibrium
poloidal magnetic flux and ¥, its value at the plasma boundary, the plasma major and minor
radii Ry and ¢ and the normalized temperature gradient ng = %‘13—7::,@3. Locally on the outer

plasma mid-plane, one can derive from the MHD equilibrium condition a criterion for magnetic
gradient reversal:
R Op

o= —ig BIOR >1

The reversal parameter a is such that o = 0 at low pressure and o > 1 when the magnetic field
gradient is reversed on the outer mid-plane. It is therefore a local parameter characterizing the
magnetic field gradient at the most unfavorable point. It differs by a factor ¢* from the usual
a parameter from “s — a” equilibria and that is important in MHD ballooning computations.
The table (1) defines a set of JET-size equilibria where the profile of Ro/Lr is inspired by
a high-confinement JT60-U discharge [10] and peaks at a given magnetic surface at s = s,
thus confining the unstable modes around that surface. In what follows, Ry/LT and « refer
to their values at s = so. Both @ and Ry/L7y can be chosen by varying the parameters jo and
Tmw- In the region where the modes lie, the safety factor does not depend on Ry/Lt and
a. The magnetic shear § is low, 0 < § < 0.2, where the modes lie. This has the effect that
all these equilibria are stable to MHD ballooning modes; in particular, equilibria with high
pressure gradients lie in the second stability zone [12].

We use this set to do a generic study of ITG stability as a function of Ry/Lt and « at fixed
safety factor profile, in both the regimes of toroidal ITG (high toroidal mode number n, mode
frequency = w > w, = trapped-ion bounce frequency) and the trapped-ion regimes (low n,
w < wh).

The profiles of the surface-averaged current I*(s) and of the pressure p(s) = n;(s) (Te(s) + Ti(s))
are first used to solve the Grad-Shafranov equation with the code CHEASE [11], yielding the
magnetic field structure that is then used by GYGLES to compute ITG stability.

Results. Figure (2) shows the contours of the growth rates obtained for n = 12 and n = 48 in
the (a,Ro/L7) plane. The frequency of these modes increases with Ro/L7 and with n, while
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Figure 2: Contours of the growth rate (in kHz). Left: n=48, Toroidal ITG regime. Right:
n=12, Trapped-ion mode regime. The crosses (o), circles (z) and diamond (o) represent
respectively equilibria that were found stable, unstable to toroidal modes, and very weakly
unstable to slab-like modes.

the ion bounce frequency w; is fixed. As a results, the n = 12 modes are in the trapped-ion
regime with w < wy, except at high Ry/Lz, where they have a small toroidal ITG character.
Conversely, the n = 48 modes are in the toroidal ITG regime, except at very low values of
Ro/Lrt.

We call “first stability zone” the stable zone, marked “I**” on Fig. 2, that lies below a critical
temperature gradient. Above this gradient, the mode is stabilized for increasing a as VB
decreases and is reversed for a@ > 1, leading to the “second stability zone” for ITG modes,
marked “II"*” on the same figure. In the toroidal ITG regime, these equilibria are fully stable,
while in the trapped-ion regime, a weakly unstable slab-like ITG mode remains. The second
stability regime is therefore strictly stable to toroidicity-related modes only (at least at low
shear), but the slab-like modes are not expected to cause much anomalous transport, as they
are radially narrow and very weakly unstable. The structure of the eigenmodes marked (a)
(a trapped-ion mode) and (d) (a slab-like ITG mode) on Fig. (2), are shown in Fig. (3).
The contours of growth rates corresponding to mixing-length estimates of the heat diffusivity
x1 = 1, 3 and 5 m?/s are shown in bold in Fig. (2). While these values should not be taken
as more than rough estimates, they show that the scan covers most of the experimentally
relevant range of 0.1 — 10 m?/s.

MHD stability calculations. The CHEASE code was used to compute the stability of
MHD ballooning modes. All the equilibria presented here are stable to these modes at the
surface s = sg; this was achieved by lowering the magnetic shear to a 0 < § < 0.2, so pushing
the equilibria with high values of a into the second stability regime for ballooning modes.
Kinetic effects on these modes were not considered [4]. This demonstrates the existence of
a simultaneous second stability regime for ITG modes and for MHD ballooning modes. The
code ERATO [13] was used to compute the stability to kink modes. The points (a), (c) and
(e) on Fig. (2), the latter at a = 1.1, are stable to the global n=1 kink mode; stability at
values of o that are roughly 50% higher is obtained if an ideal wall is added at ry.u/a = 1.2,
assuming sufficient toroidal rotation and wall stabilization effect. In particular, the equilibrium
corresponding to the point at Ry/Lt = 16.3 and a = 1.8 is MHD-stable with an ideal wall
and is only weakly unstable to ITG modes; it is the most interesting global case in our scan.
The corresponding profiles are those of Fig. (1).

ty

Conclusions. We studied the simultaneous access to second stability for ITG modes and for
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Figure 3: Eigenmodes corresponding to the points (a) and (d) shown in Fig. (2).

ballooning modes. The MHD ballooning modes are stabilized by low shear on the surface of
interest in all the configurations presented. The stabilization of ITG modes is well described
by the local magnetic field gradient reversal parameter «, and any ITG-induced transport
should be strongly reduced for a = 1.

Global kink modes are stable without ideal wall up to relatively high values of «, & = 1.1 for
Ro/Lt = 16.3. When a ideal wall at r,,;/a=1.2 is included, one obtains stability at a = 1.8
for the same temperature gradient. This equilibrium has therefore gopod MHD properties
and should have sustainable ITG transport (x. ~ 1 m?/s, Fig. (2)) while its temperature
gradient is three times higher than the critical gradient at low 3. By optimizing the plasma
shape and profiles, we expect to find in the near future improved optimized high-performance
configurations that are stable to all ideal MHD modes and stable or weakly unstable only to
global ITG modes.

We finally note that some experimental discharges seem to have accessed a ~ 1 [6].

This research work was supported in part by the Swiss National Science Foundation and the
Cray-EPFL PATP project. The computations were done on the Cray-T3D parallel supercom-
puter of the EPFL-PATP.
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