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Abstract. We present the first simulations of Ion Temperature Gradient (ITG) modes
in straight helical configurations. A linear particle-in-cell gyrokinetic global code initially
developed for toroidal axisymmetric geometry [1, 2] has been modified to treat the case
of helical symmetry. The model is based on gyrokinetic ions, adiabatic electrons and
electrostatic quasineutral perturbations. The code simulates the full plasma cross-section.
The potential is represented on a magnetic coordinate system and discretized with finite
elements. Analytical extraction of the fast poloidal variation is done on a straight field
line coordinate, allowing a speedup of one or two orders of magnitude. A / = 1 vacuum
field configurations is studied. The very low shear and small \7B drifts imply that for a
wide range of parameters the most unstable ITG modes are "slab-like".

Introduction. Anomalous transport in magnetically confined plasmas is widely be-

lieved to be attributed to micro-instabilities of low frequency drift-wave type. Over the

past years the efforts in the theoretical analysis have focused on axisymmetric configura-

tions of the tokamak type. In contrast, very little has been done for stellarators: previous

works on drift waves [3] - [6] have so far been limited to simple cold ion electrostatic mod-

els with local and ballooning approximations. The present work is the first that addresses

the question of Ion-Temperature-Gradient (ITG) modes in helical geometry. The specific

objective is to get an understanding of ITG modes and to compare with the tokamak

results. The longer term goal is to understand whether or not transport in stellarators,

if determined by such micro-instabilities, can be different from that in a tokamak.

Helical Geometry. In this paper we shall consider helical symmetry (i.e. straight

stellarators). Let r,tp,z be the cylindrical coordinates. Helical symmetry implies that

all scalar equilibrium fields can be expressed as functions of two variables: r and ( =

ip — hz, where h is the helicity. A toroidal configuration of Nper field periods and major

radius Ro is thus modeled by a helicity h = Nper/R0. Let us introduce the following

coordinates: a helical system (x',y') with x' = rcos( , y' = rsin£, and a magnetic

coordinate system (s,0) with s = {{4> — ipmin)/'(VWz — VWn))1/2, where tp is the helical

flux, 6 = arctan(y'/(x' — x'm)), where the magnetic axis position is (x' = x'm,y' = 0). In

addition to the "poloidal" coordinate 0, we introduce the straight field line coordinate x

q=— —de y = - —d9 (1)
q 2TTJO B-V0 X qJo BV0 { '

where the integrals are on a ift = const surface. Note that with this definition the

rotational transform per helical period length L = 2n/h is t = \jq + 1.

The equilibrium magnetic field is given by the representation

u u = (hre^ + e,) /( l + h2r2) (2)

with F a function of 0 so that B satisfies the helical symmetry and V • B = 0. In this



- 14 -

paper we shall restrict ourselves to vacuum fields. They can be expressed as

</> = \Fhv2 - r £ bJKlhr) cos(/C) (3)

where F is a constant and // is the modified Bessel function of order /.

Gyrokinetic model. The plasma ions are described with a linearized gyrokinetic

model with the usual ordering: w/0 ~ fc||/fc_i_ ~ e0/Te ~ p/Ln ~ P/LT ~ O(eg), where

p is the ion Larmor radius, $7 is the ion cyclotron frequency, L^1 = \VIn E\,E — no,T.

Another small parameter is P/LB ~ O(CB), with LB = B/\VB\. Consistent with the

gyrokinetic ordering, the perturbations of interest have k\\ << k±. We use this property

to extract the poloidal phase variation of the mode

f{x,t) = f{s,8,t)eiS ct>{x,t) = 4>{s,0,t)eiS S(s,0,z) = moX{so,9) + kz - uQt (4)

where k = hn/Nper, n is the "helical" mode number, the magnetic surface 5 = SQ is chosen

near the expected maximum mode amplitude, m0 is an integer close to —nqo/Nper, and

q0 = q(so). Note that a perturbation having a single Fourier component m in the straight

field line poloidal angle x has

Bz , ,m n

* h( + 0 (5)

The transformed quantities (</>, / ) are expected to have a slow poloidal variation, the

fast variation having been extracted by the phase factor. This technique will allow us

to study high n modes with the same computational performance as low n modes. The

quantity u>0 is not the eigenfrequency but serves to shift the simulated frequencies; this

is particularly useful to study modes near the marginal stability with 7 << LO.

The unperturbed trajectories of the guiding centres (GC) have three constants of

motion: the kinetic energy, the magnetic moment and the helical canonical momen-

tum $0 = $ + (mi/qi)v\\F/B. The equilibrium ion distribution function / 0 is assumed

isotropic Maxwellian with density and temperature constant on a magnetic surface. The

perturbed distribution function is evolved along the unperturbed trajectories. The elec-

trons are assumed to respond adiabatically. The quasi-neutrality condition, in which the

polarization density is approximated by a differential expression valid up to (k±p)2, close

the system of equations:

dH vjj + v]_/2 dv\\ 1

dt il dt 2

df .dS ~ - E / flf~ f*f~
1-L ^^ J± •*

B V

E(R, v±) = - — / g<j>(x)6(x. - R
Z7T

«||, » i P - x +

dv^
dt

\ d\

•S(R-)),/

P)e t (5(

)\\ 2Vxdv

'V-sWdRt

•e|| (6)

(8)

(9)
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where Q = (iVS + V).
The distribution function / is discretized in a 4-D reduced phase space {x1, y'', i>||,

The potential <f> is discretized with quadratic spline finite elements in (s,8). The new

version of the code has been benchmarked against the axisymmetric version by consid-

ering a straight field configuration (T — Bo = const, 6/ = 0). We have checked that the

results coincide and are independent of the helicity h. Convergence with the timestep,

the mesh and the number of particles, and power consistency have been demonstrated.

Results. We consider the following / = 1 configuration: F — IT, b: = 0.5T,

a = 0.5m, h — lm"1 , flat density, Te = T;, dlnTi/ds profile peaking at s — s0 = 0.5

with Lr/a = 0.1, Ti(s0) = AkeV. This configuration has a flat q profile: qaxis = —1.0405,

kedge = —1.0464, implying that %m(s) ^ const. The magnetic gradients are rather small:

Ls/a ~ 8 (therefore comparable to those of a tokamak of aspect ratio 8).

Simulations have been performed for various helical mode numbers n. The real fre-

quencies u> and the growth rates 7 are shown in Fig. 1,left. For low n, both u> and 7

increase linearly with n. A plot of the mode structure (Fig. 1,right) shows a rather pure

m poloidal dependence. For n > 2, u> > u>b and we do not expect to be in the trapped

ion regime: this has been checked by artificially suppressing the v\\ and v± variation in

Eq.(7) and the result is unchanged. Even for n < 2 we could not find a trapped ion

mode, probably because of the small trapped particle fraction (~ 0.25). Therefore, for

n < 12 the mode is a slab-ITG. As n is further increased, the mode structure becomes

more complicated. In fact, in many cases, several modes are present in the simulation,

indicating that two (or more) modes have similar 7 but different u>. The interpretation

of the PIC simulation results is therefore more difficult. In some cases we were able,

by initializing different perturbations and shifting the frequency, to identify two compet-

ing modes. Another characteristic of the high n modes is that as n increases the mode

amplitude tends to become higher in the unfavourable VB region (low field side). An

example is shown in Fig.2,left. This behaviour is similar to that of the toroidal ITG in

tokamaks. Here we have a "helical-ITG", but the mode structure does not show such a

broad m spectrum as in a standard tokamak: even at high n, we do not have overlapping

of several m's having resonance surfaces in the gradient region: either the whole plasma

is resonant (e.g. for m = 25, n — 24) or it is not, because of the flat q. Another effect

comes into play at high n: finite Larmor radius. For n — 28 we have k±p ~ 1 at s = s0.

The large damping tends to suppress the mode, and this is the reason of the decrease of

7 for high n. This FLR effect is also responsible for the change in the mode localization

(Fig.2,right): at high n it peaks at s ~ 0.6 where T,- is smaller, whereas at low n it

peaks at s ~ 0.4. Thus kgp is nearly constant at the maximum radial mode localization,

therefore u is also nearly constant for n > 22.

Conclusion. These first simulations of ITG modes in a helical configuration indicate

that the modes potentially creating the highest transport are slab-ITGs at relatively low

n. The small VB and the very low shear are typical for such straight stellarators: these

seem to be favourable properties to minimize ITG-based transport.
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Figure 1: Left: frequency u (stars) and growth rate 7 (crosses) as function of the helical
mode number n. Right: contours of the perturbed potential 4> for n = 2.
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Figure 2: Contours of the perturbed potential <j> for n = 14 (left) and n = 42 (right) .
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