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Abstract: A simple configuration consisting in a set of toroidal, helical and vertical field coils is
used to calculate free boundary equilibria with nonzero plasma current and approximately helical
plasma boundary. The amount of helical boundary deformation is controlled by the ratio of the
current in the helical field coils to the current in the toroidal field coils. When this ratio is increased
the (m,n) = (2,1) external kink is stabilized at 8 ~ 1% for inverse rotational transform profiles in
the region ¢ < 2.

1. Introduction

In a previous work [1], we investigated the global ideal magnetohydrodynamic (MHD) stability of
plasmas with a prescribed (fixed) helical boundary deformation and non vanishing toroidal current
with respect to the (m,n) external kink modes n = 1,2,3 and m = n + 1. L = 2, 3 single helicity
and mixtures (of both) configurations were studied by systematically varying parameters such as
the type and amount of helical boundary deformation, the aspect ratio, the number of equilibrium
field periods, the toroidal current density and the pressure profiles. Once these parameters were
fixed, sequences of equilibria differing in the amount of helical boundary deformation and such that
1 < q < 2, were calculated with the fixed boundary version of the VMEC [2] code. The stability
analysis was performed with the TERPSICHORE (3] code. It was shown that increasing the helical
boundary deformation leads to the stabilization of (m,n) external modes withn =1,2,3, m=n+1
at values of 8 ~ 1 — 2%. These modes are unstable in the circular tokamak at the same value of 3.
If 6 is a measure of the plasma boundary deformation, then windows of stability [fmin 6émez] may
exist and depend strongly on the equilibrium parameters.

We reconsider here the study of the (2,1) mode with equilibria calculated with a free boundary code.
The aim is twofold:

1) to test how difficult it is to obtain free boundary equilibria with single helicity bounadry defor-
mation at nonzero plasma current and positive 3.

2) to check the results of the fixed boundary calculations in the sense that we search for stability
windows when the amount of current in the helical coils is monotonously increased.

2. Equilibrium calculations

The calculations of the free boundary equilibria was performed in several steps. First, a system
of coils producing a toroidal (TF), a vertical (VF) and a helical field (HF) is designed; the helical
conductors are wound on a torus according to the following winding law
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with u and v the geometrical poloidal and toroidal angles of a particular coil segment, N, the
number of field periods, [ = 1,..L an index specifying a particular coil and o the pitch modulation
coefficient of the helical coils. The magnetic field B is determined from the Biot-Savart law and a
field line tracing code is used to find the coil geometrical parameters and currents such as to obtain
closed helical flux surfaces in vacuum. The field produced by these external currents is given then
as input to the free-boundary version of the equilibrium code VMEC [4]. At finite 8 and nonzero
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plasma current, the plasma cross section is distorted; the currents in the coils are adjusted until the
plasma cross section recovers an approximate helical shape.

Several types of coils systems (stellarator-, heliotron- and torsatron-like) were con51deled We illus-
trate the results with the example of a L=2 stellarator-like configuration (N, = 4) with 16 TF coils
two piars of 2 HF coils and one pair of VF coils. Sequences of equilibria were calculated with the
following parameters

Ry =5.0[m] ry=18[m] rn =14[m] r, =7.0[m] 2, = £ 2.1[m] a=—-0.150
I; = —1.6 x 10°[4] I, = 1. x 10*[A) (2)
8 =1% , parabolic pressure profile , J'(s) ~ (1 — s%°)®

The subscripts ¢,  and , refer to the TF, HF and VF coils respectively, Ry is the major radius, r and
z are the coils radii and verical positions, I refers to the coils currents and J’ is the toroidal plasma
current density. The equilibria belonging to one particular sequence differ in the amount of HF coil
current I;. The coil system is illustrated in Fig.1 and plasma cross sections for two values of I, are
shown in Fig.2. In this case the plasma current was J = 1.27 - 10°[A]. If the conventional (tokamak)
definition of normalized beta Sy = B/Iy with Iy = J[M A)/(a[m] Bo[T]) where a and By are the
averaged minor radius and the magnetic field intensity on the axis respectively, is used we obtain

On ~4—6.
3. Stability calculations

Let (me, Nperne) and {my,n;) represent the Fourier components in Boozer coordinates (TERPSI-
CHORE) of the equilibrium and perturbation quantities respectively. As the equilibrim configura-
tions has several field periods, a partial decoupling of the perturbation components occurs, depend-
ing on the values of the toroidal mode numbers. The coupling between two perturabtion compo-
nents (my,nn) and (my2,n:2) is nonzero if the following relations hold between the mode numbers:
[1)me = mn £ myy and Npe,n, = nyy £ ngp. This means that the perturbation toroidal mode numbers
are distributed in families of non-interacting modes.

If the mode studied is (m,n) = (2, 1) and if Ny, = 4, the contribution of the coupling (m., Nperne) X
(2,1) x (mmq, n;) to the potential energy W, is nonzero only if n; = 3, 5, 7, 9, etc. When the numerical
study is carried in the parameter region corresponding to 1 < ¢(s) < 2, then a particular attention
should be given to those (m;,n;) perturbation components which are resonat i.e. m; > n >n = 1.
Depending on the g profile, these components can be destabilized and could lead a priori to impor-
tant couplings with (2,1). The contribution of a particular (m,nn) X (miz, n12) coupling to 6W, is
determined by the amplitude A3}, . of the (m., Npern.) equilibrium coupling term - c.f. [1]. Typical
equilibrium quantities appearing in these couplings are N (the Jacobian), |B?|me e and in gen-
eral combinations between the coefficients of the metric tensor [3]. If Ny, = 4 the coupling between
(2,1) and (my,n;) resonant components with n; = 3,5 requires (m., Nperne) components with n, = 1
and m, > 4; the coupling with resonant (m, n;) having n; = 7,9 requires n. = 2 and m, > 8.

The systematic study performed in [1] for fixed helical boundary shapes, showed that the A%, .. am-
plitudes of the (me, Nyerne) components involved in couplings between (2,1) and resonant (m;,n;)
are negligible (compared to the dominant equilibrium components) for any equilibrium quantity
(\/_6me n + |B?*|mene, €tc) and for any boundary deformation é. If the free boundary equilibrium
has an approx1mate helical boundary shape, the above mentioned property remains valid - see Fig.3.
Thus, the study of a particular mode would not require the inclusion in the calculations of the res-
onant perturbation components {n and n; € the same family). This hypothesis was verified in the
sense that the ratio of any of the (m,n) x (my,n;) coupling contributions ((m, n;) resonant) to §W,
to the dominant contributions to W, is very weak i.e. < 1074,

At the beginning of the equilibrium sequence presented in Fig.4 i.e for I, = 0.6 x 10° [A] the q profile
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Figure 1 : stellarator-like conﬁgura},ltion Figure 3 : /g amplitudes for the free boundary equilib-
with 16 TF coils, two pairs of 2 HF coils  rium described by Eq.(2) The z-axis corresponds to the n. equi-
and one pair of VF coils librium mode number. The points marked with '*’ represent
the equilibrium components responsible for couplings between
the (2,1) mode and the (my,n;) perturbation components with
m; >n; > 1 fonly then, <2 i.e. iy <9 are shown). All other

equilibrium components are marked with ’o’.
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Figure 2 : Free boundary equilibrium fluz surfaces produced with VMEC. Each column represents the
cross sections at one toroidal angle and each of the two rows are associated with one value of Iy.
The coil system is represented in Figure 1. The equilibrium parameters are those of Eq.(2); the two
equilibria correspond to the points just before and just after the stability window in Fig.4
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Figure 4 : Study of the (2,1) mode: (@) plasma current density profile, (b) q(s) profile, (c) sequence
of most unstable eigenvalues w2, (Iy) when the coil geometry and plasma parameters are given by
Eq.(2) and the lines that follow. The aspect ratio is 1/e ~ 10 and the toroidal plasma current is
J = 1.27-10°[A]. The inverse rotational iransform profile is represented for I = 0.60 x 10°A (-),
1.0 x 105[A] (- -) and I, = 1.30 x 10°[4] (‘). The stability window is delimited by the two vertical

lines and is associated with values of Iy between 1 x 10°[A] end 1.3 x 10°[4]

is such that the (2,1) component is already destabilized. The effect of increasing I, is to lower the
inverse rotational transform. The (2,1) component is strongly destabilized and becomes the domi-
nant perturtbation component - we speak then about the (2,1) mode. The most unstable eigenvalue
w2, (I) decreases until a minimum is attained, after which it starts increasing again; this is the
stabilizing effect associated with an increasing (near)helical boundary deformation. Depending on
the equilibrium parameters, a stability window I,;; = [I"™, II"®*] may appear in the sense that all
(m, 1) components with m > 1 are stable and the (1,1) component is not yet destabilized. Fig.4 (c)
illustrates a stability window bounded by I*" ~ 1.0 x 10°[A4] and I[*** ~ 1.3 x 10°[A].

When the resonant perturbation components i.e. (my,3) with m; > 3, (my,3) with m; > 3, etc are
taken into account and the stability calculations are performed again for those equilibria in the stable
window, then several unstable eigenvalues may appear for each I € I Each of these eigenvalues
is associated to one of the resonant (my,n;) modes (component whith largest amplitude). We sys-
tematically checked each of the (2,1) x (my,n;) and (1,1) x (my,n;) coupling contribution to §Wp
and found that they are indeed negligible i.e. < 107* compa:ed to the dominant contributions.
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