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Abstract. The formulation of the guiding centre drift orbits is extended to relativistic particles

in canonical coordinates with arbitrary time dependent electric and magnetic fields. The transforma-

tion to these coordinates from general flux coordinates is cumbersome for practical applications. This

transformation is straightforward for Boozer magnetic coordinates which are canonical if the perturbed

magnetic field is constrained to the form SB = Vx(TB) .

A Hamiltonian formalism in canonical coordinates constitutes the most transparent

and compact approach to treat the guiding centre drift orbit problem. In this paper, we

extend to relativistic particles the formulation in a canonical coordinate system that is

valid for arbitrary three dimensional (3D) time dependent electric and magnetic fields

[1,2]. For a 3D equilibrium calculated in a different coordinate system, we demonstrate

that the transformation to the canonical coordinates is too complicated for useful appli-

cations. For Boozer magnetic coordinates [3], the transformation is simple. However, the

perturbed magnetic field structure cannot be arbitrary for this system to retain canonical

properties.

To define canonical coordinates in a torus with arbitrary time dependent electric and

magnetic fields requires that these coordinates (r, 8, Q satisfy the property that the vec-

tor potential and the magnetic field be expressed as [1]

A = $(r, 9, C, t)V9 - V(r, 9, C, t)V( , (1)

B = Bg(r, 8, C, t)V9 + Bc(r, 9, (, t)V( . (2)

where r is the radial variable 9 is the poloidal angle and £ is the toroidal angle. In other

words, the coordinates are canonical when the radial components of A and B in the

covariant representation vanish. As B = V X A, the magnetic field in the contravariant

representation is B = V£xVV> + V $ x V 0 . The canonical momenta in the drift ap-



- 30 -

proximation are given by P = p\\B/B -f eA. The corresponding relativistic Hamiltonian

is

H = H{p,x,t) = Jpf.c2 + 2fiBmoc
i + mfc* + eX(x, t) = jm0c

2 + eX{x,t) , (3)

where p|| = P||/eB is the parallel gyroradius, x is the electrostatic potential, p. is the

magnetic moment, e is the particle charge, c is the speed of light, mo is the particle rest

mass and 7 is the relativistic gamma factor. Applying the Hamiltonian formalism, we

derive the equations of motion in the drift approximation [2]
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where D = B^dQ/dr + Bedi/>/dr + p\\ (BcdBe/dr - B9dBJdr\

Now we consider a 3D static equilibrium with nested magnetic flux surfaces. The

magnetic field in the contravariant representation is B = VaXVV" and in the co-

variant representation is B — V»7 + /?Vs where a ~ C, — q{s)[8 + X(s,0, £)], rj =

|io[J(5)0 - I(s)C + Q(s, 0, C)] and /? = ^o[/'(5)C - J'{a)9 - u(s, 0, C)], where q(s) is the in-

verse rotational transform, 2TTI(S) and 2nJ(s) are the poloidal and toroidal current fluxes,

respectively. The periodic function A is determined from the condition j • Vs = 0. The

periodic functions Q and u are still unspecified. It is usually the case that a 3D equi-

librium is known in a different set of coordinates (s,u,v) (calculated for example with

the VMEC code) and a transformation procedure to the desired canonical coordinates
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(s,9, 0 must be prescribed. To do this, we identify 9 = u + h(s,u, v) and £ = v + k(s,u, v)

where h and k are periodic functions of the known poloidal and toroidal angles u and

i>, respectively. For straight field lines, X(s,9,Q — 0. The functions a, 77 and /?, being

scalars, are invariant with respect to coordinate transformations. From the relations for a

and rj, we obtain h(s, u, v) = Qv(s, w, v) — Q(s, 0, Q — q(s)I(s)X(s, u, v)/[J(s) — q(s)I(s)]

and k(s,u,v) = q(s)Qv(s,u,v) — Q(s,0,Q — J(s)X(s,u,v)/[J(s) — q(s)I(s)] where the

function Q(s,9, Q = Q[s,9(s,u,v),C(s,u,v)] must still be specified. Invoking the ex-

pression for /?, we obtain that uc[s, 9c(s,u, v),(c(s,u,v)] = uv(s,u,v) + J'(s)h(s,u,v) —

I'(s)k(s, u, v) which we combine with the condition that the covariant radial component

of B must vanish in the canonical coordinate system to derive the differential equation

dQc

ds
- , , J'(s) - q(s)r{s)

)I(s) J(s) - q(s)I(s)

' ^v y J(s) - q(s)I(s) " V " ' - ' - ' -

The resolution of this equation for the transformation from an arbitrary coordinates

system to canonical coordinates is an extremely cumbersome procedure that makes the

applicability of this formulation virtually impractical.

Boozer magnetic coordinates [3] are defined for 3D systems in which the unperturbed

magnetic field forms perfect nested magnetic flux surfaces. These coordinates are also

canonical if the time dependent portion of the magnetic field is constrained to have the

form [4] SB = Vx[T(«,tf ,^ ,f)B]. This form is adequate to describe that radial com-

ponent of any perturbed magnetic field [4]. Furthermore, the Boozer coordinates satisfy

X(s,$,</>) = 0 (straight field lines) and Q(s, i?,<£) = 0 which allows a straightforward

determination of the periodic functions h and k and consequently the mapping from

VMEC-like coordinates. The vector potential is A = $(s)Vt? - ip(s)V(f> + T(s, •&, </>, t)B.

The canonical momenta are P# — e[$(s) + pcfJ-oJ(s)] and P$ = — e[ip(s) + pc(iol(s)]

where the effective gyroradius is pc — p\\j{eB) + T [5]. Inverting these relations, we have

s = s(P#, P4,) and pc = pc(P$, P^>)- Applying the Hamiltonian formalism, we obtain the

equations of motions
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In conclusion, we have extended the formulation of the guiding centre drift orbits in

canonical coordinates valid for arbitrary time dependent electric and magnetic fields to

relativistic particles. However, the transformation from a general flux coordinate system

to these canonical coordinates is too cumbersome for parctical applications. The trans-

formation to Boozer magnetic coordinates, on the other hand, is straightforward and

this coordinate system is canonical for perturbed magnetic fields constrined to the form

SB — V x ( T B ) . The relativistic guiding centre drift equations of motion are explicitly

derived in this system.
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