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Abstract

The investigation of the global ideal magnetohydrodynamic (MHD) stability of plasmas
with helical boundary shape and nonvanishing toroidal plasma current constitutes the
principal aim of this work. Global external modes with small values of m, n (typically
n = 1,2,3 and m = n +1) are studied, where m and n are the poloidal and toroidal mode
numbers, respectively.

The first and main part of the work concentrates on fixed boundary equilibria gener-
ated by systematically varying parameters such as the type and the magnitude of the
boundary deformation, the number of equilibrium field periods Nper, the aspect ratio, the
toroidal current density profile, (3 and the pressure profile. Due to the periodicity of the
equilibrium, couplings between Fourier perturbation components with different toroidal
mode numbers n occur and lead to the apparition of families of modes. The study of
a particular (m,n) mode has to take into account all {mi,ni) perturbation components
with ni belonging to the same family as n. The stability analysis is carried out in the pa-
rameter region where the inverse rotational transform (the safety factor in the traditional
tokamak notation) q < 2.0 and ft < 2%. A particular property of the configurations in-
vestigated is that equilibrium Fourier components (me, Nperne) which are involved in the
couplings between the (m,n) mode studied and the (mfc,nfc) perturbation components
with rrik > n^ > n (that exhibit resonances in the q > 1 region are very small. As a
consequence, the contributions of the (m,n) x (mk,rik) couplings to the potential energy
are very weak.

It is shown that a helical boundary deformation can stabilize the n = 1,2,3 external
modes; if 5 is a measure of the plasma boundary deformation, then windows of stability
[&min, fimax] may exist for a large variety of equilibrium parameters. The results are anal-
ysed in terms of stability areas in the (qaxis, qedge) plane. In order to enable a systematic
exploration of the space of parameters, an investigation procedure based on jobs chaining
and automatic selection of input data for the equilibrium and stability codes has been
conceived and implemented.

In the second part of the work, a system of coils that produce a helical, a toroidal and a
vertical magnetic field is proposed to obtain configurations with the desired helical bound-
ary shape. A field line tracing code is adapted to fine tune the current and geometrical
parameters of the coils to generate closed, helical magnetic surfaces that approximately re-
produce those of the fixed boundary calculations in vacuum. The magnetic field from the
external currents is given as input to a free boundary equilibrium code which calculates
equilibria with a prescribed toroidal current density and finite (3. Finally, the stability
analysis is performed and the main conclusion of the fixed boundary calculations, namely
the existence of a stability window, is confirmed.
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Resume

Le but principal de ce travail a ete I'investigation de la stabilite MHD globale des plasmas
avec deformation helicoidale du bord et courant toroidal non nul. Les modes globaux
externes (m,n) avec nombre d'onde poloi'dal m et toroidal n reduits, plus precisement
n = 1,2,3 et m = n + 1, ont ete etudies.

Dans la premiere partie du travail, des equilibres avec bord du plasma fixe ont ete generes
en variant de maniere systematique des parametres comme le type et l'amplitude de la
deformation du bord, le nombre de periodes d'equilibre du champ magnetique Nper, le
rapport d'aspect, le profil de densite de courant toroidal, le facteur (3 et le profil de pres-
sion. En raison du caractere periodique de Pequilibre, des couplages ont lieu entre des
composantes de Fourier de la perturbation ayant des nombres d'onde toroidaux differents,
ce qui entraine l'apparition des families de modes. L'etude d'un mode particulier (m, n)
requiert la presence de toutes les composantes (m^ni) avec n/ appartenant a la meme
famille que n. L' analyse de la stabilite a ete effectuee dans la zone des parametres pour
lesquels l'inverse de la transformee rotationelle (le facteur de securite dans le language
tokamak traditionnel) q < 2.0 et (3 < 2%. Une des proprietes caracteristiques des config-
urations etudiees est la suivante: les composantes de Fourier (rne,Nperne) de l'equlibre,
impliquees dans les couplages entre le mode (m,n) etudie et les composantes (rrik,nk)
de la perturbation avec m^ > njt > n (resonnantes pour q > 1), sont tres faibles. Par
consequent, les contributions des couplages (m,n) x (mfc,Ufc) a l'energie potentielle sont
tres faibles.

II a ete montre qu'une deformation helicoi'dale du bord du plasma peut stabiliser les kinks
externes avec n = 1,2,3. Si S represente une mesure de la deformation du bord, des
fenetres de stabilite [SminSmax] peuvent apparaitre pour une large variete de combinaisons
de parametres d'equilibre. Les resultats ont ete analyses en termes de zones de stabilite
dans le plan {qaxe, qbord}-
Une methode a ete concue et implementee pour automatiser les calculs intensifs provoques
par l'investigation a large echelle de l'espace des parametres.

Dans la deuxieme partie du travail, un ensemble de bobines produisant un champ helicoidal,
toroidal et vertical a ete propose pour obtenir des equilibres plasmas avec le type de
deformation du bord souhaite. Un code permettant de suivre les lignes magnetiques a ete
adapte pour trouver les courants et les parametres geometriques des bobines necessaires
pour generer des surfaces de flux fermees helicoidales dans le vide, reproduisant approxi-
mativement celles des calculs avec bord fixe. Le champ du vide ainsi obtenu a ete utilise
comme input par un code d'equilibre avec lequel on a calcule des equilibres avec bord du
plasma libre, courant plasma non nul et j3 fini.
En dernier lieu, l'analyse de stabilite globale a ete effectuee et le principal resultat obtenu
suite aux calculs avec les equilibres a bord fixe, a savoir l'existence des fenetres de stabilite,
a ete confirme.
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Chapter 1

Introduction

1.1 The subject

Tokamaks and stellarators are presently the two leading systems in the magnetic con-

finement fusion program. Tokamaks, among which the largest existing devices like the

Joint European Torus (JET) [1], the Tokamak Fusion Test Reactor (TFTR) [2], the Japan

Tokamak (JT-60) [3]) are to be found, are basically pulsed machines and the maximum

magnetic flux produced by the Ohmic current transformer is a crucial factor limiting the

duration of the pulse. Current drive techniques like Neutral Beam Injection (NBI) or

radio frequency (rf) waves are employed to bring tokamaks to a steady-state regime but

this procedure requires additional input power and increases significantly the total cost

of the machine.

With respect to this problem, stellarators have the inherent advantage of operating in a

steady-state regime. The absence of net plasma current eliminates the risk associated with

disruptions and reduces the complications arising from combining current drive schemes

with the conditions for good confinement at high (3. Moreover, the currents flowing in

external conductors allow a wider control of the parameters of the magnetic configuration

compared with the tokamak case. This flexibility has to be paid through complicated

and difficult to manufacture systems of helical coils or sets of three-dimensional coils in

the modular systems. Assembling has to be very accurate because slight misalignments

may alterate the magnetic surfaces and introduce important island structures. In this

category we find large devices like the Wendelstein 7-X (W7-X) [4], the TJ-II heliac [5]

and the Large Helical device (LHD) [6] characterized by a high aspect ratio A > 7 as

well as compact machines like the Compact Helical System (CHS) [7] and the Compact

Auburn Torsatron (CAT) [8]) with A « 5.

Beside these classical configurations a series of new concepts have emerged during the

last years. The ULAR (ultra low aspect ratio) tokamaks like the Small Tight Aspect
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Ratio Tokamak (START) [9], the Current Drive Experiment-Upgrade Tokamak (CDX-U)

[10]) seem promising for obtaining high density and high (3 plasmas with relatively low

magnetic field. The ultra low aspect ratio spherical stellarator (SS) [11] which differs from

ULAR tokamaks by the inclination of the external parts of the toroidal field coils, offers

closed magnetic surfaces in vacuum with large enclosed volume, high external rotational

transform and strong vacuum magnetic well. An important characteristic of the SS is

that the net plasma current is non vanishing; it is shown in [11] that bootstrap effects can

supply the current necessary for high (3 equilibrium. The tokamak-stellarator hybrid with

inclined coils - the stellamak - presented in [12] was proposed with the standard toroidal

field (TF) and poloidal field (PF) coils of the tokamak and in addition a system of simple

inclined planar coils to produce stellarator effects. The device should be able to operate

as a pure tokamak, as a pure stellarator or in a hybrid manner with smooth transitions

between these regimes depending on the current flowing in the coils. Finally, EPEIUS

[13] - a small aspect ratio tokamak-torsatron hybrid with modular coils was recently de-

signed to operate with non zero toroidal plasma current and a total rotational transform

with a profile similar to that of tokamaks. The study of the magnetic surface resilience

as function of the plasma current and of the disruptions induced by this current in the

presence of an externally imposed rotational transform are among the main goals of the

proposed EPEIUS experiment.

The present work considers plasmas with a helically deformed boundary and non zero

net toroidal current. This type of configuration is closer to the standard devices than

to those mentioned above; its main characteristic is however that the plasma current is

immersed in a stellarator-like field. We decided to study the current-driven external kink

modes which appear in such a configuration. According to the global MHD theory, these

modes can set severe limits on the current flowing in confinement devices. The stability of

helical modes has been widely investigated but most of the numerical or analytical results

have been obtained for straight plasma columns (with or without an additional external

rotational transform) or for tokamak configurations (the currentless stellarators were not

the object of systematic studies with respect to this problem)

It is known - see [14], [15] - that the most dangerous helical modes are those with small

m and n. This statement expresses a rather general tendency of stability to improve with

increasing m; it does not necessarily mean that for any m, the mode with m = m + 1

is more stable than the mode with rn = rh. In tokamaks, some of the most important

current limitations come from the n = 1 internal kink, the Kruskal-Shafranov condition,

and the m > 2 low j3 external kinks. If q represents the safety factor then the n = 1, n = 1

internal kink requires qaxis > 1 for stability; this mode (including the resistive case) and



its nonlinear evolution is believed to be responsible for the sawtooth oscillations observed

in tokamak experiments. The Kruskal-Shafranov limit leads to the condition qedge > 1 and

stability against higher m external kinks requires a current profile which decays to zero

sufficiently rapidly near the plasma edge, typically implying qedge/<j[axis — 2-3 The effect

of the current profile on the stability of kink modes in cylindrical tokamaks is analyzed in

[16] on the basis of the Succesive Current Layer (SCL) principle (developed in the same

reference). The current profile is considered to be the sum of nested cylindrical current

layers disposed around the initial axis and the effect of adding an individual layer on the

stability properties is studied. The authors present some optimized current profiles c.f.

[16], and conclude that qedge > 2 is a theoretical limit ensuring the stability against all

kink (and tearing) modes.

The effect of an external rotational transform ih on the plasma stability with respect

to helical modes was first analyzed in the simplest case of a pressureless straight plasma

column with uniform current density [17]. It is shown that for t/, = const analytical condi-

tions for stability can be obtained; stability windows at fixed n appear when varying t(a)

(the value of the total rotational transform t at the plasma boundary r = a) in the interval.

If modes with different n are taken into account the gaps of stability dissapear. The

more general case of an non uniform current density and non constant external rotational

transform, was considered by M.I.Mikhailov and V.D.Shafranov in [18]. Using the SCL

Principle, the authors analysed the role of the individual regions of the current channel for

ensuring stability. They showed that the central and peripherial current layers play oppo-

site roles in tokamak-like configurations t' < 0 and stellarator-like configurations t! > 0 but

concluded that that the growth of the absolute value of the difference |At| = \t(a) — t(0)|

improves the stability in both cases. In a later publication [19], the same authors extended

their analysis to the cases where a conducting shell is present. A relation was derived

which expresses a stability condition for a current channel of radius r with respect to the

m/n mode with resonance surface between the plasma boundary and the conducting shell:

(m - l)i - n + ih + rt'h/2 + L[(m + l)t - n - th - n'h/2] > 0 (1.2)

with L = (r/b)2m and b is the shell radius. From Eq.(1.2) it results that for tokamak-like

profiles t' < 0, th = 0 with ij(0) < 1 the ideal modes with m = n + 1 and resonant surface

in the vacuum are always unstable. Here ij is the current rotational transform. When



an external rotational transform is added these modes are unstable if tj(0) < 1 — t/i/n;
in principle stabilization can occur even at ij(0) < 1. Using Eq.(1.2) and assuming
tA(r) = const, diagrams of stability with respect to the (m = n + l,n) modes were cal-
culated in the (tj(a),ih) plane; stability zones appeared for Lh larger than 0.4-0.6. The
authors conclude that the shearless stellarator rotational transform can stabilize all ideal
modes; for that purpose the stellarator rotational transform should be of the order of
the current rotational transform t/, ~ t j . It is also stated that rather small stellarator
transforms of the order 0.1-0.15 are useful for stabilizing the most dangerous 2/1 mode
(from the viewpoint of disruptive instability) at different current profiles and t(0) = 1.

1.2 The objectives

With respect to the results of these previous investigations we formulate the objectives of
the present work as follows:

• The global MHD stability of toroidal configurations having a helical plasma boundary,
arbitrary toroidal current density profiles and finite f3 will be investigated with respect to
(m,n) external kink modes with small toroidal mode numbers n =1, 2, 3, and poloidal
mode numbers equal to m = n + 1.
• The role of the (helical) boundary shape will be studied in particular. For this purpose
the numerical equilibria will be calculated with a fixed boundary code like VMEC (cf.
Chap.2). The set of equilibrium parameters used in our investigation consists of the type
and amount of boundary deformation, the plasma current density profile, the number
of field periods, the aspect ratio, the pressure profile and /?. The expression "boundary
deformation" will be frequently used and means the deviation from the circular tokamak
cross section.

The external rotational transform results from the prescription of the boundary shape and
the total t is determined then from equilibrium computations; it is no longer calculated as
the sum of two separate contributions t = tj + ih with a second term th artificially added
to the system. This is an important difference when comparing with [17], [18] and [19].

• As the work consists mainly in a numerical study with a large number of parameters
considered, a method of investigation will be developed. Its aim is to define how the
space of parameters should be explored in a systematic way and to create appropriate
tools for running the equilibrium (VMEC) and stability (TERPSICHORE - c.f. Chap.2)
codes in an efficient and handy way (from the view-point of the user). The method is
designed to serve our purposes but should be flexible enough to be applied for systematic
3D equilibrium and/or MHD stability investigations of any type of configuration.



• Mercier and to a certain extent ballooning stability will also be considered but not as

principal objects of the study.

This thesis is organized as follows: In Chap.2 the numerical tools used in the investigation

are presented together with the underlying theoretical aspects of 3D equilibrium and

stability. Chap.3 describes in detail the configurations which are studied and explains

the choices which were made when selecting the equilibrium and stability parameters.

The investigation method is presented in Chap.4; the peculiarities of the configurations

studied which determine the details of the investigation procedure are discussed. Finally,

the results are presented in Chap.5. Chap.6 represents an extension of the study. Its aim

is to discuss the possibility of practically realizing a configuration of coils which produce

the desired type of helical boundary deformation. The summary and conclusions are given

in Chap. 7



Chapter 2

Equilibrium and Stability

2.1 Equilibrium and the VMEC code

The 3D fixed boundary equilibria with nested magnetic surfaces and single magnetic axis

are generated with the VMEC code [20] [21]. The basic equations describing static MHD

equilibrium in magnetically confined plasmas are given by the Gauss law, Ampere's law

and the MHD equilibrium force balance equation

J = fiQ V A B

FMHD = JAB-Vp = 0 (2.1)

where B is the magnetic field, J represents the plasma current, fj,0 is the permeability

of free space and p is the isotropic plasma pressure. The quantity FMHD is the residual

MHD force which must vanish in the equilibrium. In a geometry with nested flux surfaces,

a coordinate system (s,u,v) is introduced with, 0 < s < 1 the radial coordinate which

labels the magnetic flux surfaces, and u and v the periodic poloidal and toroidal angular

variables. A general representation of the magnetic field which satisfies B • Vs = 0 and
—• —*

V • B = 0 is given by

§ = Vu A V $ + V $ A Vu* (2.2)

Here 2TT\E'(S) is the poloidal magnetic flux and 2TT$(S) is the toroidal magnetic flux ($ is in

fact proportional to s). The u* variable represents a generalized poloidal angle such that in

(5, u*, v) the magnetic field lines are straight. It is related to u through the expression [22]



u* = u + X(s,u,v) (2.3)

where A is a periodic stream function with zero average over a magnetic surface. The

contravariant basis vectors are e1 = VQJ with a = (s,u,t»), the covariant basis vectors

are e*; = dx/dai = y/gVe^ A Vek and y/g = (Vs • Vu A Vu)"1 is the Jacobian. The

contravariant components of the magnetic field become then

: 3? (*>-£)

—*
In the covariant representation B is written as

B = XsVs + J{s)Vu - I(s)Vv + VQ(s, u, v) (2.5)

where the covariant components are

B - X + ^

^ (2-6)

with J(6) the toroidal current flux function and I(s) the poloidal current flux function.

The periodic function Q(s,u,v) is generally derived from A, $, \P, J and / using the

transformations between the co- and contravariant components of B. The B • V operator

aquires the following form

*-*-(™-6£)h(*u+8M (2-7)
In the inverse representation of the MHD equilibrium, the (5, u, v) coordinates are con-

sidered to be independent and the cylindrical coordinates (R, C, Z) form the dependent

coordinates which are expanded in Fourier series



R(s,u,v) = J2 Rmcne(s)co$(meu - nev)

Z(s,u,v) = 51 ZmenXs)sin{meu - nev) (2.8)
me,ne

= V

The A function which was retained to allow flexibility in specifing the poloidal angle is

expanded as

\(s,u,v)= J2 Amene(s)sm(mett-neu) (2.9)

Its role is to renormalize the poloidal angle in an iterative procedure such as to minimize
the spectral width of the Fourier series with respect to the poloidal mode number me.

The VMEC code computes the Fourier amplitudes Rmc,nc(s), Zmetne($) and Amei7le(s) us-
ing an energy minimization technique based on the functional

=l d3x[B2/(2f,0)+p/(r-l)} (2.10)W

with F being the adiabatic index and fip representing the toroidal domain. The variations
of W are performed with respect to virtual displacements of B and p which leave invari-
ant the magnetic flux functions ^ and $ and the mass function M(s). The cylindrical
coordinates (/?, C,Z) and A are supposed to depend on the flux coordinates and also on
an artificial time parameter t

dW

— =
(2.11)

ff j.±\n( B2\ fdRdZ dZdR\)
J Js=i I \ 2^0/ V^u dt du dt 1\

with FR, FZ and F\ given in [22] and a £ (s,u, v) [23]. The last term represents the
energy change due to the moving plasma-vacuum interface. In a fixed boundary calcula-
tion as in VMEC, it dissapears because by definition dR/dt = dZ/dt = 0 at s = 1. The
surface contribution appears only in free boundary calculations where it has to be com-
puted consistently with the fields produced by the currents flowing in the external coils.
It is shown in [21], [23] that the coefficients FR, FZ and F\ correspond to the different
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components of the force balance equation (2.1). Thus, for a fixed boundary plasma, W is

stationary when the MHD equilibrium equations FMHD — 0 are satisfied. The minimisa-

tion of W is performed via a steepest descent procedure coupled with the application of

a preconditioning algorithm [21].

2.2 MHD Stability and the TERPSICHORE code

2.2.1 The Boozer coordinate system

Originally, the introduction of the Boozer coordinate system [24] was derived from neo-

classical transport considerations. A. Boozer formulated the equations for particle drift

orbits in a new magnetic coordinate system which separated the fast particle motion along

the magnetic field lines from the slow drift across the lines.

Nuhrenberg and Zille showed later [25] that these coordinates were also suited to the for-

mulation of the ideal MHD stability problem. The advantage of using them in numerical

computations will be mentioned in the following section. In the Boozer coordinate system

(s, #,</>), 0 < s < 1 represents the radial variable, 0 < 0 < 2TT is the periodic poloidal

coordinate and 0 < <j) < 2nfNper is the periodic toroidal coordinate with Nper being the

number of equilibrium field periods. The contravariant expression of the magnetic field is

written as

B = V^AV\f + V$AVO (2.12)

with ^{s) being the poloidal magnetic flux function and $(s) being the toroidal magnetic

flux function. This form satisfies the condition B • Vs = 0 supposing configurations with

single magnetic axes, nested flux surfaces and no islands or X-points. The contravariant

components B% = B • VQ,-, i 6 (s,9,<j>) can be easily derived

In covariant form the magnetic field is written in the form

B = BsVs + J{s)V9 - I{s)Vcf> (2.13)

where J(s) represents the toroidal current flux function and I(s) represents the poloidal

current flux function.



The VMEC coordinate system was designed to minimize the spectrum of Fourier modes

necessary to obtain the equilibrium to a specified accuracy. A stability code may have

other criteria for choosing an optimal coordinate system; the numerical computation of

MHD stability in 3D systems requires for example a reliable representation of the B • V

operator and of the parallel current (the latter is an important source of instabilities).

In the Boozer coordinate system the magnetic field lines are straight and the B • V oper-

ator is written as

After some algebra the radial component of the force balance equation takes the form

\s) + &(s)J'(s) - $'(a)/'(s) = ,/gB • V(5S) (2.15)

This relation is used to find the radial covariant component of the magnetic field. The

V • j = 0 condition leads to

P \s) r/.\vV3 i JY,,\~V^ (2 16)
v ' 30 v ' d<f>

which serves for the determination of the parallel current. Thus, both Bs and j • B/B2 are

evaluated by solving magnetic differential equations which are simple in form and based

on a simple representation of the B • V operator. This represents an important reason for

formulating the ideal MHD stabiliy problem in the Boozer coordinate system.

2.2.2 Reconstruction of the MHD equilibrium in Boozer coori-
nates

The geometry resulting from the code VMEC has to be mapped into the Boozer coordinate

system used in TERPSICHORE. The angular variables in the Boozer system (6, <f>) are

related to the angular variables of the equilibrium (u, v) by

9 = u + a(s,u,v)
(2.17)

()

Expressing V# and V</> in the equilibrium coordinates and equating the corresponding

contra- and covariant expressions of B in the VMEC coordinates (Eq.(2.2)) and in the

10



Boozer coordinates (Eq.(2.l2)), one obtains a set of equations for the derivatives da/du,

d'y/du, da/dv and dj/dv. Integrating these equations gives

$'(s)Q(s,u,v) - J(s)X(s,u,v)
7 V'(s)J(s)&(s)I(s) { }

with Q and A being the functions appearing in the covariant (Eq.(2.5)) and contravariant
(Eq.(2.2) and Eq.(2.3)) expressions of B in the VMEC coordinates. The computation of
a and 7 proceeds as follows: first, the function A is computed from j • Vs = 0 by solving
a linear elliptic equation in each flux tube

g^cP _ (g^ g^A d2X guu d2X
/du2 \y/g y/gj dudv y/g dv2

\d_ (g^A _ d_ fg^Xl dX \d_ f g ^ \ _ d_
^T (2-20)

du \ / j 'd \ / ) d \ / ) d \ / j

The necessary equilibrium information is provided by the geometry i.e the inverse vari-
ables R, Z and £ on each flux surface and by the toroidal and poloidal magnetic flux
functions $(5) and $(s). Then, the current flux functions J(s) and I(s) are calculated
by integrating

J{s)= [ ds<ky/g{j-Vv) (2.21)
J S

J S
(2.22)

with the integrands depending on the equilibrium data and A. Combining equation
(Eq.(2.5)) with the metric relations between the co- and contravariant components of
B gives

* M + £ ) - ' « (2-23)

5 f ( * « + ! ) + ' w (2-24)
11



and Q is obtained by integration. Here #_,• = §|r§f]r, xk G {R,C,Z}, ?'j G {s,u,v}

are the covariant components of the metric tensor g. At this stage all the information

necessary to evaluate Eq.(2.17) is available.

2.2.3 Energy Principle and MHD stability

The testing of ideal MHD stability in arbitrary 3D geometry can be done through an

elegant and powerful procedure known as the Energy Principle. The derivation of this

principle starts with the general linearized equations of motion. A static ideal MHD

equilibrium is assumed with

jo A Bo = Vp0

jo = VAB 0

V - 5 0 = 0

v0 = 0

and all quantities are linearized about this background state A(f, t) = Ao(f) + ;4i(F,t)

with Ai/A0 « 1. The initial condition are Ai(r, 0) = 0 with the exception of v[(f, 0) =
—• —*

d£(r, 0)/dt where £ represents the displacement of the plasma away from its equilibrium

position. All perturbed quantities are expressed in terms of £ and assuming a time depen-

dence of the form Ai(f,i) — Ai(f)exp(—iuit); the substitution into the MHD equations

gives

F(f) = (V A Q) A B + (V A B) A Q + V(7PV • f + f • Vp) (2.25)

where p stands for the mass density and Q = V A (£ A B) is the perturbed magneticfield.

Equation (2.25) can be solved as an eigenvalue problem with the eigenvalue w2. The force

opeartor F is self-adjoint [26] which implies that u>2 is real and stability transitions occur

only when u2 crosses zero rather than some other point with Im(u) = 0 and Re(u) ^ 0.

Because of the self-adjointness of F, the stability problem can be recast in the form of

a variational principle [27]. The dot product of (2.25) with £* is formed and integration

over the plasma volume yields

(2.26)
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with

sw((*,£) = ~

The variational principle states that any allowable function £ i.e. bounded in energy and

satisfying appropiate boundary conditions i.e. regularity at origin £(0) = 0 and conduct-

ing wall on the plasma boundary £(1) = 0, such that u2 becomes an extremum is an

eigenfunction of the linearized ideal MHD eigenmode equation (2.25). The quantity SW

represents the change in potential energy associated with the perturbation and the quan-

tity K is related to the kinetic energy. A minimum of the potential energy is attained at

the extremum corresponding to the smallest eigenvalue u2. The Energy Principle states

that an equilibrium is stable if and only if SW(£*,£) > 0 for ail allowable displacements

£. If the minimum SW is negative, the Energy Principle guarantees that the actual eigen-

value UJ2 must be smaller than the eigenvalue u>2 = SW/K < 0 calculated with the trial

function. The existence of an allowable trial function such that SW < 0 is sufficient for

instability [27], [28].

Such as formulated above, the energy principle is applicable to systems in which the

plasma is surrounded directly by a conducting wall. If a vacuum region is present, then

the integration domain must be extended to the whole plasma and vacuum volume and

the complicated jump conditions arising at the plasma-vacuum interface must be taken

into account when generating the trial functions. The reformulation of SW known as the

Extended Energy Principle makes the vacuum contribution appear explicitly and includes

the pressure balance across the interface condition as a natural boundary condition. This

leads to the following expressions for the potential energy [29]

SW = SWP + SWS + SWV (2.27)

= \f ^[l<5|2-fA(jA(3) + 7P|V^12 + (f-Vp)(V.O] (2.28)

^ - ^ - I K ' + T ) ] (2-29)
SW. = i / <i¥|B,|2 (2.30)

L Jvacuum

where SWP, SWs and SWy represent the plasma, surface and vacuum contributions. The

surface term vanishes unless currents flow on the plasma-vacuum interface. Here
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means the jump in A from plasma to vacuum. #i denotes the perturbed magnetic field

in vacuum which satisfies [29]

" • Bi \wau = 0

j.n-1 . yw/.RU (2-31)
K ' o\ {interface = n ' V A (^l A D) \interface

The Extended Energy Principle states that a system is exponentially stable if 8W given

by (2.27) is positive. An alternate form for 5WP can be derived from (2.28) by separating

the perpendicular and parallel components of Q and j . The result is written as [30]

= \ I d3f [\Q\\2 + B2 i v • & + 2u • « i 2 + 7 P | v • eT
Z Jplasma L

(2 32)

-2(£.^)(«-ft)-in(ftA6).gl]

with b = B/\B\ and « = B • V6 being the field line curvature. The first term represents
the line bending energy, the second and the third are the energies required to compress
the magnetic field and the plasma. These first three terms are positive and hence sta-
bilizing. The last two represent the interchange and kink energies and can be sources of
instabilities. The term with Vp is at the origin of the pressure-driven modes and the term
containing j\\ generates the current-driven modes (kink modes)

The parallel component of the displacement £y appears in SWP only in the fluid com-

pressibility term which is stabilizing. It is possible to minimize the potential energy once

for all with respect to £y by allowing only displacements satisfying V • £ = 0. The most

pessimistic stability criteria will be obtained for the incompressible limit.

lv.f=o < SW

2.2.4 Variational formulation in TERPSICHORE

The variational formulation of the linear MHD stability of 3D plasmas on which TERP-

SICHORE is based is described in [31]. The variational equation is written as

8WP + 5WV - u25Wk = 0 (2.33)
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where SWP, 6WV, 8Wk and u>2 represent the potential energy in the plasma, the magnetic

energy in the vacuum region, the kinetic energy and the eigenvalue of the system. The

system is unstable to MHD modes when u? < 0

The form of the plasma potential energy adopted in TERPSICHORE is that developed

by Nelson and Hedrick [32]

SWP=- d3x C2 + 7 p | V - £ | 2 - . D | £ • Vsl2 (2.34)
2 ' ' '

/Of U A f t A R\ ± J

|Vs|2

(2.35)

(i A V5) • (B • V) V5
L> = 2 =

with C and £) described in detail in [31] and [25]. In the plasma region the displacement

vector is expressed in the form

f = V £ f V0 A W + 7? A
B2

 S Mr,V-»}B (2.36)

with (£s,77,^) the (radial,binormal,parallel) components respectively. By imposing the

incompressibility constraint V • £ = 0 to get rid of the positive definite term 7p(V • £)2

from 5WP, the parallel component // is eliminated as a variable from the problem and the

two remaining components of the perturbation are expanded in truncated Fourier series,

e(s, 9,4>) = Y. Zi(s)sin(m,6 - nt</>) r}(s, 6, <j>) = £r7,(s)cos(m,0 - ni<j>) (2.37)
i i

where mi and n; are the poloidal and toroidal mode numbers, / being the index of an

(m, n) pair. The calculation of the correct growth rates is abandoned with this pro-

cedure; nevertheless the position of the marginal stability points is not affected by the

elimination of the compression term.

The contribution of the vacuum to the potential energy

is treated according to the pseudoplasma technique [31] [33] which considers the vacuum

region as a pressureless, shearless and massless pseudoplasma. A new coordinate system

15



(sv,Ov,<f>v) is introduced in the vacuum domain such that the geometry varies smoothly

across the plasma vacuum interface and the pseudosurfaces are nested. These coordinates

do not correspond to the Boozer coordinates in vacuum. The radial coordinate sv varies

between 1 and swau (wall position) according to the law sv(i) = [(swau — l)i/Nvac + l]k

where iVvac is the number of radial mesh points in the vacuum region and k is an integer

exponent (generally 2 or 3).

A pseudo-magnetic field T (A — £v A T) satisfying V • T = 0 and T- Vsv = 0 is prescribed

in the vacuum region with

f = ( £ i - dM V4,, A Vs. + £ l f 1 +
\ d d f J d \ Vs. A V«, (2.38)

in analogy with (2.4). The displacement vector £v in vacuum is written in a similar way

with the expression of ( in the internal plasma domain (2.36) as

In the formulas above $ v and $ v are the poloidal and toroidal magnetic fluxes, respec-

tively, in the vacuum region and Xv and Yv play the role of the normal and binormal

components of £v. The boundary condition at the conducting wall is Xv(swau, 6V, 4>v) — 0.

At the plasma vacuum-interface the following conditions are imposed

= 0 (2.40)

Here iv is the rotational transform in the vacuum and t is the rotational transform in

the plasma. In TERPSICHORE one imposes iv(sv) = $'(1)/$'(1) everywhere in order

to obtain a shearless vacuum and the function At,(sv,^v,<^v) is set to zero in the whole

vacuum region (1 < sv < swaii). Only the normal component has to be continuous at the

interface; no such constraint is set on r\ and Yv respectively.

Once the perturbation components Xv and Yv have been Fourier decomposed, the stabil-

ity problem in vacuum is similar in form to that in the plasma. There is no dissociation

between the plasma and the vacuum treatement and a single, unified, step is needed to

advance the problem toward the solution.

In the original version of TERPSICHORE SWk was choosen to be the unit matrix (the

incompressibility constraint already modifies the eigenvalue) [34]. In the version used in
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this study the expression of the kinetic energy is [31]

with the diadic tensor

= VsVs + -—

A hybrid finite element method is employed for the radial discretization. The variational

problem Eq.(2.33) takes the form

Dx = XKx (2.42)

where D is the potential energy matrix, K is the kinetic energy matrix, x = (fs, Xv, 77, Yv)

is the eigenfunction and A = w2 is the eigenvalue. The Fourier decomposition of the per-
turbation components (the elements of x) leads to the appearance in the matrix elements
of D and K of the double Fourier flux integrals [31] expressing the coupling between the
perturbation components. There are nine independent integrals i =0,..8 having the form

ChM « ~^~- j Jd4>d6 <?m.iBa(s) fi(me9 - Nperne<f>) fi(mn9 - ntl<f>) f3(ml29 - nl2<t>)
(2.43)

Here G'me<ne(s) are amplitudes associated to the (me,^Vperne) mode numbers resulting
from the Fourier decomposition of equilibrium quantities in Boozer coordinates. The n
and 12 subscripts are linked to perturbations; (mn,nn) and (mj2,n/2) are mode numbers
that result from the Fourier decomposition of the perturbation in Boozer coordinates.
The /1 , / j , /g functions are either the sin or cos trigonometric functions depending on i.
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2.3 The ballooning mode equation and the Mercier
criterion

Eq.(2.32) shows that there are two possible sources for MHD instabilities, one propor-
tional to j\\ and the other to Vp. Among the pressure driven modes the most unstable are
those with very short wavelength perpendicular to the magnetic field and long wavelength
parallel to the field. These modes are subdivided in two categories: interchange and bal-
looning. The Mercier criterion represents a necessary condition for stability against the
interchange modes i.e. plasma perturbations which are nearly constant along a field line
(no line bending) with k\\/k± < < 1 , k±a » 1. Formally it can be derived from an
asymptotic analysis of the ballooning mode equation [35]

2.3.1 The ballooning mode equation in Boozer coordinates

The conventional representation of waves with short perpendicular and long parallel wave-
length is the eikonal form

£i = Pexp(iS)

where the ballooning phase factor S is such that

k± = VS B • VS = 0

The quantity S is assumed to vary rapidly on the equilibrium length scale |aV5| » 1
whereas the variation of u is slow |aVi/|/|i?| « 1. The starting point for the derivation
of the ballooning mode equation for 3D geometries is Eq.(2.32)) with the perpendicular
component of the displacement vector decomposed as

After the elimination of the positive definite plasma compression term which means
B- V(£||/Z?) = — V-£x> the ballooning mode representation [35] is applied to the remaining
displacement components

& = (&o + e6i+ ...)expC—) x = (Xo + cXl+...)eXp(L-) (2.45)

where e ~ l/(kxa) « 1. The lowest order O(l/e2) contribution to 8WP comes from the
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magnetic compression term which is positive and stabilizing unless £so = 0. The next

non-zero contribution occurs at order O(0). Here again the magnetic compression term

is positive definite; it is eliminated by an appropiate choice of £si whith the consequence

that the parallel current contribution is set to zero too (at this order). Thus the most

unstable modes for k± —> oo do not involve either compression of the magnetic field nor

kink terms. The resulting 8WP shows a competition betwen the stabilizing effect of field

line bending and the destabilizing effects of unfavourable curvature

( 2 - 4 6 )

The stability is determined by solving 8WP + uj28Wk = 0 with 8Wk being the kinetic

energy in the form adopted in TERPSICHORE (Eq.(2.41)). According to [36] the bal-

looning phase factor VS is expressed as

VS = Va + ekVq = V<£ - g(s)V0 - q'(s)(0 - 9k)Vs (2.47)

—# —#
This form given in Boozer coordinates results from the condition B • V 5 = 0 in a co-

ordinate system with straight field lines. Here a = 4> — q(s)9 labels a particular field

line and 0k corresponds to the radial wave number. The Euler equation derived from the

minimisation of the energy principle becomes

^ ([CP + Cs{0 - ek) + Cg(9 - 0k?]^\ + [dp + ds{6 - 6k)\x

(2.48)

(0-0k) X = 0

which is a second order ordinary differential equation with the Cp,C$,Cq,dp, ds coefficients

given in [31] (the subscript o on x has been dropped). Eq.(2.48) is the ballooning mode

equation in Boozer coordinates; the eigenvalue u;2 = X(q, a, 0k) has to be calculated for

each magnetic field line labeled by q and a.

There is an incompatibility between the requirement of periodicity of x with respect

to 6 and <f> the eikonal representation in systems with shear q'(s) ^ 0. The condition

x(0 + 2m7Ti4>+ 2nn) = x{9i4>) cannot be satisfied with x given by Eq.(2.45) combined

with Eq.(2.47). A solution to this problem has been offered with the introduction of the
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covering space concept. It is shown in [35], [36] that for an eigenvalue problem

,0,<t>) = *C(xA<f>) (2.49)

where the operator C and the eigenfunction £ are periodic in 6 and <j>, the transformation

C(x,0,<f>) = Y, e-^me+n^ f° Aid,c«M+»*) C(x,77,u) (2.50)
m,n J~°°

ensures that any solution £(x,rj,v) of

£(x, 77, i/) C(x, 77, z/) = A C(x, 77, i/) (2.51)

in the infinite domain —oo < 77 < 00, —00 < v < 00 (covering space) generates a periodic

solution £(x,9,<j)) of Eq.(2.49) with the same eigenvalue A. The transformation C, -> C

replaces the physical stability problem with its uncomfortable periodicity requirements

by an artificial problem in the covering space domain. The operator for the artificial

problem is identical with the operator of the physical problem. Because ( does not have

to be periodic, it can be represented in an eikonal form F(x,r),i/)exp(iS/e) with a slowly

varying amplitude F(x,-q,i/). The lowest order expansion of F in powers of e gives an

ordinary differential equation like Eq.(2.48). The dependence of F with x which is the

radial variable appears in the higher order equations [35], [36].

2.3.2 Derivation of the Mercier criterion

In the analysis of the cylindrical screw pinch, Suydam developed a purely analytical

criterion [37] depending only on equilibrium profiles which provided a test for stability

against localized interchange modes. He showed that for modes localized about a singular

surface k • B = 0, the potential energy SWP of the cylindrical screw pinch is minimized

by a function £ satisfying an Euler-Lagrange equation of the type ^ (x2$t) + ^st = 0.

The solution is expressed as £ = CixPl + c2x
P2, pi,2 = — \ ± | (1 — 4DS) where x = r — rres

measures the distance from the resonant surface and Ds is given in [38]. For 1 — ADS < 0

the roots are complex, £ oscillates infinitely rapidly as x -> 0 and a trial function can be

constructed which makes 5WP negative i.e. unstable. The condition 1 — ADS > 0 is known

the Suydam criterion and and its violation for any r in (0, a) means instability. The study

made by Newcomb [39] showed later that the knowledge of the radial dependence of £
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determined from the general Euler-Lagrange equation

can be used to derive a set of necesary and sufficient conditions for the stability of the

internal modes. One of his theorems states that if a solution of Eq.(2.52) which vanishes

at r\ also vanishes at some other point in an interval (r*i, ri) containing no singular points,

then a trial function can be constructed such that SWP < 0 in (ri,r2).

Based on Newcomb's study and generalizing Suydam's analysis, the Mercier criterion [40]

was derived as an interchange stability criterion for a more general toroidal geometry.

The independent angular variable 9 of the ballooning mode formalism replaces the radial

variable x of the Suydam analysis and the ballooning mode equation is studied in the

limit where 8 is very large. A non-oscillatory behaviour of the solution x which is regular

at ±oo is required as a necessary condition for stability. Following the developements of

Connor el al. [35] the expansion

[ f f] (2.53)
is introduced in Eq.(2.48) and the resulting equation is solved order by order. Here

0 = 0 — 8k —> oo, the functions Xo, Xt, ... satisfy the same periodicity as the equilibrium

and a is the indicial coefficient to be determined. At the dominant order (9(#a+2), one

obtains Xo = 1; the next order O(9Q+1) gives an equation for dXi/dO. At O(8a), after

averaging over a flux surface, the indicial equation for a is obtained

a2 + a + DM = 0 (2.54)

with DM given in [31]. The roots of this equations are a = — \ ± | (1 — ADM) and the

transition from oscillatory to non oscillatory behaviour occurs for DM — 1/4. Therefore

the Mercier criterion for interchange stability is expressed by

DM < \ (2.55)
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Chapter 3

Configurations studied

The aim of this chapter is to present the configurations which were studied and to explain

why they were chosen in particular. The parameters specifying the geometry and the

equilibrium profiles are described together with the selection of the stability modes to be

investigated.

3.1 Types of helical boundary deformations

In the following chapters the expressions " L = / + 1 configuration" or " L = / + 1 boundary

deformation" will be frequently encountered. They means that if the R, Z coordinates

are Fourier decomposed as in Eq.(2.8) the only non-zero components apart (0,0) and

(1,0) are (/,/ ± 1) (the helical magnetic field is essentially described by the L = / helic-

ity component). In our study, the principal helical boundary deformations belonged to the

• L=2 type

R(s = 1, u, v) = RQ + COSU + 82 (cos(u) + cos(u — 2Nperv))
(3-1)

Z(s = l,u,v) = sinu + 82 (sin(u) — sin(u — 2Nperv))

• L=3 type

R(s = l,u,v) = RQ + COSU + 83 (cos(2u — Nperv) + cos(2u — 3Nperv))
(3.2)

Z(s = \u,v) = sinu + 83 (sin(2u — Nperv) — sin(2u — ZNperv))

where R and Z are the cylindrical coordinates of a boundary point as functions of the

radial flux coordinate s and the poloidal and toroidal geometrical angles u and v. Nper

is the number of equilibrium field periods and 82 and £3 are parameters measuring the

plasma boundary deformation. If <52 = 0, 83 = 0 the boundaries are circular. In our study
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Figure 3.1: boundary for L=2 configuration at three toroidal angles
0, Zn/(ANper), 77r/(4A/per) horizontally and three values for the deformation param-
eter S2 = 0.07, 0.014, 0.210 - vertically

typical values range between 0 < 82 < 0.35 and 0 < S3 < 0.14. Fig.3.1 and Fig.3.2 show

some L — 2 and a L = 3 boundaries resulting from the formulas above.

We also tested some configurations with boundaries corresponding to

• a L = 1 type

R(s = l,u,v) = RQ + cosu + &1cos(Nperv)

Z(s = 1, u, v) = sinu — Sisin(Nperv)

• a mixture between L = 2 and L = 3 types

R(s = l,u, v) = RQ + cosu + S2 (cosu + cos(u — 2Nperv))
+63 (cos(2u - Nperv) + cos(2u - 3Nperv))

Z(s=l, u, v) = sinu + S2 (sinu — sin(u — 2Nperv))
+83 (sin(2u - Nperv) - sin(2u - 3Nperv))

(3.3)

(3.4)

Other types of boundary deformations were not considered. For larger L the boundary

shapes become exotic and difficult to realise with a reasonable system of coils; also for

L > 4 even, there exists a threshold value 5i which is low and decreases with L, such
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Figure 3.2: boundary for L=3 configuration at three toroidal angles
0, 3ir/(4Nper), 7ir/(4Nper) horizontally and three values for the deformation param-
eter 53 = 0.035, 0.07, 0.105 - vertically

that for a deformation parameter 8 > 8L the boundary surface intersects itself several

times. If 8 = 0, we define the quantity ec = 1/Ro as the inverse aspect ratio of the

circular tokamak. During the stability analysis, families of equilibria were generated with

the following value for l/ec : 5, 8, 10, 13 and 17. When 8 increases, the average minor

radius is changed so the effective inverse aspect ratio e is different from tc.

3.2 Number of field periods and families of unstable
modes

The C\k{s) integrals from Eq.(2.43) are non-zero only if the (me,Nperne), (ro/i,nji) and

(mi2, nu) mode numbers are coupled via relations like :me ± mn ± m/2 = 0 and Nperne ±

"/i ± rc/2 = 0. The Fourier decomposition is such that mj > 0 and rij > 0 if mj — 0 with

j = e, 11, 12. This reduces the preceding relations to:

me =

neNper =

±
± (3.5)
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This means that in a geometry with Nper field periods, a partial decoupling between modes

occurs, based on the values of the toroidal Fourier mode numbers. Modes with toroidal

numbers uu and n\i produce non-vanishing integral terms i.e. they belong to the same

family, if (3.5) is respected.

The number of independent mode families Njam is limited and determined by the number

of equilibrium field periods. It is easy to verify that

Nper/2 + 1 Nper = 2p
Nfam = \ (3.6)

I

If k labels one of these families, the modes belonging to it will have a toroidal mode

number given by

ni = ni(k,Nper) = iNper±k i = . . , - 1 , 0 , 1 , . . k € {0, Nfam}. (3.7)

Some of these values are given in 3.1 for Nper = 2,..8. The following remarks can be made:

• % m increases with the number of field periods. If iVper = 1 there is only one family

containing all the modes, if Nper = 2 or 3, two families are present, for iVper = 4 or 5 there

are three families and so on.

• The toroidal mode numbers are unequally distributed among the families. The special

k = 0 family is degenerate and contains only modes with n\ — ±iNper which on average

(for Nper > 3) has two times less modes than the other families. If Nper is even the family

k = Nfam — Nper/2 contains is also degenerate and contains in average two times less

values of n than the other k = 1,.., Njam — 1 families.

• For any fixed family k, let A(i,k,Nper) = m+i(k,Nper) — m(k,Nper) be the difference

between two adjacent mode numbers; then on average A increases with Nper.

From the observations above we deduce that, in stability calculations, a small Nper is

more complicated to treat than a larger Nper. When Ar
per decreases there are fewer fam-

ilies and inside each family more and more n 's with close values. The larger number of

mode couplings complicates the physics of the problem and requires more computational

resources.

For these reasons we did not investigate configurations with A p̂er = 2 or 3 but we chose

A p̂er = 4 and 5 because these values are common to most torsatrons and stellarators

(TJ-II [5], W7X, etc). We skipped Nper = 6 because of the unbalance in the number of
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Nper
2
2

3
3

4
4
4

5
5
5

6
6
6
6

7
7
7
7

8
8
8
8
8

^family

0
1

0
1

0
1
2

0
1
2

0
1
2
3

0
1
2
3

0
1
2
3
4

-6
-7

-9
-10

-12
-13
-14

-15
-16
-17

-18
-19
-20
-21

-21
-22
-23
-24

-24
-25
-26
-27
-28

-6
-5

-9
-8

-12
-11
-10

-15
-14
-13

-18
-17
-16
-15

-21
-20
-19
-18

-24
-23
-22
-21
-20

-4
-5

-6
-7

-8
-9
-10

-10
-11
-12

-12
-13
-14
-15

-14
-15
-16
-17

-16
-17
-18
-19
-20

-4
-3

-6
-5

-8
-7
-6

-10
-9
-8

-12
-11
-10
-9

-14
-13
-12
-11

-16
-15
-14
-13
-12

-2
-3

-3
-4

-4
-5
-6

-5
-6
-7

-6
-7
-8
-9

-7
-8
-9
-10

-8
-9
-10
-11
-12

-2
-1

-3
-2

-4
-3
-2

-5
-4
-3

-6
-5
-4
-3

-7
-6
-5
-4

-8
-7
-6
-5
-4

0
-1

0
-1

0
-1
-2

0
-1
-2

0
-1
-2
-3

0
-1
-2
-3

0
-1
-2
-3
-4

n
0
1

0
1

0
1
2

0
1
2

0
1
2
3

0
1
2
3

0
1
2
3
4

2
1

3
2

4
3
2

5
4
3

6
5
4
3

7
6
5
4

8
7
6
5
4

2
3

3
4

4
5
6

5
6
7

6
7
8
9

7
8
9
10

8
9
10
11
12

4
3

6
5

8
7
6

10
9
8

12
11
10
9

14
13
12
11

16
15
14
13
12

4
5

6
7

8
9
10

10
11
12

12
13
14
15

14
15
16
17

16
17
18
19
20

6
5

9
8

12
11
10

15
14
13

18
17
16
15

21
20
19
18

24
23
22
21
20

6
7

9
10

12
13
14

15
16
17

18
19
20
21

21
22
23
24

24
25
26
27
28

8
7

12
11

16
15
14

20
19
18

24
23
22
21

28
27
26
25

32
31
30
29
28

8
9

12
13

16
17
18

20
21
22

24
25
26
27

28
29
30
31

32
33
34
35
36

Table 3.1: Coupling of modes into families depending on the number of equilibrium field
periods Nper. The different families are indexed by k. Only a few number of toroidal mode
numbers n are shown.

modes between the k = 1, 2 and k = 0, 3 families and prefered the next value iVper = 7

to it. Larger values were not considered in the study.
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3.3 Modes studied

Let us consider a sequence of equilibrium calculations which have identical input param-

eters with the exception of the amount of boundary deformation 8. Suppose that 8 is

monotonically increased from zero to a certain final value; the consequence will be that

the q profile decreases between the first and the last equilibrium of the sequence and this

variation can be quite large. For a given family, several (mi, n/) perturbation components

with different rni/ni resonances can be destabilized when going through the entire equilib-

rium sequence. Already at moderate values of the deformation parameter, i.e. 8 between

one third to one half of the ranges given for #2 and $3 at the beginning of this section, the

q profile is sufficiently low such that the most unstable modes are (n + 1, n) where n can

be 1, 2, 3, ... We decided therefore to limit the investigations only to these modes, in the

region where they are excited i.e the q < 2 region. We recall that in tokamaks, qedge ~ 2

is a stability limit imposed by the external kinks at (3 « 1.

Let (m, n) be the particular mode studied and let us consider the ensemble of all the per-

turbation components (mi,rn) which are coupled to (m,n) via the Ne equilibrium terms

(me, Nperne). Here Ne represents the number of Fourier coefficients needed in TERPSI-

CHORE for an accurate reconstruction of the equilibrium in Boozer coordinates.

The expression (m, n) mode means that the (m, n) Fourier component of the perturbation

(in Boozer coordinates) is dominant with respect to the other components.

The values of ni are determined by the condition that n/ and n belong to the same fam-

ily. If the equilibrium Fourier series are not truncated (Ne unlimited), there is no upper

limit for m; or n/ and the above mentioned ensemble should contain an infinite number of

modes. However, in a numerical computation Ne is finite which implies that the number

of (mi,ni) modes is limited too.

In TERPSICHORE we chose to decompose the perturbations in Fourier series in the fol-

lowing way :

1) the toroidal mode numbers are limited to an inteval nj71"1 < n\ < nf101 where nj""1 ~

-20 and nfax ~ 30.

2) the poloidal mode numbers are bounded by 0 < m; < mf'ax ~ 25.

The ensemble of (mi,ni) perturbation components which is left after the selection follow-

ing the choice of the Ne equilibrium components, and the truncation of the perturbation

Fourier series, will be denoted by 7^ n .
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n
1
3
5
7
9
11

2/1
4/3
6/5
8/7
10/9
12/11

...
5/3
7/5
9/7
11/9
13/11

mi/n

6/3
8/5
10/7
12/9
14/11

i resonances

...
9/5
11/7
13/9
15/11

10/5
12/7
14/9
16/11

...
13/7 ...
15/9 ...
17/11 ...

Table 3.2: Values of the toroidal mode number ni of perturbation components from the
same family as the studied (m,n) = (2,1) mode in a configuration with Nper = 4 and
some mijni resonances of components which could be coupled with the (2,1) mode in the
q < 2 region.

n
1
4
6
9
11
14

2/1
5/4
7/6
10/9
12/11
15/14

6/4
8/6
11/9
13/11
16/14

mi/n

7/4
9/6
12/9
14/11
17/14

I resonances

...
10/6
13/9
15/11
18/14

11/6
14/9
16/11
19/14

...
15/9 ...
17/11 ...
20/14 ...

Table 3.3: The same as in Tab.(3.2) but for Nper = 5.

The next step is the elimination from T£n of those perturbation components which are
coupled to (ro,n) via negligible (me,Nperne) equilibrium terms. We suppose that, if
the amplitude of a particular equilibrium component is smaller than 10"7 — 10~8 x the
amplitude of the dominant equilibrium component, then the related (m/, ni) perturbation
component will lead to negligible (m,n) x (mi,ni) coupling contributions to the potential
energy. This hypothesis will be further discussed in Chapter 4. The (mi,ni) ensemble
resulting from these operations is denoted by Tm,n and represents the minimal reasonable
set of perturbation components needed for the numerical study of the particular (m,n)
mode. Thus, retaining a (roj, ni) component in Tm,n depends not only on the mode studied
and the number of field periods but also on other equilibrium properties. In particular,
the type of plasma boundary deformation has a strong impact on the hierarchy of the
(me, Nperne) equilibrium terms following the dominant (0,0) and (1,0) components.

The study of (m, n) modes with m = n + 1 requires the 7 ,̂+i,n set. In principle the Tn+i,n
sets cannot be used for the study of modes with poloidal and toroidal mode numbers
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n
2
6
10
14
18

3/2
7/6
11/10
15/14
19/18

4/2
8/6
12/10
16/14
20/18

mi/n

...

9/6
13/10
17/14
21/18

i resonances

10/6
14/10
18/14
22/18

15/10
19/14
...

16/10 ...
20/14 ...

Table 3.4: Values of the toroidal mode number ni of modes perturbation components from
the same family as the studied (m, n) = (3,2) mode in a configuration with Nper = 4 and
some mi/ni resonances of components which could be coupled with the (2,1) mode in the
q < 2 region.

n
2
3
7
8
12
13

3/2
4/3
8/7
9/8
13/12
14/13

4/2
5/3
9/7
10/8
14/12
15/13

mt/ni

6/3
10/7
11/8
15/12
16/13

resonances

...
11/7
12/8
16/12
17/13

12/7
13/8
17/12
18/13

13/7 ...
14/8 ...
18/12 ...
19/13 ...

Table 3.5: The same as in Tab.(3.4) but for Nper = 5.

different from m or n. Nevertheless, if for a given equilibrium, the (n + 2, n) compo-

nent becomes dominant the calculated growth rate or radial structure can be considered

valid even if Tn+i,n ^ Tn+2,n- The justification is based on the fact that the difference

between the two sets consists only in a few (mi,ni) components such that the couplings

with (n + l,w) or (n + 2, n) occur via small (me,Nperne) equilibrium terms. This can be

true even when the (m > n + 3, n) components are dominant but this depends strongly

on the value of n and on the equilibrium geometry.

A particular category of components belonging to 7 ^ n (or Tm<n ) deserves special at-

tention. This category is formed by those components with (mi, ni) resonant values in

the region of interest i.e. 1 < q < 2. The most important of them are given in tables

Tab.(3.2) to Tab.(3.5) for (m,n) = (2,1), (3,2) and for Nper = 4, 5. Only some of the

values satisfying 1 < mi/ni < 2 are displayed. If we eliminate from the Tm,n set all (mi, ni)

components with m; > n; > n we obtain a new set which is be denoted by T The

reason for doing this and the role of Tm,n and will be discussed in detail in Chapter 3.
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Generally, if the qr = mi/ni resonance is situated in the vicinity of the plasma boundary,

the (mi,ni) component is strongly destabilized. The importance of the contribution of

the (m,n) x (mi,ni) coupling to the potential energy depends then on the amplitude of

the (me,Nperne) equilibrium component obtained by inverting Eq.(3.5). We denote by

(mei, Npernei) the pair obtained with the "-" sign, and by (me2, Nperne2) the pair obtained

with the "+" sign. Only one of the two pairs can satisfy the periodicity requirement and

we drop the indices (1 or 2) and refer to it as (me, Nperne)

If the amplitude of the (me, Nperne) component is non negligible then there is a good

chance that the behaviour of the (m, n) mode will be influenced by the (m/, n{) mode at

least in the region where the latter is excited.

Tab.(3.6) to Tab.(3.9) show what these equilibrium coupling components are for the most

dangerous mi/ni resonances in the cases where {m,n) = (2,1), (3,2) and for configura-

tions with Nper = 4 and 5. For example it can be seen from Tab.(3.6) that the (2,1) mode

in a configuration with JVper = 4 is coupled to modes with n; = 3 and 5 via (me, Nperne)

terms with ne = 1. The couplings with the next values for n; namely 7 and 9 require the

presence of ne = 2. Similarity, Tab.(3.9) shows that the (3,2) mode in a configuration

with Nper = 5 is coupled to modes with n\ = 4 and 6 via ne = 1. The coupling with

n/ = 9 and 11 occurs via ne = 2.

We repeat below, for convenience, the definitions of the various Tsets

• 7^,n " s e t °f (m i)n i) perturbation components needed to study the (m,n) mode

when the equilibrium is calculated with iVe Fourier components. It is obtained by

taking all possible combinations from Eq.(3.5) and retaining only that mi and n/

values which are inside the limits imposed by the truncation of the Fourier series.

• 7~m,n - the set resulting from 7 ^ n when the {rrn,n{) components which couple to

(m,n) via negligible (me,Nperne) are eliminated. The (roj,n/) components from

T^n with mi > ni > n are however retained.(the previous definition of Tmtn does

not contain this last aspect).

s e t resulting from Tm<n when the (mi, ni) components with mi > ni > n

are eliminated.
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Table 3.6: Some perturbation components with mi/ni < 2 resonant values and correspond-
ing equilibrium coupling terms (me, Nperne) ((mei,nei) or (me2,ne2) depending on the ±
sign in Eq. (3.5)) for (m, n) = (2,1) and Nper = 4. The equilibrium toroidal mode numbers
correspond to one field period. A "-" means that n, n/ and the corresponding nei cannot
satisfy the periodicity requirements imposed by Eq.(3.5)
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Table 3.7: the same as in Tab. (3.6) but for Nper = 5; the equilibrium toroidal mode
numbers correspond to one field period.

31



(mi

( 3
( 4

( 7
( 8
(9

n()

2)
2 )
.
6 )
6)
6)

("i«i

(0
(1

( 4
(5
(6

0)
0 )

1)
1)
1)

(rae2,
(6
(7

(10
(11
(12

ne2)

1)
1)

2 )
2 )
2 )

(mj,

(10

(11
(12
(13
(14

nj)

6)

10)
10)
10)
10)

(mei,nei) (rae2,ne2)

(7

(8
(9
(10
(11

1 )
#

2)
2)
2 )
2 )

(13

(14
(15
(16
(17

2 )

3)
3 )
3)
3)

Table 3.8: Some perturbation components with mi/ni < 2 resonant values and correspond-
ing equilibrium coupling terms (me,Nperne) f(mel,nei) or (me2,ne2) depending on the ±
sign in Eq. (3.5)) for (m,n) = (3,2) and Nper = 4. The equilibrium toroidal mode numbers
correspond to one field period. A "-" means that n, n; and the corresponding nei cannot
satisfy the periodicity requirements imposed by Eq.(3.5)
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Table 3.9: the same as in Tab.(3.8) but for Nper = 5/ the equilibrium toroidal mode
numbers correspond to one field period.
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3.4 Current and pressure profiles

After the amount of plasma boundary deformation, the toroidal current density was the

second most important parameter considered in the analysis. We prescribed it with a

expression alldwing a large flexibility of profiles:

J(s) = ax (1 - sa*)a3 + a4 (1 - 5as)°6 (3.8)

where ai,..,a6 are free parameters. Some profiles were systematically used throughout the

whole study. They are given by the following choices of a, , i = 2,..6 :

• a-i = 1.2, a 2 = 3 a4 =..=a6 = 0 corresponding to a peaked profile with very small

gradient in the exterior region of the plasma, near the boundary.

• a2 = 2.5, (Z3 = 2 a4 =..=ae = 0 representing an intermediate form between peaked and

broad profiles.

• a2 = 20, a3 = 8 a4 =..=a6 = 0 yieldind a broad profile with a negligible gradient in the

main part of the plasma volume and falling sharply near the edge.

• a2 = 10, <i3 = 2, a5 = 2.5, a6 — 2, sign(a4) ^ sign(a,i) corresponding to a hollow current

profile relatively flat in the central region and and maximum near the plasma edge.

• a2 = 2, az = 2, a5 = 1.2, a^ = 8 , sign(a4) ^ sign(ai) corresponding to a hollow current

profile with a maximum relatively close to the magnetic axis.

The curent densitiey profiles for the combinations of the a,'s given above are shown in

Appendix A

The direction of the current flow was chosen such that increasing it or augmenting S has

the same effect on q, namely it diminishes the inverse rotational transform.

Two pressure profiles were used in the computations

P(s) = ̂ [(l-sf + (l-sy] (3.9)

p(s) = po(l - s2) (3.10)

where po is the pressure on the magnetic axis. We denote by prA the first profile and by

prB the second profile; the pressure gradient is zero at the axis for prB and zero at the

plasma edge for prA.

The values chosen for j3 were 1% and 2%.
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Chapter 4

Investigation procedure

The results of this work, have been obtained from hundreds of runs of the equilibrium and

stability codes. We describe in this chapter how the space of parameters was scanned and

the looping procedure chosen to systemize the study. Important properties of the config-

urations studied which determined the investigation method are discussed too. Finally,

numbers concerning the pure numerical aspect and the procedures needed to verify the

accuracy of the results are described.

4.1 Variation of equilibrium parameters

The study consisted in a regular and systematic exploration of the space of equilibrium

parameters. The list of parameters is repeated here for convenience :

• the type and amount of plasma boundary deformation

• the number of equilibrium field periods

• the type of pressure profile and the value of /?,

• the type of current density profile and its magnitude

• the starting value of the inverse aspect ratio ec

Equilibrium sequences were calculated by varying these quantities in the following way:

1) The general features of the configuration i.e. the type of boundary deformation, the

number of equilibrium field periods and the inverse aspect ratio of the circular tokamak

ec are specified.

2) The pressure profile and the value of j3 are chosen next.

3) For every combination of parameters from 1) and 2), a general current profile is pre-

scribed with the choice of 02 and 03; for hollow profiles, 05 and a^ are also specified. In
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the last case the difference between the maximum current density and its value on axis is

determined by |aij — |a4|.

4) Once the at, i=2,..,6 are fixed the toroidal plasma current is varied by changing ax.

5) For every choice specified with 1), 2) and 3), the amount of boundary deformation is

monotonically increased by

6i = 6start + iA8(i) t = 0,1, . . (4.1)

where Sstart is the first value of the sequence; it is equal to zero if the sequence starts

with the circular tokamak. AS(i) is chosen piecewise constant with larger values at the

beginning of the sequence and smaller values in the "regions of interest".

The reason for taking Sstart > 0 comes from the fact that for small and peaked currents

and l/ec > 10 at fi > 1%, the circular tokamak equilibrium may not exist: VMEC does

not converge or the equilibria have very large Shafranov shifts (> 20 — 25%) such that

we prefer to start the sequence from a more reliable equilibrium. When the current and

j3 are fixed, the increase of the boundary deformation diminishes the Shafranov shift.

Preliminary runs of TERPSICHORE are performed in order to identify and select the

Fourier modes needed for the equilibrium reconstruction in Boozer coordinates as well as

the Tm,n set of modes required for the stability analysis of the (m,n) = (2,1), (3,2) and

(4,3) modes.

The looping procedure consists in specifying first the A^r, L, l/ec, (5 parameters, the pres-

sure and current profiles and iterating thereafter over the value of S given by Eq.(4.1). For

each equilibrium thus produced TERPSICHORE is called to calculate the global stability

and the Mercier criterion. We are looking for the maximum instability growth rate and

identify the dominant unstable mode(s). Ballooning stability is also tested in a certain

number of cases.

4.2 Special features of the configurations studied

The discussion in Section 3.4 concerning the tables Table(3.6) to Table(3.9) is continued

here but we proceed in a different way. Instead of starting from the mi/ni resonances which

may appear in the q < 2 region and determine from them the (rae, Nperne) components, we

identify first the (me, Nperne) components necessary for the correct representation of the

equilibrium in Boozer coordinates. This is done by iteratively running TERPSICHORE

until the desired results concerning the spectrum of equilibrium components are obtained.

After we have decided what (m,n) mode will be studied, we identify the (mn,nn) and
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perturbation components resulting from inverting Eq.(3.5)

n/1,/2 = Nperne^n (4.2)

Tab.(B.I) to Tab.(B.3) show these modes for configurations with different A p̂er = 4, 5 and
L = 2, for the cases (m,n) = (2,1) and (3,2). The equilibrium quantity whose Fourier
amplitudes are represented corresponds to the Jacobian y/g in Boozer coordinates; the
values are taken at the plasma boundary 5 = 1. We have chosen this quantity because
it appears frequently in the flux tube integrals Eq.(2.43). The values of the equilibrium
toroidal mode numbers have been represented per field period (me, ne instead of me,
Nperne). For lack of space only 120 Fourier components are represented; they are listed
in the order of increasing me. The following observations can be made :

• Tab.(B.I) and Fig.4.1: study of the (2,1) mode in a L = 2 configuration with
Nper = 5, l/ec = 5. The yjgm n amplitudes whith ne = 1 axe extremely low ~ 10~12

to 10~13 Vme. The corresponding perturbation components coupled to (2,1) are those
with ni = 4 or 6; for me > 5 , (mi, 6) components with mi > 6 are involved and for
me > 7 , (mi,4) components with mi > 4 are present. The couplings (2,1) x (me,4)
or (2,1) x (me,6) are then extremely weak. The table displays (me,l) amplitudes and
related perturbation components only for me < 11.

The y/g amplitudes which are non negligible have even values of ne. When ne — 2
only perturbations components with toroidal mode numbers n; = 9 and 11 are involved in
couplings, mi III, mi > 11 resonances appear for me > 10 and m//9, mi > 9 resonances
appear for me > 12. It can be seen from the table that y/g1Q2 — 10~6 and y/g122 — 10~7;
these values remain very low compared with the dominant ,/o which are of the order
~ 10° - see Fig.4.1. If the q profile is such that the (10,9), (11,9), .. or (13,12), (14,12),
.. modes are excited, it is highly probable that their coupling to (2,1) continue to be very
weak.
The discussion can be continued for resonances with higher toroidal mode number.

- for ni = 14, 16, 24, .. involving odd me's the corresponding yfgm n are < 10"14

- for ni = 19, 21, 29, .. involving even me's the corresponding y/gm such that mi/ni > 1

are effectively less than ^102 ~ ^~6-
In each case the (2,1) x (mi,ni) couplings with m\fni > 1 occur via \fg~m n amplitudes
which are more and more negligible with increasing ni.

• Tab.(B.2) and Fig.4.2: study of the (2,1) mode in a mixed L = 2 and L = 3
configuration with Nper = 4. The difference with the preceeding L = 2 configuration
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Figure 4.1: -Jg~ amplitudes for a L = 2 configuration with Nper = 5. The equilibrium

is characterized by l/ec = 5, (3 = 1%, with pressure profile prB and J'(s)/ J'norm = 0.9(1 —
s10)2 — 0.4(1 — s2 5)2 . The x-axis corresponds to the ne equilibrium mode number (rather
than Nperne). The points marked with '*' represent the equilibrium components responsible
for couplings between the (2,1) mode and the (mi,ni) perturbation components with mi >
ni > 1 (only the ne < 2 i.e. n; < 11 are shown). All other equilibrium components are
identified with !o'. See Tab.(B.I) for detailed informations.

consists in the fact that the y/g amplitudes associated to odd ne 's are no longer

negligible- see Fig.4.2. If ne = 1, the perturbation components involved in couplings have

ni = 3 and 5; for example the (6,5) component is coupled to (2,1) via the (me, ne) = (4,1)

equilibrium term whose amplitude is y/g4 ~ 10~3 and the (4,3) component is coupled

to (2,1) via y/gei — 10~4. Perturbation modes with m = 7,9 and mi/ni > 1 require

ne = 2 and appear for me > 10 and me > 8 respectively. The coupling with the (10,9)

component occurs via y/gi2 — 10~5; the couplings with the other (m;,9), m; > 9 or

(mi, 11), mi > 11 components (not visible in the table) involve y/gm n amplitudes which

are less than 10~6.

• Tab.(B.3) and Fig.4.3: study of the (3,2) mode in a L = 2 configuration with

Nper = 5. Here again the y/g amplitudes with ne = 1 are extremly low ~ 10~13.

The table shows only some of them involving couplings of (3,2) with (mi, n{) components

having n/ = 3, 7. If ne = 2 then n/ = 8 and 12. The largest yfg~m n amplitude related

to couplings between (3,2) and (mi,n{) with mi > ni > 2 is y/g102 — —3.55 • 10~6 in-

volving the (13,12) component. All other couplings with (14,12), (9,8), etc occur via
•\-7
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Figure 4.2: y/g amplitudes for a mixed L — 2 and L = 3 configuration with Nper = 4
The is characterized by l /ec = 5, (3 — 1% w'tJi pressure profile prB and J'(s)/' J'norm =
0.44(1 — s20)8. 77ie x-axis corresponds to the ne equilibrium mode number (rather than
Nperne). The points marked with '*' represent the equilibrium components responsible for
couplings between the (2,1) mode and the (mi,ni) perturbation components with mi >
ni > 1 (only the ne < 2 i.e. n; < 9 are shown). All other equilibrium components are
identified with 'o'.See Tab.(B.2) for detailed informations.

In order to verify the generality of these remarks several tests have been performed. We

kept constant the values of (m, ra), L, Nper and f3 and observed the variation of the y/g

amplitudes when doing the following:

- we estimated the , /o 's on several flux surfaces. As the inner flux surfaces remain

very similar to the boundary (in fact they are less deformed) the hierarchy of the y/gm

amplitudes remains practically the same.

- more visible changes appear when varying the amount of boundary deformation. Nev-

ertheless, at weak or very strong J's the y/g amplitudes involving couplings with

(mi,ni), mi/ni > 1 remain considerably lower than the dominant terms.

- different current density profiles or pressure profiles do not bring noticable modifications

in the y/gme ne hierarchy.

- finally, if instead of the Jacobian we considered another equilibrium quantity also ap-

pearing in Eq.(2.43) i.e. |B2 | , we arrive at the same conclusions.

The validitity of the preceeding observations has been verified for any of the types of

helical boundary deformation which were considered.

The discussion above can be summarized as follows:
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Figure 4.3: y/g amplitudes for a L = 2 configuration with Nper = 5. The equilibrium
is characterized by l/ec = 5, /? = 1%, with pressure profile prB and J'(s)/J'norm = 0.35(1 —
s20)8. The x-axis corresponds to the ne equilibrium mode number (rather than Nperne).
The points marked with '*' represent the equilibrium components responsible for couplings
between the (3,2) mode and the (mi,ni) perturbation components with mi > ni > 1 (only
the ne < 2 i.e. ni < 11 are shown). All other equilibrium components are identified with
'o'.See Tab.(B.3) for detailed informations.

• the equilibrium of plasmas with prescribed helical boundary deformation is character-

ized by a spectrum of (rne, Nperne) Fourier components (describing quantities related to

the geometry or appearing in Eq.(2.43)) such that dominant components have low me

and ne values.

• the coupling between the (m = n + l,n) modes studied n = 1, 2, 3, with other (mi,ni)

perturbation components having mi > n; > n occurs via (me,Nperne) equilibrium com-

ponents with very low amplitude. Thus it is probable that the excitation of the (mi,ni)

modes with resonant mijni values in the 1 < q < 1 region will not influence the behaviour

of the (m, n) mode studied. If the amplitude of the (me, Nperne) equilibrium components

serves as a scaling factor for measuring how strong the (m,n) x (mi,ni) couplings may

be, then the most dangerous perturbation components have mi = n/ + 1, followed by

mi = ni + 2 etc. The values of n; depend on iVper and L.

• the large value of the (1,0) equilibrium component has as consequence that strong

couplings occur between (mi,ni) and (m; ± l,nj) perturbation components. The largest

equilibrium components (those which compared to the largest (0,0) term are from 10° to

10~3 times smaller) are responsible for couplings of modes studied only with perturbation

components having mi/ni < 1 (n; > n) i.e. not having a rational surface for q > 1.
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4.3 (m/,71/) perturbation modes with mi > ni > n

When we computed an equilibrium sequence corresponding to Eq.(4.1)) we chose the suc-

cessive values of 8{ sufficiently close in order to obtain q profiles which decrease slowly

from one equilibrium to the following. The study of an (m = n -f l ,n) mode is done by

applying the following procedure :

A.- taking advantage of the particularities of the (me, Nperne) spectrum of modes de-

scribed in the Section 4.2, we run TERPSICHORE for each £• with the 7£°n
r" set. The suc-

cessive lowest eigenvalues w^"^res((J,) are associated to one of the (m, n), m — n, n+l, n+2,

etc modes (in general m = n + l). The reason for doing this comes from the fact that it is

far more easy to follow the (rn,n) mode when no (mi,ni) components with mi > n\ > n

(resonances) are present. A chaining procedure combining equilibrium and stability cal-

culations for the whole range of Si 's and aiming at determining the successive w^™re5(<S,)

can be easily designed.

In the case when some of the minimum eigenvalues thus obtained are positive then we

have to verify that the re-inclusion of the (mi,ni) modes with mi > n\ > n does not

bring important destabilizing couplings with (m,n). The following verification procedure

is then applied:

B . Only those equilibria for which w ^ r " ( £ ) > 0 are considered and TERPSI-

CHORE is run with the Tm,n set. Depending on the q profile, different (mi,ni) modes

with rni > ni > n can be destabilized. For each Si, we search in increasing order the hier-

archy of the Uj(Si) negative eigenvalues w^t-n(^) < u>\{8i) < w|(<£;) < .. < 0 (as shown in

Fig.C.I from Appendix C) and identify the associated (mj, nj), j = min, 1, 2,.. dominant

components. Then, for every <*>?, we evaluate the contribution of the {m,n) x (mj,rij)

couplings together with the (m,n) x (mi,ni) couplings (mi > nj > n) to the potential

energy. If these contributions are negligible, then the elimination of the (m/,nj) modes

with mi > ni > n from Tm,n is justified.

The justification can be pursued in the following way. Here again we consider only those

equilibria for which ^°res(Si) > 0.

C. The (m, n) mode is eliminated from the Tm,n set and TERPSICHORE is run to
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evaluate the new w^in(5,) < CJ\(5i) < w\{5i) < .. < 0 hierarchy. If the ratio

then the (m,n) x (mi,ni) couplings (mi > n; > n) are really negligible and the (m,n)

mode can be studied with the T^%es set.

4.4 Technical aspects

Without a chaining mechanism designed to automatize the computations, this work could

not have been possible. Several hundreds of equilibrium sequences were calculated and

their global MHD stability analysed by initiating a chaining procedure and waiting for

the results. Details concerning these procedures are given in Appendix C.

The VMEC code was run with a number of radial mesh points Ns between 68 and 108

and the equilibrium quantities were decomposed in N% = 61 Fourier pairs (0 < mv
e <

5, —5 < nl < 5). The superscript v indicates that the decomposition is made in VMEC

angular coordinates. Computing equilibria with a larger N% number has no effect on the

spectrum of Fourier equilibrium modes; this has been verified for all the types of boundary

deformation considered.

For low currents at high /?, we have found equilibria with large Shafranov shifts ASA/-

Even if the code converged well we did not continue the investigations when we encoun-

tered values exceeding Ashf > 18 — 20%.

For the mapping of the equilibrium to Boozer coordinates we used a number iVe of Fourier

modes varying from 120 to 200 - see Tab.(B.l) to Tab.(B.3) in the Appendix B. It has

been shown in Section 4.2, that for L = 2 the equilibrium Fourier modes with odd ne are

extremely low; they play no role in the equilibrium reconstruction. Nevertheless we kept

the ne = 1 modes, especially those (me,Nperne) pairs involving couplings with (mi,ni),

mi/ni > 1 perturbation modes in order to check that the couplings are indeed unsignifi-

cant. The ballooning calculations were performed with values of JVe ~ 400 and more.

Several techniques are available to test the accuracy of the reconstructed equilibrium.

The Jacobian ^/g~s derived directly from the geometry can be compared with the quan-

tity arising from the dot product of the co- and contravariant expressions of B (2.13).

y/ggB2 = ^'(s) J(s) — <&'(s)I(s) (4-4)

Another way is the comparison of the flux quantities J'(s) and I'(s) constructed from the

equilibrium coordinates with the equivalent quantities obtained from the avearged radial
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component of the force balance equation (2.15). These techniques were implemented in

TERPSICHORE; the Ne set of modes was determined iteratively such that the relatives

errors for the above mentioned quantities were inferior to 10~3.

TERPSICHORE was run with Ns = 68 to 108 radial mesh points and 84 to 116 Fourier

components for the perturbations. The number of vacuum grid points was generally Ns/4;

For all simulations the position of the axisymmetric wall was kept fixed; the distance to the

plasma boundary corresponded to two times the radius of the circular plasma boundary

(8 = 0). Convergence tests for Ns were done regularly to check the validity of the results.
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Chapter 5

Results

5.1 Stability windows in S

The circular tokamak 8 = 0 has a safety factor profile such that qaxis < qedge- At 8 = 0,

the typical values in our study are 1 < qaxis < 2.5 and 1 < qedge < 3.5. The basic effect

of increasing 8 with all other equilibrium parametres remaining constant is to lower the

inverse rotational transform. As the deformation of the flux surfaces is stronger near the

plasma edge than near the magnetic axis, qedge is lowered more rapidly than qax%s- This

is true for L = 2, 3 configurations but not for L = 1 where qedge and qaxis are decreased

nearly at the same rate. For L = 3 configurations, qaxis barely changes.

At strong deformations, the q profile is inverted and the minimum of q is located either

at the plasma edge or close to it.

TERPSICHORE is run with the T™nSS set for an equilibrium sequence £,•; if for a given <5;,

the q profile is such that the resonant value qres = m/n is in the vicinity of the plasma edge,

the (m, n) mode is strongly destabilized. When 8 is increased, the eigenvalue associated

with the mode i.e. w^ decreases and the mode in question rapidly has the strongest

growth rate. At larger values of 8 the eigenvalue reaches a minimum after which it starts

increasing quickly. The (m, n) mode becomes less unstable and soon stabilizes. Depending

on the equilibrium parameters, the stabilization can be more or less rapid; two situations

may occur :

1) The stabilization is strong and a stability window I^n = [8min, 8max] appears, in the

sense that at Smax the (m,n) mode is stable but the (m — l ,n) mode becomes unstable.

2) The stabilization is slow; when q has sufficiently decreased, the (m — l,n) mode is

destabilized and becomes the most unstable component of the perturbation such that

Umin starts decreasing again.

The first case is illustrated in Fig.5.1 to Fig.5.4 for different current density profiles, L

types of boundary deformations and number of equilibrium field periods.
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Figure 5.1: Study of the (2,1) mode with the T£%" set: (a) J'(s) profile, (b) q(s) profile
and (c) the most unstable eigenvalue u^ i n as a function of 8 for a configuration charac-
terized by L = 2, Nper = 5, l/ec = 5, at /3 = 1%, with pressure profile prB and toroidal
current density given by J'{s)jJ'n0Tm = 0.9(1 — s10)2 — 0.4(1 — s2 5)2 . q is represented for
82 = 0.010 (-), 0.180 (- -) and 0.230(-). For 82 = 0.010 and 0.040 the (3,1) component
dominates, at 82 = 0.070 the (3,1) and (2,1) components have comparable amplitudes, for
0.100 < 82 < 0.180 the (2,1) component is the strongest and finally for 82 > 0.230 (last
two points) the (1,1) components sets off. The stability window is delimited by the two
vertical dotted lines.
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Figure 5.2: Study of the (2,1) mode with the T^r" set: (a) J'(s) profile, (b) q(s) profile
and (c) ^nin{8) for a mixed L = 2 and L = 3 configuration (83/82 = 2.5,), Nper = 4,
l /e c = 10, at j3 = 1%, with pressure profile prB and toroidal current density given by
J'{s)/Jnorm = 0.44(1 - 320)8. q is represented for 82 = 0.010 (-), 0.060 (- -) and 0.085(-).
The (2,1) component is dominant for 82 < 0.07 and for 82 > 0.085 the (1,1) component
becomes destabilizing. The stability window is delimited by the two vertical dotted lines.
See also Fig.5.6

The second case is presented in Fig.5.5 for a L = 3 boundary deformation and JVper = 4.

Fig.5.6 and Fig.5.7 show the evolution of the largest Fourier components of £ and v be-

tween three values of 8 corresponding to the beginning of the equilibrium sequence (8start),

the beginning and the end of the stability window.

Fig.5.6 illustrates the same case as in Fig.5.2. At 83 = 0.010, £(2,1) has the largest ampli-
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Figure 5.3: Study of the (2,1) mode with the T^res set: (a) J'(s) profile, (b) q{s) profile,
(c) w ,̂n(<£) for L = 2, Nper = 4, l/ec = 10, at (3 = 1% un</& pr-4 pressure profile and
J\s)IJ'norm = 0.35(1 - s1-2)2. <? ts p/otted for S2 = 0.240 (-), 0.300 (- -) and 0.420(•).
There is no equilibrium for <52 = 0. For the first five points (D.240 < 62 < 0.300J the (2,1)
component has the largest amplitude, for the last two (62 > 0.420,), the (1,1) component
dominates.
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Figure 5.4: Study of the (3,2) mode with the T$res set: (a) J'(s) profile, (b) q(s) profile,
(c) u^n(<£) for L = 3,Nper = 4, l/ec = 10, 0 = 1%, pressure profile prA and toroidal
current density given by J'(s)/J'norm = 0.51(1 — s2-5)2. q is represented for S = 0.020,
8 = 0.130 and S = 0.154. The (5,2) component dominates for 5=0.020 and 0.040, at
8= 0.060 (qedge=1.915) the (4,2) is the strongest, and for 0.080 < 5 < 0.130 the (3,2)
component has the largest amplitude. The stable window is between 0.130 < £3 < 0.154
and for 83 > 0.154 the (2,2) component is destabilizing. See also Fig. 5.7

tude followed by £(3>1) and £(4,1); £(1,1) comes only in the fourth position but is the second

most important at 83 = 0.060 and becomes the dominant at £3 = 0.085. For this last

value of £3, Fig.5.2 shows a qmin slightly less than unity and we see from Fig.5.6 that the

(1,1), (3,3) and (5,5) perturbation components are excited. In the case presented in

Fig.5.7 the mode studied was (3,2). At £3 = 0.020 the q profile is such that ((5,2) and 77(5,2)

respectively, have the largest amplitudes. At 83 = 0.130 the (3,2) component is dominant

and at 83 = 0.154 (^e^e — 1) the (2,2) component becomes the largest, followed by (6,6).

Complementary information is given in Fig.5.4.

If TERPSICHORE is run with the Tm>n set, several (mi,ni) modes with mi > ni > n

can be destabilized in the [£m,-n, 8max] interval. We want to verify that the (m,n) modes
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Figure 5.5: Study of the (2,1) mode with the T??es set: (a) J'(s) profile, (b) q(s) profile
and (c) w^n(<£) for a configuration characterized by L = 3, iVper = 4, l/ec = 13, at
/3 = 1%, with pressure profile prA and toroidal current density given by J'{s)IJ'norm =
0.43(1 - s2-5)2. q is represented for S2 = 0. (-), 0.080 (- -) and 0.140(-). At 63 = 0.
the (3,1) component dominates, the (2,1) mode is destabilized for 83 > 0.06 then becomes
less unstable after 83 > 0.08. Beginning with S3 ~ 0.13 the (1,1) mode is excited. At
83 = 0.14, the minimum of the inverse rotational transform qm{n becomes smaller than 1.
There is no stability window.

(m = n,n + l ,n + 2,..) modes remain stable in the I^n interval when allowing the

(rn,n) x (mi,ni) couplings (mi > ni > n). For this purpose we apply the verification

procedure described in Section 4.3. The fact that we may then obtain a series of negative

eigenvalues ^ tn(<J,) < w2(<5,-) < tj|(<J,) < .. < 0 is not a definite proof that all associated

(mi,ni) modes are unstable for the 5,- € I£*n selected. If valid results for a particular

(mi,ni) mode are desired, then TERPSICHORE should be run with the appropiate Tmhm

set.

The existence of the stability window for 8 motivates the stability analysis. The aim of

the investigation work is to describe the properties of this stability window and to find

how it is affected by the equilibrium parameters.

5.2 Role of the (m, n) x (m/,n/), m/ > ni > n couplings

In this section we present the results obtained when applying the verification procedure

as described in Section 4.3. Two cases are considered; for both of them, the mode studied

is (m,n) = (2,1). The equilibria correspond to three different values of the boundary

deformation parameter; these values belong to the stability window 8 € I^n-

A) a configuration with L = 2, A p̂er = 5 at /? = 1%. The current density profile is

J'(s)/J'norm = -0.9(1 - s10)2 + 0.4(1 - s2-5)2 and the pressure profile is prB Eq.(3.10). It
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Figure 5.6: The four most important perturbation components £m,n(s) fleft column) and
ilmn(s) (right column) for the same case as in Fig.5.2 i.e. a mixed L = 2 and L = 3.
T V = 4, l/cc = 10, prB, (3 = 1%, J'(s)/J'norm = 0.44(1 - 5

2 0 ) 8 at 53 = 0.010 (first
row), 0.060 (middle row, just before the stability window) and 0.085 (last row, just after
the stability window). For each of these values 82 = 2.5£3. The interval 0 < s < 1
corresponds to the plasma region and 1 < s < 2 to the vacuum region. The (m,n)
perturbation components are listed from left to right in the order of decreasing maximum
amplitude.
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Figure 5.7: The four most important perturbation components £m,n{s) (left column) and
?7m,n('S) (right column) for the same case as in Fig.5.4 i.e. L = 3, Nper = 4, l/ec = 10,
pr*3, (3 = 1%, J'{s)IJ'norm = 0.51(1 - s2-5)2 at 53 = 0.020 (first row), 0.130 (middle row,
just before the stability window) and 0.154 (last row, just after the stability window). The
interval 0 < 5 < 1 corresponds to the plasma region and 1 < s < 2 to the vacuum region.
The (m, n) perturbation components are listed from left to right in the order of decreasing
maximum amplitude.
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is the same equilibrium sequence as that shown in Fig.5.1. The stability window is inside

the interval 0.180 < S2 < 0.230. The data has been represented separately in two tables:

• Tab.(5.1) shows the hierarchy of eigenvalues and the associated unstable modes. The

corresponding values of qaxis, <5Wn and qedge are indicated. For example at 62 = 0.190 there

are four unstable modes (the fifth eigenvalue searched in increasing order is positive); the

(11,9) mode has the strongest growth rate u^,-n = —5.928 x 10~4 and the (8,6) mode

is the least unstable w|>6 = -3.026 x 10"5. Let W(mn'nn)x(m'2'n'2) be the contribution

to the potential energy of the coupling between perturbation components (ro/i,n/i) and

(m/2, n/2)-The last column represents the quantity

Wmaxres = m a x { maXfc|^p(2>l)x(mfc,n,) |? maXfc,|Wj1'1>X(m*"M| } (5.1)

where {mk,nk), (ra^nfe/) are perturbation components with resonant values for q > 1.
yymax res n a g t o fce c o m p a r e < i with

W™x = max ; i , /2 |^m '1 'n ' l ) x ( m" 'n '2 ) | (5.2)

where (mn,nn) and ("1/2,^/2) may be any perturbation components (including resonant

and non resonant ones for q > 1). One can observe that W™xres < < W™ax.

• Tab.(D.I) in Appendix D gives more details concerning the perturbation components

that contribute to the couplings and the corresponding Wp
(m'1'n'l)x(rni2'n'2) values. Each

set of four lines is associated in corresponding order to one unstable eigenvalue from

Tab.(5.1). The first line of any set shows the four main contributions. The following

three lines show amplitudes of (2,1) x (rni,ni) couplings such that either (mi,ni) is the

dominant perturbation component or the (me, Nperne) equilibrium component involved

in the coupling is among the three largest in the hierarchy of equilibrium terms (not the

whole hierarchy but that part involving couplings with (rni,ni) components such that

mi > ni > n). We have also shown the (1,1) x (mi,ni) couplings because (n,n) modes

are, in general, responsible for the upper boundary of the stability window; the values of

q are such that the mode is susceptible to become excited.

For 82 = 0.190 the main contribution i.e. ~ —3.89 x 10"4 comes from the (11,9) x (11,9)

term ; the second is due to the (11,9) x (12,9) coupling via the (1,0) equilibrium

term and is about half less i.e. ~ —1.94 x 10~4. The third main contribution i.e.

~ —1.06e x 10~4 comes from the (9, —1) x (11,9) coupling involving the (me,ne) = (2,2)

(Nper = 5) equilibrium term which, as we see from Tab.(B.I), is one of the most important

{y/g22 it -1 .7x10°) . We also see that the (2,1) x ( l l , 9 ) , (2,1) x(10,9), (1,1) x ( l l , 9 ) ,

.. couplings are largely inferior to the (11,9) x (11,9) contribution. The same is true for

the couplings with other components (5,4), (6,4), (10,9), etc. Therefore it is justified to
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have used the T™" set.

B) a configuration with a mixed L = 2 and L = 3 boundary deformation (83/82 = 2.5),

iVper = 4 at p = 1%. The current density profile is broad J'{s)IJ'norm = 0.44(1 - s20)8

i.e. nearly constant in the main part of the plasma and falling rapidly to zero near the

edge. The pressure profile is prB (Eq.(3.10)). The equilibrium sequence corresponds to

that illustrated in Fig.5.2 with the stability window being inside the interval 0.060 < 82 <

0.085. The two associated data tables are:

• Tab.(5.2) indicating five unstable eigenvalues for 82 = 0.065 and 0.070 and only two for

82 = 0.080. Here qmin ^ qedge. The relation W™axr" < < W™ax continues to be valid.

• Tab.(D.2) shows the couplings contributions. For 82 = 0.065 (i.e. £3 = 0.162) the

main contribution ~ —4.94 x 10"4 comes from the (4,3) x (5,3) coupling followed by the

(5,3) x (5,3) term. The ratio of the (2,1) x (mi, 3) couplings to the dominant contribution

is ~ 10~6. This ratio climbs to ~ 10~4 if we consider the (1,1) x (mi, 3) couplings; in this

last case the equilibrium coupling term is (me,ne) = (5,1) (Nper = 4) with an amplitude

y/g~1 — —1.2 x 10~3 which is the second largest among the equilibrium components

responsible for couplings with (mi,ni) components satisfying m; > n/ > 1 (see Tab.(B.2)).

Even if the couplings are considerably stronger than in the pure L = 2 case, they still

remain very low (compared to the dominant terms) to have an influence on the potential

energy.

5.3 Stability areas and equilibrium parameters

Having found an interval for 8 in which the (m, n), m = n, n + 1 , n + 2,.. modes are stable,

we want to know what happens if the plasma current is slightly modified. We vary then

the ai parameter from Eq.(3.8) and keep a2.-a.Q constant. By doing this we increase or

decrease J'(s) but do not affect its shape. Other stability windows may thus be obtained;

the representation of these stability windows in a (qaxis, qedge) plane gives a stability area

denoted by SA - see Fig.5.8 to Fig.5.11.

In these plots, each vertical line (for L = 3) or oblique line (for L = 2) represents an equi-

libria sequence associated to one value of cti; large ai's correspond to equilibrium having

smaller <?<,*«• An equilibrium sequence starts from a (qaxis(8start), qedge(8start)) point situ-

ated at top of the plane, and ends at the bottom, in the qedge — 1 region. As mentioned

in Sect. 5.1, the q profile is never lowered at the same rate throughout the whole plasma

when increasing 8. The slope defined by Aqedge/Aqaxis when i —> i + 1 can vary with <$,-

and from one equilibrium sequence to another, but is in most of the cases larger than 45°
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s
0.190

0.200

0.220

Qaxis

2.223

2.210

2.185

Qmin

1.233

1.178

1.076

ledge

1.233

1.178

1.076

-5.928E-04
-5.513E-04
-1.715E-04
-3.026E-05

-3.391E-04
-2.671E-04
-5.363E-05
-4.594E-05

-2.115E-04
-6.188E-05

(mi,
11
14
5
8

7
11
13
5

12
10

"<)e
9
11
4
6

6
9
11
4

11
9

(mj,
11
14
5
8

7
11
13
5

12
10

9
11
4
6

6
9
11
4

11
9

ytrmax
"v

-3.89E-04
-2.43E-04
-1.07E-04
-8.43E-05

-2.76E-04
-1.30E-04
-5.73E-05
-3.52E-05

-1.70E-04
-4.42E-05

yymax res

-6.37E-15
2.78E-16
-1.04E-15
-6.19E-17

-7.98E-17
-1.30E-13
-2.12E-15
-4.94E-15

-9.02E-15
-3.49E-14

Table 5.1: The unstable eigenvalues obtained when studying the (2,1) mode with the ?2,i
set. The equilibria are from the same sequence as those in Fig.5.1 i.e. L = 2, Nper = 5,
l/ec = 5, prB and J'{s)lJ'norm = 0.9(1 - s10)2 - 0.4(1 - s2'5)2. The three values of 5 are
inside the stability window i.e. the (n, 1) modes are stable if studied with the T£%" set.
The perturbation components with the largest £max and r)max amplitudes are given in the
columns at the right of J1. The quantities W™ax and W™axres were defined by Eq.(5.1)
and the lines following.

S
0.065

0.070

0.080

laxis
1.254

1.237

1.203

Qmin

1.137

1.104

1.039

ledge

1.218

1.172

1.087

u2

-4.398E-04
-2.119E-04
-1.818E-04
-6.918E-05
-8.521E-06

-4.318E-04
-2.029E-04
-1.973E-04
-1.750E-04
-2.821E-05

-1.880E-04
-2.264E-05

("»/.
4
6
8
11
8

6
4
10
8
10

10
8

3
5
7
9
7

5
3
9
7
9

9
7

(mi,r
4
6
8
11
8

6
4
10
8
10

10
8

l')l7m.x

3
5
7
9
7

5
3
9
7
9

9
7

Wmax

-4.94E-04
-4.23E-04
-3.36E-04
-2.63E-04
-1.51E-05

-4.28E-04
-4.69E-04
-3.03E-04
-3.38E-04
-4.63E-05

-3.57E-04
-3.35E-04

yirmax res
vyP
-1.54E-08
-2.68E-08
-5.39E-14
-4.66E-12
6.36E-15

-5.80E-08
-3.63E-10
-2.59E-12
-1.59E-11
-4.25E-13

-9.95E-12
-5.37E-13

Table 5.2: The unstable eigenvalues obtained when studying the (2,1) mode with the T-z,i
set. The equilibria are from the same sequence as those in Fig.5.2 i.e. a mixed L = 2 and
L = S boundary deformation, Nper = 4, l/ec = 10, prB and J'{s)IJ'norm = 0.44(1 - s20)8.
The three values of 6 are inside the stability window i.e. the (n, 1) modes are stable
if studied with the 7^°^es set. The columns at the right of u2 show the perturbation
components with the largest £max and r]max amplitudes; W™ax and W™ax res were defined
by Eq.(5.1) and the lines that follow.
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indicating that qedge diminishes generally more rapidly than qaxia.

The stability areas can be described in terms of size, shape and position in the {qaxi

plane. The comparison of these attributes between several SA's, was chosen to serve as

a basis for discussing the effects of the different equilibrium parameters on the stabiliza-

tion process. All numerical values that follow are related to the (2,1) mode. The results

concerning other (m, n) will be mentioned later.

• SA position and limits

The largest part of the SA is situated in most cases under the diagonal qedge — qaxis and

in the region limited by qedge < 1.5. The windows of stability correspond generally to

inverted q profiles. In a number of cases qedge is lowered so much that qmin = qedge and

the inverse rotational transform becomes a monotonically decreasing function of s. This

is generally true for hollow and to some extension for broad current density profiles - see

Fig.5.1.

The upper margin of the SA represents the entry points in the stability windows i.e. the

Smin correspondig to the selected ai's. Its left (small qaXis) and lower (small qedge) margins

correspond to the destabilization of an (n,n) mode. In general these limits are associated

with qmin ~ 1.0. The nature of the SA boundary at large qaxis cannot be clearly denned

and will be discussed below.

• dependence on the current profiles

Small currents require more deformation for stabilization (bigger <Smin) than larger cur-

rents. This is because a smaller current implies higher values of q at 8start ; when q is

lowered the values of 6 for which the mode studied is destabilized (before being stabilized)

are higher than in the large current case.

Peaked current density profiles (a,2 < 1.5) yield compact stability areas, situated mostly in

the 1.0 < qaxis < 1-5 region - see Fig.5.8(a), Fig.5.9(a) and Fig.5.11. Broad current den-

sities (a.2 > 5) give areas elongated in the qaxis direction - see Fig.5.8(b) and Fig.5.9(b).

Hollow currents (sign(ai) / signfa)) produce stable areas shifted towards large qax{s

Fig.5.8(c) and Fig.5.9(c). For strong and peaked currents densities, stabilization occurs

also when qaxis < qedge and/or non monotonic q profiles - see Fig.5.3 and Fig.5.8(a),

Fig.5.9(a), Fig.5.11.

• number of field periods and and aspect ratio

Calculations realized with several current density profiles and at different aspect ratios

have shown that Nper = 4 and Nper = 5 give stability areas which are comparable in size.

We can give only a qualitative appreciation by saying that the differences are at the level
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Figure 5.8: Stability area of the (2,1) mode (T^°res set) for equilibria with L = 2, A p̂er = 5,
l/ec = 10, at 0 = 1% and pressure profile prB. The difference between the three plots
is due to the current density profile, (a) peaked profile J'{s)jJ'norm = ai(l — s1-2)2, (b)
broad profile J'(s)/J'norm = fll(l - 5

2 0 ) 8 , (c) W/ou; profile J'{s)IJ'norm = fll(l - s™f -
0.4(1 — s2"5)2. Each oblique line corresponds to a fixed a\ value and represent (qaxis,<Iedge)
pairs at different 8 's. Unstable points are represented with the labels "x ", stable points
with "o" and points close to marginal stability with "•". The circular tokamak 82 = 0
is represented by "*". Peaked currents can give stable equilibria with qaxis < ledge- The
stable areas associated with hollow currents start at higher qaxis-
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of details. This is no longer true when Nper = 7; the associated SA seems to be reduced

in size by a factor of two or more - see Fig.5.10 (a). Unfortunately we do not have enough

data to sustain a detailed comparison and no study was done for higher iVper to verify if

the stabilization becomes indeed less effective.

Regarding the inverse aspect ratio the following cases have to be distinguished :

a) L = 3 boundary deformation - the average plasma radius does not change with 8 and the

inverse aspect ratio remains constant when increasing the plasma boundary deformation.

The largest SA were produced with 1/e ~ 8 to 10. For l/ec = 13 the SA seem to decrease

but the differences with the former two values were small - see Fig.5.10 (b). For l/ec = 5,

the reconstruction of the equilibrium in Boozer coordinates is systematically subject to

errors (c.f. Section 4.4 and Eq.(4.4)) and we decided to eliminate the results from the

discussion.

b) L = 2 boundary deformation - the calculation of the average plasma radius from

Eq.(3.1) gives an inverse aspect ratio which varies with 8 according to the law

i i i

(5.3)

If for example, the equilibrium sequence is started with l/ec = 10 at /3 = 1%, then in

the stability windows, 1/e may reach values between 9 and 8.5 (£2 betwen 0.2 and 0.4).

The latter value corresponds to the cases with small and peaked current densities. As

1/e changes slowly but continually, we chose l/ec as a comparison criterion. We arrived

at the same conclusions as those from point a). Concerning l/ec = 5, the stability areas

were less extended compared with l/ec = 8 or 10. For l/ec = 17 the Shafranov shifts

became very high As/i/ ~ 20% and the stability calculations may be compromised by

questionable equilibria; therefore we do not comment them.

c) mixed L = 2 and L = 3 boundary deformation - the variation of 1/e is due only to 82

and the comments from point b) remain valid.

• type of boundary deformation

L = 2 configurations require for stabilization values of 8 which are much larger than

those for L = 3 configurations i.e 8^ ~ 0.20 - 0.30 compared to 6%g ~ 0.08 - 0.12

- see Fig.5.1, Fig.5.3 and Fig.5.4. Fig.5.8 illustrates stability areas obtained with three

different current profiles for a L = 2 configuration at /? = 1% and l/ec = 10 ; the same is

shown in Fig.5.9 for a L = 3 configuration.

If we ignore for the moment the right side of the (qaxis-, Qedge) plane and compare only the

<la.xis < 2 regions, we observe that the L = 2 configurations give stability areas which are

slightly larger than those produced by L = 3 configurations. For L = 2, stable equilibria

can exist with a higher qedge (1-4 for example) than in the L = 3 case. We admit that a

comparison between the two sets of figures (Fig.5.8 and Fig.5.9) is not quite justified here
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Figure 5,10: Stability area of the (2,1) mode studied with the Tffres set
(a ) : L = 3 configuration, Nper = 7, l/ec = 14, /? = 1%, /*•* J'(s)jJ'norm = aa(l - s1 2)2

(b ) : L = 3 configuration, Nper = 5, l/ec = 13, /3 = 1%, prB J\s)jJ'norm = ax(l - 5
2 0 ) 8

because the number of field periods are different and also because in Fig.5.8 the inverse

aspect ratio varies according to Eq.(5.3). However, the previous statements were checked

in numerous other cases with stability areas calculated with the same Nper.

Mixed configurations have been investigated by applying a simultaneous L = 2 and L = 3

boundary deformation such as to keep a constant r = £2/^3 ratio. Three values have been

considered r = 2.0, 2.5, 3.0. Let 8aver be the value obtained when one roughly estimates

the average over many equilibrium sequences (for fixed current density profile) of the

middle of the stability windows. The ratio <$fver/£f';er estimated for different J'(s) profiles

is in the range 2.5 - 3.

The mixed configurations were tested only for l/ec = 10, Nper = 5 and with peaked,

broad and hollow current profiles. Comparing with the pure L = 2, we did not observe

any significant enlargement of the SA. We can only say that for peaked current profiles

the SA obtained with r = 2.5 and 3.0 were slightly larger than the SA resulting from r =

2.0. Fig.5.11 illustrates this difference in the case of a peaked current profile.

We have tested only a limited number of cases for L = 1 configurations and found no

stability windows (at f3 = 1%). These are however special cases in the sense that:

1) the plasma boundary is not really deformed; instead, the whole circular cross-section

rotates around the axis defined by R = Ro

2) the q profile is lowered in a much more uniform way; qaxis decreases nearly at the same

rate as qedge a n d the q = 1 limit is quickly reached. For all cases tested, the q profiles

never get inverted because the qaxis < 1 limit was reached before qedge could be lower than

qaxis- Fig.5.12 shows taht the (1,1) mode is destabilized before (2,1) becomes stable.
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The last boundary deformation tested belonged to a new type: we superposed on the heli-

cal L = 3 a fixed axisymmetric triangular boundary deformation measured by a parameter

R(s = COSU (cos(2u))
(5.4)

The aim was twofold: to slow down the diminishing of qedge so as to reach the Kruskhal-

Shafranov limit at a higher 8 and to observe the consequences of having a boundary

deformation which was no longer purely helical. Two values were considered 8axi = 0.03

and 0.09. Fig.5.13 shows the resulting equilibrium flux surfaces produced by VMEC. It is

visible how £3 and 8axi reinforce one another at the toroidal angle 2n/Nper and how their

effects are opposed at 7r/Nper.

The result was that the decrease of the q profile and in particular of qedge was less rapid

than in a pure L = 3 case, but the SA were sensibly reduced (Fig.5.13) indicating a less

efficient stabilization.

• pressure profile and 0
If the pressure on the magnetic axis i.e. the pQ factor from Eq.(3.9) or Eq.(3.10) is kept

fixed when calculating an equilibrium sequence, then (3 changes when 8 is increased. The

two plots from Fig.5.14 show that 0(8) is very well approximated by a linear function :

0 ~ a8 (5.5)
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Figure 5.12: Study of the (2,1) mode: (a) J'{s) profile, (b) q{s) profile and (c) u2
min(S)

for a mixed L = 1 configuration, Nper = 4, l/ec = 10, at fS = 1%, with pressure profile prA

and toroidal current density given by J'(s)/J^orm = 0.35(1 — s20)8. q is represented for
5i - 0.000 (-), 1.000 (- -) and 1.300 (•). For Sx < 0.4 the (3,1) component dominantes,
between 0.5 < ^i < 1.0 the (2,1) component is the most unstable followed by (1,1) for
Ji > 1.1.

2.2

Figure 5.13: Flux surfaces produced with VMEC for configurations with a L = 3 helical
deformation and a fixed axisymetric triangular deformation at 5axi = 0.090, £3 = 0.110,
l/e c = 10, and (5 = 1%. The plots were made for toroidal angles 0 (a), n/(Nper) (b)
and 37rj'(2Nper) (c). The stability area when the current density profile was of the form
J'(s)jJ'norm = aj(l — s5)2 is shown above. The mode studied was (2,1)

58



0.014

0.012

0.006,

Figure 5.14: Variation of f3 with 8 when po is constant.
(left) L = 2 configuration with Nper = 5, l/ec = 10, prB , J\s)IJ'norm = 0.35(1 - s20)8.
(right) 1 = 3 configuration with Nper = A, l/ec = 8, prB , J'{s)lJ'norm = 0.45(1 - s2'5)2.

with /?o = /?(<£ = 0) ( or j3(5 = 5start)- It is sufficient to estimate a from a number of

preliminary runs and to make the substitution po -»• Po/(po + a<£) to assure a constant j3

throughout the whole equilibrium sequence (the remaining relative variations of (3 never

exceeded 2%). The a coefficient has to be calculated for each combination of current

density and pressure profiles, Nper and inverse aspect ratio. It is always positive and

larger for L = 2 configurations and negative and smaller for L = 3 configurations.

Concerning the influence of the pressure profile on the stabilization process, we did not

observe major modifications of the size or position of the stability areas when changing

from prA to prB. At (3 = 1%, SA were obtained for a large variety of combinations of L,

Nper, (• and current profiles. At /? = 2% calculations were done only for \/ec = 10 and

we found that it is still possible to find stable areas but they are strongly diminished and

exist only for a reduced set of combinations of equilibrium parameters.

We add that the prA pressure profiles produce equilibria with much larger Shafranov shifts

(nearly two times more) than the prB pressure profiles.

• limit of the stability area at high qaxis

The definition of a clear SA boundary at large qaxis stumbles on several difficulties. If

the current density decreases the equilibria are characterized by large Shafranov shifts; in

general at 5 = 0 As/,/ ~ 5 — 10%. For low, peaked current densities and with the prA

pressure profile, Ash/(8 = 0) can exceed 20%. In such cases, one is skeptical about the

quality of the computed equilibria. At lower currents, VMEC does not converge and the

circular tokamak equilibrium does not even exist

Hopefully, when S is increased Ashf decreases. For L = 2 configurations Ashf is dimin-

ished by a factor of 2 and more when going from 8 = 0 to a 5 € Iff. However, even

with strong boundary deformations, a weak current can give Ashf of the order of 15-20 %

and more. When these values were encounterd we stopped the investigations; for peaked
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currents at high 1/e such problems appeared for qaxis > 1.8, whereas for hollow currents

Ash remained acceptable beyond qaxi3 = 2.0.

The prB parabolic pressure profile was introduced with the aim of reducing the Shafra-

nov shift. It effectively brought down these large Ashj to values of 4 — 9% and pushed

the above mentioned limits of qaxis- However, we still could not continue toward lower

currents, because the weak pressure gradient on the flux surfaces near the magnetic axis

caused increasing convergence problems in computing the equilibria.

Another problem comes from the fact that in that part of the SA situated generally in

the qaxis > 2 region, the stable eigenvalues w^in tend to be very weak. In many cases

convergence studies in the number of radial mesh points, indicate that the eigenvalues

tend to be marginally stable or even worse they may change sign (this did not happen in

the qaxis < 2 region). The work required to check and assure the validity of the numerical

results seems to be much more important in that part of the qaxis, qedge plane.

For these reasons we decided to avoid the exploration of the limit of the SA at large qaxu-

• stability areas associated with the (3,2) and (4,3) modes
All the results that follow were obtained at (5 = 1%. The resonant value of this mode is

qres = 1.5. The amount of boundary deformation needed to stabilize it is less important

than that for the (2,1) mode but less room is left before the qmin — 1 limit is reached

(see Fig.5.7). It follows that the stability windows are narrower than those of the (2,1)

mode; the stable areas are consequently reduced in size (compare Fig.5.15 with Fig.5.9).

From Fig.5.15 we see that in the qaxis < 2 region the SA are situated below qedge = 1.2.

In particular, the stability areas associated with peaked current density profiles rarely

extend above the qaxis = qedge diagonal.

Above q = 1.5 the dominant instability come from the (4,2) component or components

with higher rn's depending on the inverse rotational transform profile (Fig.5.7). When

q(s) < 2, there is a single window of stability in which the (m, 2), m > 2 modes are stable

and (2,2) is not yet excited. This may change if qaxis > 2 and q(s) > 1.5 ; in Fig.5.15,

the equilibrium sequence with the largest qaxi3 (~ 2.2) shows a stable point situated at

qaxis = 2.211, qedge = 1.613 (qmin = 1.597). Around this point (S3 = 0.107) a stability

window may exist in which the (m,2), m > 4 modes are stabilized and the (3,2) mode

was not yet destabilized. We did not study this new stability area because our concern

was the q < 2 region; we prefered to investigate that part of the {qaxis, <ledge} plane where

the n = 1 modes and the n = 2 modes were susceptible to have a common stability area.

The areas in which the (4,3) mode is stable are even less extended; the resonant value

triggering its destabilization is qres = 1.3 and the SA is situated below qecige = 1.1 (see

Fig.5.3). Here again we have a point (qaxis = 2.403, qedge = 1.413, qwn = 1.395) at which

the (5,3) mode is stable and the (4,3) mode is not yet destabilized.
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Figure 5.15: Stability area of the (3,2) mode; the equilibria are characterized by L =
3, Nper = 4, l/ec = 10, [3 = 1%, prB . The current density profiles are peaked (a)
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Figure 5.16: Stability area of the (4,3) mode; the equilibria are characterized by L = 2,
Nper = 5, l/ec = 10, p = 1%, pr5. The current density profiles are broad (a)

*2 0)8 Or hollow (b) J'(s)/J'norm = fll(l - 510)2 - 0.4(1 - S2"5)2.

If we extrapolate our results to modes with n > 4 we may come to the conclusion that

there is no finite common stability area associated to all n 's under the q < 2 region and

at the values of /? of the order of 1 %
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5.4 Mercier and ballooning results

The study of the the dependence of the Mercier criterion on the boundary deformation

lead us to the following conclusions:

- At small values of 5 (including 5 — 0) we have found many different configurations for

which DM is stable on each flux surface. Fig.5.17 (a), Fig.5.18 (a) and Fig.5.19 (a) illus-

tates this situation for L = 2, 3 and mixed boundary deformations with broad or hollow

current density profiles.

- When 5 is increased DM decreases. If a threshold value 5M is attained some flux surfaces

become Mercier unstable. 5M depends sensibly on the equilibrium parameters; its highest

value was obtained with low, peaked currents and prA profiles.For 5 > 5M more and more

surfaces are destabilized. This is also shown in Fig.5.17 (a), Fig.5.18 (a) and Fig.5.19 (a)

and (b) ; the broken lines correspond to the Mercier criterion evaluated at a value of 5

superior to 5M- The aim was to have 5M > 5min but in almost all studied cases this was

not true.

- When 5 is further increased two situations may arise:

1) In most of the cases and generally in the region corresponding to qaxis < 2, significant

toroidal currents and small Ash/ the Mercier criterion continues to decrease - see Fig.5.17

(a) and Fig.5.19 (a).

2) For some cases characterized by qaxis > 2 and a large Shafranov shift (Ashj > 12%),

DM{$) decreases until it attains a minimum profile after which it starts increasing.

Fig.5.17 (b) and Fig.5.18 (a) illustrate this situation. With respect to the stability win-

dow (of the (2,1) mode), the Mercier criterion appears to be satisfied only for L = 3

configurations at l/ec > 8, weak currents i.e toward the right edge limit of the SA in the

, (ledge) plane, where the quality of the numerical equilibria degrades.

In general, for small deformations a weak magnetic well exists but it becomes smaller

when 5 is increased. For L = 3 configurations, the magnetic well almost vanishes for

values of 5 in the stability window and for L = 2 configurations it generally transforms

into a magnetic hill. The evolution of the differential volume dV($(s))/ds is shown in

Fig.5.18 (b) for a L = 2 case (the same as in Fig.5.1) and in Fig.5.19 (b) for a mixed

L = 2 and L = 3 case (the same as in Fig.5.19).

The study of the ballooning stability was not the purpose of this work and the results

which follow come from a reduced number of calculations done for a few selected cases (15

equilibrium sequences). We worked only at (3 = 1% and with the prA pressure profile to

avoid larger gradients toward the plasma edge associated with prB. For each equilibrium
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Figure 5.17: The Mercier criterion evaluated at three values of6 in the case of two equilib-
rium sequences that differ in the amount of plasma current they carry. Positive/negative
values of DM indicate stability/instability. :
(left) J'{s)IJ'norm = 0.5(1 - s20)8 at63=0 (-), 0.090 (-) and 0.114 (•). The stability
window is situated between the last two values and the Shafranov shift Ashf varies between
6.3% (-) and 4.76% (•).
(right) J ' ( 5 ) / j ; o r m = 0.25(1 - s 2 0 ) 8 at 53 = 0.093 (-), 0.121 (-) and 0.170 (•). The sta-
bility window is situated between the last two values and the Shafranov shift Ash/ varies
between 15.42% (-) and 9.90% (•).
The equilibria are characterized by L = 3, Nper = 4, l/ec = 10, (3 = 1% and prB.

sequence considered we chose values of 5 outside (before) and inside the stability window

(corresponding to the global (2,1) mode) and tested only a few number of magnetic lines

(with a = 0, nl{ANper) and n/(2Nper). The results can be summarized as follows:

- all L = 2 studied configurations were unstable to ballooning modes either at small or

at large boundary deformations. Fig.5.20 shows the dependence on s of the eigenvalues

\(s,6k) c.f. Eq.(2.48) and of the amplitudes of the five most important Fourier compo-

nents of the normal curvature nn

Kn = (5.6)

with the curvature vector given by b- V6. The ballooning instability deteriorates when the

boundary deformation is increased from a small-moderate value 8 = 0.100 < Smin < 0.190

to a stronger value 6 = 0.240 situated inside the stability window corresponding to the

(2,1) mode. We notice that the eigenvalues associated with the three magnetic lines are

undistinguishable.

- for L = 3 configurations we found that at small boundary deformations, there are always

some flux surfaces on which the magnetic lines studied are unstable; on these surfaces

the shear is weak. At stronger 5 's, if the q profile is such that the shear is relatively

large in the whole plasma domain, then, for the magnetic lines tested \(s,9k) < 0 Vs.

Fig.5.21 illustrates such a case. We notice that for 5 = 0.075 (Smin ~ 0.120), the A(s,0fc)
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Figure 5.18: (a) The Mercier criterion DM and (b) the differential volume
as functions of s for three values of 8. The parameters are those of Fig.5.1 i.e. L = 2,
Nper = 5, l/ec = 5, prA pressure profile, /? = 1%, J'{s)IJ'norm = 0 .9( l -s l o ) 2 -0 .4( l -s 2 - 5 ) 2

at 82 = 0.010 (-), 0.180 (- -) and 0.230(-). The magnetic well is changed into a magnetic
hill; the Mercier criterion which is stable for the circular tokamak is unstable in the window
0.180 < S2 < 0.230 near the plasma edge.

Figure 5.19: (a) The Mercier criterion DM and (b) the Differential volume
as functions of s for three values of 8. The parameters are those of Fig.5.2 i.e. a mixed
L=2,3 configuration, Nper = A, l/ec = 10, prB pressure profile, (3 = 1%, J'(s)IJ'norm =
0.440(1 - s20)8 at 83 =0.010 (-), 0.060 (- -) and 0.085 (•). The magnetic well decreases
with 8 and is reduced to zero at 8max = 0.085. The Mercier criterion, stable at 83 = 0.010,
is unstable for 0.060 < 83 < 0.095.

eigenvalues are again nearly undistinguishable from field line to field line; «n is dominated

by the (1,0) component followed by the (2,0) component. At 8 = 0.150 (8max ~ 0.160) the

tested lines are stable; (Kn )3,3(s) and (Kn )2,3(-s) come in the second and third position

after (Kn)i,o(s).

In general peaked and broad current density profiles are more likely to produce q profiles

with a region of weak shear at strong 8 's (see for example Fig.5.3 and Fig.5.2) and can

therefore lead more easily to ballooning instability (at strong 8 in the stability windows).

The case presented in Fig.5.21 was a particular optimized result.
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Figure 5.20: Ballooning study results for L = 2, Nper = 5, l/ec = 5, at (3 — 1%, pr3

and J'{s)jJ'norm = 0.9(1 — s2'5)2. The figures on the left correspond to 82 = 0.100 and
the figures on the right to 82 = 0.230. The first row shows the q profiles at these values
of the boundary deformation. The eigenvalues X(s,6k) c.f. Eg. (2.48) associated with
three particular field lines are shown in the two middle plots and the dominant Fourier
components of (Kn )me,ne of the normal curvature, are displayed in the lower two plots.
Positive values of\(s,8k) are unstable and negative values are stable. The stability window
of the (2,1) mode is 0.190 < 82 < 0.240.
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Figure 5.21: Ballooning study results for L = 3, Nper = 4, l/ec = 10, at 0 = 1%, pr3

and J'{s)IJ'norm = 0.35(1 - s20)8. T/ie ^ u r e s on the left correspond to S3 = 0.075 and
the figures on the right to S3 = 0.150. The first row shows the q profiles at these values
of the boundary deformation. The eigenvalues X(s,$k) c.f. Eq.(2.48) associated with
three particular field lines are shown in the two middle plots and the dominant Fourier
components of ( «n )TOe,ne of the normal curvature, are displayed in the lower two plots.
Positive values ofX(s,$k) are unstable and negative values are stable. The stability window
of the (2,1) mode is 0.120 < S3 < 0.160.
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Chapter 6

Free Boundary calculations

6.1 Introduction

In this chapter we reconsider the study of the global stability of the external kinks when

the equilibria are calculated with a free boundary code. The aim is twofold:

1) To test how difficult it is to obtain free boundary equilibria with single helicity bounadry

deformation at nonzero plasma current and positive (3. For this purpose we design a sys-

tem of coils producing a toroidal, a vertical and a helical field and find the currents

(flowing through the coils) needed to obtain the desired type of boundary deformation.

The field produced by these external currents is given then as input to the free-boundary

equilibrium code NEMEC (c.f. Appendix E).

2) To determine the validity of the fixed boundary calculations; we hope to obtain stability

windows for the mode studied when the amount of boundary deformation is monotonously

increased.

It is not a systematic study. We do not consider the coil optimization aspect of the prob-

lem and work with a minimum number of coils, each of them being approximated by a

single current filament. We avoid increasing the number of variables (more coils or more

filaments per coil) even if this offers more flexibility for the fine tuning of the flux surfaces.

We also do not explore the consequences of the additional parameters as the coil geometry

and the external currents on the investigation procedure (of the global stability). This

would possibly lead to new stability diagrams (areas) in the {qaxis,Qedge} plane, but we

do not follow this approach.

Our concern is to find one combination of parameters (coil geometry, external currents,

plasma parameters) which fulfills objectives 1) and 2) and opens thus the way for future

investigations.
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6.2 Flux surfaces in vacuum

The vacuum field necessary to calculate the free boundary equilibrium is produced by the

COILS code which was written for that purpose. We assume a configuration consisting of

a set of circular coils producing the toroidal field (TF),a set of circular coils which create

the vertical field (VF) and a set of helical coils that generate the helical field (HF). The

resulting B is calculated from the Biot-Savart law.

The TF coils are characterized by their radius Rt which is the same for all coils, their

number Nt and the current flowing through them It. These coils are aligned vertically

and their centers are placed equidistantly around a major circle of radius Rh.

The HF coils lay on a circular torus of minor radius r^ and major radius Rh~, the cartesian

coordinates of the segments that describe the coils are given by

x = (Rh + rhcosu)cosv

y = (Rh + rhcosu)sinv (6.1)

z = r^sinu

with u and v the geometrical poloidal and toroidal angles. The helical conductors are

wound on the torus with the following winding law:

n / - I
u = u + 2TT— (-uo

1 / 27T ^
v = —-(u + asin(u))--——

1\ per L, IV per

Here / = 1,..L is an index specifying a particular coil and a is a pitch modulation co-

efficient which is introduced to compensate for the loss of the helical symmetry due to

toroidicity. The L and Nper parameters have the same meaning as in the previous chap-

ters. The effect of a ̂  0 on the coil shape is shown in Fig.F.l.

Eq.(6.2) describes a heliotron configuration (or torsatron configuration if the TF coils

are not present) with exactly L coils and all the currents flowing in the same direction.

Stellarator-like configurations can also be studied by intercalating another set of L helical

wires such that the resulting 2L currents flow in alternate directions.

There are three pairs of VF coils; a coil belonging to the i pair, i = 1,2,3, is parametrized

by Ryi the radius of the coil, Zvt- the height at which its center is placed (—Zvi for the

second coil) and /vt- the current flowing through it - see Fig.F.2.
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Figure 6.1: Cross sections at four toroidal angles showing three field lines for a L = 2
stellarator configuration. There are 16 TF coils with Rh = 5.0 [m], Rt — l.8[m], It =
-1.6 • 105[A] and two pairs of HF coils rh = lAfm], a = -0.15, h = ±1 x 1Q5[A\. An
estimation of the inverse rotational transform values gives q ~ 4.50, 3.75 and 2.50 for the
inner, middle and outer surfaces respectively

Field line tracing routines were added to COILS and a preliminary study was done in or-

der to determine the coil parameters necessary to produce closed flux surfaces in vacuum.

We arrived at the following results:

A. Flux surfaces in vacuum produced with a l = 2 stellarator configuration of
coils.

Fig.6.1 shows closed flux surfaces produced by a configuration characterized by

Rh = 5.0 [m] , Rt = 1.8 [m] , rh = 1.4 [m] , a = -0.150

It = -1.6 x 105[A] , 4 = ± l x 105[A]

There are no currents in the VF coils; a negative current flows clockwise through the

coil considered. A rough estimate of the inverse rotational transform gives <?, ~ 4.5 and

qo ~ 2.5 for the innermost and outermost field lines respectively. The flux surfaces are

relatively robust with respect to small changes of the geometry or of currents flowing

69



1

0.5

N 0

-0.5

1

V— '>
) /

4 4.5 5

R
5.5 6

Figure 6.2: The same as in Fig.6.1 for a L = 3 stellarator configuration. There are 16
TF coils with Rh = 5.0 [m], Rt = l.Sfm], It = -0.5 x 105[A], and six HF coils with
r^ = lAfmJ, a = —0.05 and //, = ±0.66 x 105[A]. An estimation of the inverse rotational
transform values gives q ~ 25, 7.50 and 2.14 for the inner, middle and outer surfaces
respectively

through the coils. We mean by this that the cross sections continue to have a helical

shape even if the current intensities or coil radii are varied by 10% or more. However,

the inverse rotational transform may change strongly. For example if r^ is augmented to

1.5 [m], then the cross sections remain very similar but the previous two magnetic lines

will be characterized by # ~ 7.5 and q0 ~ 3.75. If h is decreased to 0.9 x 105 [kA], the

corresponding values are <& ~ 5.62 and q0 ~ 3.21. The value of a represents a compromise;

smaller or larger a 's cause pear-shaped deformations of the flux surfaces.

B. Flux surfaces in vacuum produced with a L = 3 stellarator configuration of
coils.
The example shown in Fig.6.2 comes from the following choice of coils parameters:

Rh = 5.0 [m] , Rt = 1.8 [m] , rh = 1.4 [m] , a = -0.050

It = -5.0 x 104 [A] , Ih = ±6.6 x 104 [A]
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Figure 6.3: Flux surfaces in vacuum produced with a L = 2 torsatron configuration consist-
ing in one pair of HF coils and two pairs of VF coils (indexed with i and 3). The geometry
is described by Rh = 5.0 [m], rh = 1.6 [m], a = -0.175, i^i = 7.0 [mj, Zvl = 2.1 [m],
RV3 = 3.0 [m] and Zvz = 0.5 fmj. The currents in the coils are /& = 1 x 105[A],
/vi = —3.9 x 104[A]; /v3 = 2.1 x 104[A]. An estimation of the inverse rotational transform
values give q ~ 3.21, 2.81, and 1.13 for the inner, middle and outer surfaces respectively

No VF coils are needed to produce closed flux surfaces in vacuum. Varying the above

mentioned parameters and comparing the results with the preceding L = 2 case we have

observed the following:

- the shear is very high: <fc ~ 25 and q0 cz 2.14 on the innermost and outermost surfaces

respectively. Huge qaxis values in vacuum are characteristic of this type of coil configu-

ration; we recall that for a L = 3 linear stellarator magnetic field, 1 is zero on the axis

[41]. It is difficult to reduce the inverse rotational transform in the central region to lower

values (typically < 10) by varying the ratio h/It or rh-

- the maximum volumes that can be enclosed by the last closed surface seem to be smaller

than those of the L = 2 configurations (In Fig.6.2 the outer surface is nearly the last closed

surface; this is not the case in Fig.6.1)

- the cross sections of the flux surfaces are not strongly perturbed by small changes in the

parameters of the coils.

71



1

0.5

N 0

-0.5

-1

3.5

1

0.5

N 0

-0.5

-1

3.5

4 4.5 5 5.5 C
R

3*/(4Nper)

((o)J
4 4.5 5 5.5 (

R

1

0.5

N 0

-0.5

-1

> 3.5

1

0.5

N 0

-0.5

-1

> 3.5

• -•

•» *•

4 4.5 5 5.5 6
R

3 7 t / (2 Nper)

4 4.5 5 5.5 6
R

Figure 6.4: Flux surfaces in vacuum produced with a L = 2 torsatron configuration con-
sisting in one pair of HF coils and three pairs of VF coils. The geometry is described
by Rh = 5.0 [mj, rh = 1.7[m], a = 0., i^i = 7.0[m], Zvl = 2.1 [mj, i^ 2 = 8.0/m/,
Zv2 = 1.2 [m], Rvz = Z.Ofm], Zv3 = 0.5 [m]. The currents in the coils are Ih = 1.0xl05[A];

Ivl = -3.9 x 104[A], Iv2 = -1.0 x 104[A], /v3 = 2.1 x IO4[A]. An estimation of the inverse
rotational transform values give q ~ 5.20, J^.50 and 3.75 for the inner, middle and outer
surface respectively.

C. Flux surfaces in vacuum produced with a L = 2 torsatron configuration of
coils.

Since all the curents flow in a single direction, the HF coils produce a net toroidal field.

We decided adopt the least flexible method for generating closed flux surfaces by elimi-

nating the TF coils. Shape control of the flux surfaces is enabled with the introduction

of several pairs of VF coils. An example of such a configuration is shown in Fig.F.4 (see

also Fig.F.2). Two cases are presented.

l ) a / 0 - with pitch modulation and two pairs of VF coils (7V2 = 0 it is possible to obtain

closed magnetic surfaces with the desired helical shape - see Fig.6.3; the coils parameters

are

Rh = 5.0 [m] , rh = 1.6 [m] a = -0.175

= 7.0 [m] , Zvl = 2.1 [m] , Rv3 = 3.0 [m] , ZvZ = 0.5 [m]

72



h = 1. x 105 [A], Ivl = -3.9 x 104 [A] , IvZ = 2.1 x 104 [A]

The magnetic surfaces enclose a large volume and are relatively robust with respect to

small variations (< 5%) of the coil parameters.

2) a = 0 - even if the pitch modulation effect is abandoned, it is still possible to obtain

cross section shapes dominated by a single helical component if a third pair of VF coils

is added. One of the best result we have obtained is shown in Fig.6.4 for

jRfc = 5.0[m] ,rfc = 1.7[m]a = 0.

Rvl = 7.0 [m] , Zvl = 2.1 [m] , R^ = 8.0 [m] , Zv2 = 1.2 [m] , Ry3 = 3.0 [m] , Zv3 = 0.5 [m]

Ih = 1. x 105 [A], Ivl = -3.9 x 104 [A] , Iv2 = - 1 . x 104 [A] , Iv3 = 2.1 x 104 [A]

The deviations from the desired L — 1 helical cross section shape become visible (espe-

cially for the outer surface); the flux surfaces are very sensitive to small changes in the coil

geometry or variations of the currents. As an example Fig.F.3 shows the deformations of

the flux surfaces when the Iv$ current is increased by 10% compared with Fig.6.4.

In both cases, the volume enclosed by the flux surfaces are very large.

6.3 NEMEC results

After having shown how to produce closed magnetic flux surfaces in vacuum we proceed

to the next step which is the calculation of free boundary equilibria with finite j3 and

nonzero toroidal plasma current. The aim is to obtain a sequence of equilibria with in-

creasing helical boundary deformations and inverse rotational transform profiles in the

region 1 < q(s) < 2.The different equilibria are labelled by the current intensity in the

HF coils Ih instead of the 5 parameter. We are not going to study all the configurations

presented in the previous Section; we select one type after considering the following points:

• At nonzero plasma current, the q profile will be totally different from that of the vac-

uum. The currents in the coils have to be adjusted such that the resulting q profile falls

in the region of interest. It is important to have a configuration of coils which enables

such a fine tuning.

• When Ih is monotonically increased, the Fourier coefficients describing the deformation

of the free boundary should remain (strongly) dominated by the (/ — 1, /) and (/ — 1, / — 2)

components (for a L = / configuration, in VMEC coordinates).
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Figure 6.5: Configuration consisting in 16 TF coils, 2 pairs of HF coils (stellarator) and 1
pair of VF coils. Fig.6.1 shows the flux surfaces in vacuum obtained with this configuration
when Iv = 0 (c.f. Section 6.2). If the coils and plasma input parameters are given by
Eq.(6.3) and Eq.(6.4), the flux surfaces produced with NEMEC are displayed in Fig.6.6

• For f3 > 0, the flux surfaces will be not only shifted but also deformed and one should

be able to correct this effect with appropiate changes of the coil currents.

We decided to consider the L = 2 stellarator configuration because it appears to be very

flexible in coping with the constraints described above. We present a case with 16 TF

coils and two pairs of HF coils to which we added one pair of VF coils - see Fig.6.5:

Rh = 5.0 [m] Rt = 1.8 [m] rh = 1.4 [m] a = -0.150

Rvl = 7.0[m] Zvl =2.1[m] (6.3)

iVper = 4
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Figure 6.6: Free boundary equilibrium flux surfaces produced with NEMEC. Each column
represents the cross sections at one toroidal angle and each row is associated with one value
of Ifi- The coil geometry and plasma parameters are described by Eq.(6.3) and Eq.(6.4)
respectively - see also Fig. 6.5; the most important Fourier coefficients that describe the
boundary are given in Tab. (6.1)

The input plasma parameters for NEMEC were chosen

/? = 1% ,prB pressure profile (Eq.(3.10))

J'(S) ~ (1 - 620)8

J = 1.27 • \05[A] toroidal current

(6.4)

A number of preliminary runs (COILS + NEMEC) were done with the parameters given

above to find at least one combination of coil currents i.e. It,Ih and Iv\ such that the

resulting equilibrium had a helical plasma boundary with a dominant 1 = 2 helicity

and an inverse rotational transform profile satisfying 1 < q(s) < 2. At this stage, the
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Ih • 105 [A]

0.6

1.0

1.3

K
l
l
0
I
2
1
1
0
1
2
1
1
0
1
2

<

0
2
2
-4
0
0
2
2
-4
2
0
2
2
-4
2

4.886e-01
5.798e-02
-1.040e-02
-8.753e-03
-4.252e-03
4.806e-01
9.902e-02
-1.535e-02
-9.838e-03
6.765e-03
4.906e-01
1.419&-01

-1.421e-02
-1.126e-02
1.050e-02

<

1
1
0
1
2
1
1
0
1
2
1
1
0
2
1

<

0
2
2
-4
2
0
2
2
-4
2
0
2
2
2
-4

4.363e-01
-5.171e-02
8.065e-03
-7.542e-03
-4.312e-03
4.611e-01
-9.597e-02
1.149e-02

-9.251e-03
-7.076e-03
4.795e-01
-1.422e-01
1.678e-02

-1.118e-02
-1.103e-02

Table 6.1: The most important Fourier components (Roo and Zoo are not displayed) in
VMEC coordinates describing the plasma boundary at three values of the current in the
helical coils. The coil geometry and plasma parameters are those of Eq.(6.3) and Eq.(6.4),
respectively; the corresponding flux surfaces cross sections are shown in Fig.6.6

experience acquired when tracing field lines in vacuum with COILS was very useful. Once

this particular equilibrium was found we proceeded further by varying Ih in several steps

such as to cover the whole 1 < qedge < 2 interval. We did not change either It or Ivi ;

at each step we adjusted the po parameter (c.f. Eq.(3.9) or Eq.(3.10)) such as to keep

(3 ~ 1%. If the conventional (tokamak) definition of normalized beta is used, fa = (3/IN

with IN = J [MA]/(a [rn] Bo [T]) where a and Bo are the averaged minor radius and the

magnetic field intensity on the axis, respectively, we obtain ftp? ~ 4 — 6.

Fig.6.6 shows an example of flux surfaces produced by NEMEC for three values of the

HF coils current

Ih = 0.6 x IO5[A] , 1 x 10s[A] and 1.3 x IO5{A]

when the currents flowing in the TF and VF coils are given by

It = -1.6 x 105[A] , Ivl = 1. x 104[A]

The corresponding q profiles are presented in Fig.6.8 (b) and the most important equilib-

rium Fourier amplitudes (in VMEC coordinates) Rm^ n j , Zmv n« describing the boundary

are given in Tab.(6.1). The boundary shape is dominated by the (1,0), (1,2) helical

components; the ratio of the helical (1,2) component to the next biggest component (2,0)

varies between ~ 5.9 and 10. The largest distortion from the pure L = 2 helical shape

occurs at small HF current i.e. Ih = 0.60 x 105[A].
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6.4 Stability window of the (2,1) mode

Only the (2,1) mode was considered in this stability analysis. We proceeded as in the

fixed boundary case and went through the following steps :

• Determinat ion of the 7^°n
res and Tm>n sets

As the configuration has four equilibrium field periods, the (m;, n;) resonant modes in the

1 < q(s) < 2 region have nt = 3, 5, 7, 9,.. see Tab.(3.2). According to Tab.(3.6), the equi-

librium terms coupling the (mi, m) in question with the (2,1) mode are (me, Nperne = 4)

for me > 4, (rae, Nperne = 8) for me > 8, (me, Nperne = 12) for me > 12 etc.

The equilibrium Fourier components retained in the calculation, the yfg amplitudes

and the perturbation components coupled with the (2,1) mode via the equilibrium com-

ponents are given in Tab.(B.4) - see also Fig.6.7. The equilibrium was calculated with

Ih = 1.1 x 105 [A] and the y/g were evaluated on the plasma boundary. If we compare

this table with Tab.(B.I) or Tab.(B.3) which are representative for the pure helical L = 2

fixed boundary case (no matter if Nper is different), we observe that the equilibrium com-

ponents with odd ne are no longer negligible. We can also see that there is a larger set of

y/g amplitudes with me < 3 of the order O(10~1) to O(10~3). For lack of space, only

120 equilibrium components were represented in Tab.(B.4); those leading to couplings of

(2,1) with resonant (mi,ri[) having n; = 7,9,11 are not shown but have been retained in

the calculations.

The consequence of having a boundary which is no longer purely L = 2 helical is that

resonant modes can be coupled to the (2,1) mode via a larger number of non negligi-

ble (rne,Nperne). However, these equilibrium components are still small compared with

the dominant ones; the y/gm t amplitudes with me > 4 (involving couplings with the

(mi, ni = 3,5) resonant modes) are of the order ~ C(10"5) compared with <9(10-1) for

y/g00 or O(10~2) for y/g10, V^i 2' e*c ' ^ e ^2?rres a n d 72,i sets are then constructed as

explained in Section 3.3.

• TERPSICHORE results

Fig.6.8 shows the evolution of the most unstable eigenvalue ^"^""((S,) calculated with

the T££res set. A stability window is obtained for values of the current in the HF coils

between 1 x 105 [A) < h < 1-3 x 105 [A]. For lower Ih values, the (2,1) mode is the

most unstable; at larger Ih, the (1,1) mode becomes the main destabilizing factor. In the

stability window, the q profiles are inverted and have low shear.

In order to verify that the (2,1) x (ra/,nj) couplings with mi > n\ > 1 are negligible, we

selected three equilibria from the stability window with Ih = 1-05, 1.10 ,1.20 xlO5 [A] and
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Figure 6.7: amplitudes in a free boundary equilibrium; the coil geometry and

plasma parameters are described by Eq.(6.3) and Eq.(6-4) respectively and Ih = ±1.1 x
105[A]. The x-axis corresponds to the ne equilibrium mode number (not Nperne). The
points marked with '*' represent the equilibrium components responsible for couplings be-
tween the (2,1) mode and the (mi,ni) perturbation components with m; > n; > 1 (only
the ne < 2 i.e. n; < 11 are shown). All other equilibrium components are marked with
'o'. See Tab. (B.4) for detailed informations.

ran TERPSICHORE with the 72,i set. The procedure followed was the same as in Sec-

tion 5.2: the hierarchy of the unstable eigenvalues a;^in(//i) < w\(Ih) < w\(Ih) < .. < 0

was calculated for each of the Ih choosen and the associated (roj, n{) unstable modes

were identified; some of the most unstable eigenvalues are given in Tab. (6.2). For each

of these eigenvalues, the most important Wj>(
m<i.n'i)x(nira."i2) couplings together with the

Wr(2,i)x(m,,nI) a n d W(i,i)x(m,,ni) contributions to the potential energy (c.f. Section 5.2,

Eq.(5.1)) are shown in Tab.(D3)

The particular case Ih = 1.10 x 105 [A] and u>2 = —5.832 • 10~4 deserves attention because

the value of W™ax res is quite large, i.e. —2.20 x 10"5, which is about 20 times smaller than

W™ax. The perturbation components involved in the coupling are (1,1) and (4,3) - see

Tab.(D3) ; the (2,1) x (mj,n/) couplings continue to have a negligible role in determining

the value of the potential energy. In this case the stability window calculated with the

T™" set was not affected.
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h • 10&[A]
1.050

1.100

1.200

Qaxis

1.437

1.386

1.286

Qmin

1.273

1.202

1.065

<ledge

1.273

1.202

1.065

wl

-9.889E-04
-7.314E-04
-2.073E-04
-1.097E-04
-9.354E-05

-6.210E-04
-5.832E-04
-1.232E-04
-9.435E-05
-1.787E-05

-3.104E-04
-1.979E-04
-1.877E-04
-1.808E-04
-1.145E-04

(m,,j

4
9
7
4
7

11
4
4
4
4

6
8
11
6
11

v)t
3
7
5
3
5

9
3
3
3
3

5
7
9
5
9

4
9
7
4
7

11
4
4
4
4

6
8
11
6
11

ni)v

3
7
5
3
5

9
3
3
3
3

5
7
9
5
9

Wmax

-7.05E-04
-6.80E-04
-7.61E-04
-3.45E-04
-8.43E-04

-3.58E-04
-5.15E-04
-6.89E-04
-6.32E-04
-4.17E-04

-5.27E-04
-2.20E-04
-6.48E-04
-5.03E-04
-6.47E-04

yymax res

-4.81E-08
-2.37E-11
-4.22E-09
-3.09E-09
-6.85E-09

-1.28E-08
-2.20E-05
-6.93E-07
-4.09E-07
-4.63E-07

-3.20E-08
1.26E-09

-5.41E-10
-3.94E-08
-1.99E-09

Table 6.2: The unstable eigenvalues obtained when studying the (2,1) mode with the 72,i
set for free boundary equilibria. The three values of Ih, belong to the stability window
showb in Fig. 6.8. The plasma parameters and coil configuration characteristics are given
by Eq.(6.3) and Eq.(6.4) - see also Fig.6.5. The perturbation components with the largest
£max and rjmax amplitudes are given in the columns at the right of u>2. The quantities
W™ax and W™axres were defined by Eq.(5.1) and the paragraph that follows, respectively.

Figure 6.8: Study of the (2,1) mode with the T£?res set: (a) J'(s) profile, (b) q(s) profile,
(c) ^min(^h) for L = 2, Nper = 4, l/ec = 10, j3 = 1%, pressure profile prB toroidal plasma
current J = 1.27 • 105[A] with the toroidal current density of the form J'(s) ~ (1 — s20)8.
The coil geometry and plasma parameters are given by Eq.(6.3) and Eq.(6.4)- The TF
and VF coil currents are It = —1.6 x 105[A], Ivi = 1.0 x 104[A] and the inverse rotational
transform profile is represented for Ih = 0.60 x 105A (-), 1.00 x 105[A] (- -) and Ih =
1.30 x 105[A] (•). The stable window is associated with values of Ih between 1 x 105[A]
and 1.3 x 105[A]
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6.5 Unexplored directions for future investigations

We have seen that the calculation of free boundary equilibrium sequences are more com-

plex and require additional steps than in the correponding fixed boundary case. From

a technical point of view, it is also more difficult to generate equilibrium sequences and

study their global stability properties using a chaining procedure.

Nevertheless, the possibility of specifying independently the contribution of each coil sys-

tem to the vacuum field introduces flexibility in the exploration of the parameter space.

As an example, we may consider the relation between the boundary deformation and the

inverse rotational transform profile: The systematic decrease of q(s) when augmenting S

and keeping all other plasma parameters fixed was specific to the fixed boundary equi-

librium sequences. We could not study equilibrium sequences with a (nearly) constant q

profile and increasing <Ts or conversely equilibria with a constant boundary deformation

and different q profiles. We believe that to a certain extent, such a control of the inverse

rotational transform profile is possible if the different equilibria are computed with suit-

able It, h and /„, currents.

In order to show this we recalculate the equilibrium sequence described in Sections 6.4

and 6.5 with the same parameters except the current in the HF coils. We increase /*

from —1.6 x 105[A] to —1.8 • 105[A] which represents a variation of 12.5%; the larger

toroidal field skews the magnetic field lines in the toroidal direction and in principle, the

inverse rotational transform increases. The sequence of the most unstable eigenvalues

resulting from this choice is shown in Fig.6.9 (c). The stability window corresponds to

1.15 x 105 [A] < Ih < 1.5 • 105 [A] and the q profiles delimiting this interval are displayed

in Fig.6.9 (b). A larger current in the HF coils is needed to reach the stability window

and this occurs at an increased qedge ~ 1.4 (in the preceding case qedge cz 1.33 see Fig.6.8).

The stability window is apparently extended toward larger qedge but the comparison of

the two equilibrium sequences is complicated by the fact that the qaxis (at bigger It)

are shifted toward larger values. We recall that a larger qaxis can also be obtained by

decreasing the plasma current at constant It.

Additional variables enter the stability analysis and one cannot guess a priori to what

extent the shape or size of the stability areas in the qaxis,qedge plane will be changed

compared with the fixed boundary cases. Only a systematic study may elucidate this

point.
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Figure 6.9: The same as in Fig.6.8 but It = —1.8 x 105[J4]. The inverse rotational
transform profile is represented for Ih = 0.95 x 105 [A] (-), 1.15 x 105[A] (- -), and Ih =
1.50 x 105[A] (•) and the stability window corresponds to 1.15 x 105[A] < h < 1-50 x 105[A]

6.6 Numerical aspects

The vacuum field was calculated on 21 vertical planes equally distributed along the

toroidal direction for one equilibrium field period. The mesh was formed by 51 x 51

points in the R, Z directions; a refined mesh of 81 x 81 points was used to check the re-

sults. The coils were prescribed with 500 to 600 segments each and the rough estimation

of q (c.f. Section 6.3) was based on 40 to 80 toroidal transits tracing the field lines.

The field line following routines of COILS were based on a standard Burlish-Stoer integra-

tion method [42]. The contribution of the TF, HF coils and of each pair of VF coils was

calculated and given separately in the input file for NEMEC. One can vary the currents

in the coils one by one when determining the equilibria without having to recalculate the

vacuum field.

TERPSICHORE was run with 64 radial mesh points and 116 perturbation components.

81



Chapter 7

Summary and conclusions

In this work we have studied the global ideal MHD stability of plasmas with prescribed

helical boundary deformation and nonzero toroidal plasma current. It has been demon-

strated that these configurations are characterized by a spectrum of equilibrium Fourier

components such that couplings between the (m = n + l ,n) , n = 1, 2, 3 perturba-

tion modes studied and resonant (mi,rn) perturbation components with mi > ni > n

are negligible. It has been shown that a helical boundary deformation can stabilize the

(rn = n + l ,n) , n = 1,2,3 external global modes at values of q below 2.0 and /3's of the

order of 1-2%. Stabilization occurs for a great number of combinations of equilibrium

parameters (i.e. the shape of the boundary deformation, number of field periods, aspect

ratio, parabolic as well as nearly linear pressure profiles) and a large variety of current

density profiles. When all these parameters are kept fixed and only the amplitude of

the boundary deformation S is varied, then stabilization occurs in an interval [£m,-n, Smax\.

Weak toroidal plasma currents require more deformation for stabilization than larger cur-

rents. When two parameters are varied (i.e. 8 and the amount of current at fixed current

density profile) then an area of stability associated with the (m, n) mode appears in the

(qaxisi Qedge) plane. The position, shape and size of this area depends on the other equilib-

rium parameters. At /? ~ 1%, the common stability area associated with modes that have

n = 1,2,3 in the region qazis, <ledge < 2.0 is extremely reduced; taking into account modes

with higher n's will possibly render this area equal to zero. The Mercier stability criterion

is generally not satisfied and the absence of magnetic wells at strong S (especially for the

L — 2 configurations) indicates rather poor local stability properties. Ballooning modes

are often unstable.

Our conclusions concerning the global stability results are more pessimistic than those for-

mulated by M.I.Mikhailov and V.D.Shafranov c.f. Chap.l. An explanation may be found

when considering the following. 1) We investigated 3D geometries; the couplings between

perturbation components with different toroidal mode numbers are non negligible.
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2) We considered cases with /3 > 0. 3) The stability diagrams presented in [19] were calcu-

lated with the assumption of a constant external rotational transform t/, and a monotonic

q profile, th was added artificially to the tokamak rotational transform whereas in our

study the variation of the rotational transform was due to the modification of the plasma

boundary. We have also shown that our equilibrium sequences are not characterized by a

uniform (constant with s) decrease of the inverse rotational transform. The q profiles in

the stability windows and the q profiles at S = Sstart can be significantly different; these

profiles are not necessarily monotonic.

A simple L = 2 stellarator-like configuration of coils was proposed for generating the

external rotational transform for the free boundary calculations. We gave an example

of a complete set of plasma and coil parameters which permitted the calculation of a

sequence of free boundary equilibria which approximately recovered the desired bound-

ary shapes and q profiles in the region of interest 1 < q < 2. The parameter which

was varied throughout the equilibrium sequence was the amount of current in the heli-

cal coils; when it was increased, a stability window for the (m, n) mode studied was found.

To arrive at these results, a general method for investigating the global MHD stability

of 3D systems has been conceived. Due to toroidal periodicity, a partial coupling occurs

between perturbation modes with different toroidal mode numbers. The method exploits

the consequences of this coupling and aims at automatizing the investigation process. It

consists of several steps which are either entirely executed or monitored by small programs

and shell scripts:

• A chaining procedure computes sequences of equilibria by modifying iteratively one

input parameter. Feedback contol can be implemented to ensure the constancy of some

particular physical quantity(ies) (i.e. (3) over the whole equilibrium sequence.

• The Fourier spectrum for an accurate representation of one equilibrium sequence in

Boozer coordinates is identified. Depending on it and on the perturbation modes which

are studied, the appropiate input data is generated for TERPSICHORE.

• A chaining mechanism can compute for each equilibrium the most unstable eigenvalue

of the stability problem. A more complex procedure, consisting in the identification of the

whole hierarchy of unstable eigenvalues with the associated perturbation modes and the

most important couplings of perturbation components, has been implemented. The nec-

essary modifications of input data for the stability code are performed with shell scripts,

automatically, before each run.

Concerning the pertinence of future investigations we would like to point out some aspects

which were not explored and which deserve further attention
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• Wall stabilization was not exploited in the sense that during our whole study the wall

was circular, axisymmetric and relatively far from the plasma boundary. One should re-

duce the plasma boundary-wall distance and, if necessary, impose a helical wall (shape

conforming to avoid plasma-wall contacts).

• Free boundary calculations introduce additional parameters in the specification of the

equilibrium and enlarge the investigation field. Through variation of the coil currents

and/or coil geometry, the q profile can be modulated even if the plasma current and the

amount of boundary deformation are kept constant. This was not the case in the previ-

ous fixed boundary calculations. The aim is to discover how to extend the stability areas

toward large qedge so as to maximize the chance of having a common SA for all the modes.

Also, separating the variation of the boundary deformation from that of the q profile may

help to get a clearer image of the stabilization process.

• Our fixed-boundary results concern mainly the 1 < q < 2 region. The examination of

the qaxis > 2, qedge < 2 domain did not constitute an important focus of these studies

partly because we detected equilibrium convergence and/or stability convergence prob-

lems. One should (re)consider this region carefully and systematically taking advantage

of the wall stabilization effect and using free boundary calculations.

• Configurations with more complex helical boundary cross section may also be consid-

ered. For example, a L = 2 and/or L = 3 helical boundary deformations could be tested

in combination with a L = 1 deformation driving a helical magnetic axis.

We conclude that in spite of the rather pessimistic results, numerous paths for future

investigations remain open and available.

Finally, the investigation procedure designed in this thesis can be directly applied to the

study of the global MHD properties of the proposed tokamak-torsatron hybrid EPEIUS,

provided one adds the appropiate routines to the COILS code for specifying the modular

twisted coils.
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Appendix A

Current density profiles
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Figure A.I: Types of current profiles used in the study



Appendix B

Amplitudes of equilibrium Fourier
components and perturbation
components involved in couplings
with the (m, n) mode studied
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89
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92
93
94
95
96
97
98
99
100
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103
104
105
106
107
108
109
110
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113
114
115
116
117
118
119
120

(me

7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
12
12
12
12
12
12
12
13
13
13
13
13
13
14
14
14
14
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15
15

, n«)

1
2
3
4
6
8
10
12
0
1
2
3
4
6
8
10
12
1
2
3
4
6
8
10
12
1
2
3
4
6
8
10
12
2
3
4
6
8
10
12
2
3
4
6
8
10
12
2
3
4
6
8
10
2
3
4
6
8
2
3

8.967E-14

-1.252E-03

-2.608E-13

-9.970E-03

-2.002E-02
2.083E-02

8.996E-03

1.160E-03

-8.953E-06

-3.369E-15
-2.478E-04

-6.380E-14

-2.334E-03

-8.214E-03

2.434E-03

-9.490E-03

-2.699E-03
-2.755E-14

-4.877E-05

-1.758E-15

-5.173E-04
-2.577E-03

-1.788E-03

2.842E-03

3.596E-03

-3.284E-14

-9.611E-06

-5.516E-15
-1.111E-04

-7.094E-O4

-1.256E-03

1.326E-03

-2.215E-03
-1.905E-06

-1.062E-14

-2.350E-05

-1.815E-04

-5.150E-04

1.563E-04

5.693E-05
-3.811E-07

-2.297E-14

-4.940E-06

-4.448E-05

-1.723E-04

-9.017E-05

2.631E-04

-7.732E-08

-9.280E-15

-1.040E-06
-1.063E-05
-5.184E-05

-7.040E-05

-1.604E-08

7.560E-15

-2.204E-07

-2.503E-06

-1.464E-05

-3.436E-09

-3.668E-15

(miu
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
10
10
10
10
10
10
10
11
11
11
11
11
11
12
12
12
12
12
13
13

nil)

4
9
14
19
29
39
49
59
-1
4
9
14
19
29
39
49
59
4
9
14
19
29
39
49
59
4
9
14
19
29
39
49
59
9
14
19
29
39
49
59
9
14
19
29
39
49
59
9
14
19
29
39
49
9
14
19
29
39
9
14

(mi:

* 9
9
9
9
9
9
9
9
10

* 10
10
10
10
10
10
10
10

• 11
11
11
11
11
11
11
11

• 12
12
12
12
12
12
12
12
13
13
13
13
13
13
13

• 14
14
14
14
14
14
14

* 15
15
15
15
15
15

* 16
16
16
16
16

• 17
17

,"!2)

6
11
16
21
31
41
51
61
1
6 *
11
16
21
31
41
51
61
6
11
16
21
31
41
51
61
6 *
11 *
16
21
31
41
51
61
11
16
21
31
41
51
61
11
16
21
31
41
51
61
11 *
16
21
31
41
51
11
16
21
31
41
11 *
16 *

Table B.I: Equilibrium Fourier components and their amplitudes together with the
perturbation components which are coupled to the (2,1) mode studied via Eq.(3.5).
The indexes i and 2 are related to the "-" and "+" signs. The equilibrium is char-
acterized by L = 2, Nper = 5, l/ec = 5, j3 = 1%, pressure profile prA, J'/J'norm =
0.90(1 - s10)2 - 0.40(1 - s2-5)2 and S2 = 0.190. mi/ni resonances with m; > nt > 1 are
indicated by "*".
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23
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26
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28
29
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31
32
33
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0
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3.290E-06

-9.321E-04

-1.204E-03

6.565E-03
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1.007E-02

5.328E-03

(mu
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3

,"n)

1
-3
-7
-11
-15
-19
17
13
9
5
1
-3
-7
-11
-15
-19
-23
-13
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1
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1
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87
88
89
90
91
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5
5
5
5
5
6
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6
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7
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-3.432E-03

-4.854E-04

1.461E-04

2.386E-05

-3.525E-06

-1.531E-04

-3.586E-04

1.114E-03

-6.922E-03

-8.731E-04

7.293E-03

-3.466E-03

2.828E-03

1.447E-03
-2.869E-04

-1.130E-04

9.327E-06

-2.542E-05

-9.595E-05

1.618E-04

-1.291E-03

-5.310E-04
2.401E-03

-2.960E-03

6.723E-04

-1.446E-03
1.615E-04

2.838E-04

-3.762E-06

-1.791E-05

-4.265E-06
-2.330E-05

1.481E-05
-2.134E-04

-2.368E-04

5.599E-04

-1.150E-03
-2.O24E-04

-2.709E-04

1.571E-04

-3.290E-04

-4.028E-05

4.069E-05

5.311E-06
-5.261E-06

-1.933E-06

-3.117E-05
-8.185E-05

9.140E-05

-3.011E-04

-2.142E-04

2.826E-04

-1.223E-05

6.996E-05
8.294E-05

-4.822E-05

-1.684E-05

4.195E-06

-1.675E-06

-4.012E-06
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3
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5
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6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
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39
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3
7
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15
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27
31
35
39
43
-1
3
7
11
15
19
23
27
31
35
39
43
47
-1
3
7
11
15
19
23
27
31
35
39
43
47
51
3
7
11
15
19
23
27
31
35
39
43
47
51
55
7
11

(mj2

7
7
7
7
7
8

• 8
8
8
8
8
8
8
8
8
8
8
9

* 9
9
9
9
9
9
9
9
9
9
9
9
10
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10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11

• 12
12

1(2)

29
33
37
41
45
1
5
9
13
17
21
25
29
33
37
41
45
1
5 *
9
13
17
21
25
29
33
37
41
45
49
1
5
9
13
17
21
25
29
33
37
41
45
49
53
5
9 *
13
17
21
25
29
33
37
41
45
49
53
57
9
13

Table B.2: Equilibrium Fourier components and their amplitudes together with the per-
turbation components which are coupled to the (2,1) mode studied via Eq.(3.5). The
indexes i and 2 are related to the "-" and "+" signs. The equilibrium is characterized
by mixed L = 2 and L = 3 boundary deformation (S2/83 — 2.5), Nper = 4, l /e c = 10,
0 = 1%, pressure profile prB, J'IJ'norm = 0.44(1 - .s20)8 and 82 = 0.175, S3 = 0.070.
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2.014E-06
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5.650E-04
-5.948E-04
-1.016E-04
-7.078E-06
-5.048E-07
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-1.822E-05
-1.768E-04
-5.875E-04
-1.479E-04
1.030E-04
1.232E-04
1.636E-05
1.091E-06
-8.311E-08
-1.314E-13
-3.551E-06
-4.000E-05
-1.739E-04
-1.623E-04
1.045E-04
-6.059E-05
-2.339E-05
-2.642E-06
-7.016E-07
-8.970E-06
-4.777E-05
-7.909E-05
2.057E-05
-1.063E-05
1.755E-05
4.246E-06
-1.398E-07
-1.994E-06
-1.249E-05
-2.988E-05
-6.578E-06
8.341E-06
-2.797E-08
-4.400E-07
-3.153E-06
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8
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8
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9
9
9
9
9
9
10
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68
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3 *
8
18
28
38
48
58
68
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3 *
8
18
28
38
48
58
68
78
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3
8
18
28
38
48
58
68
78
8
18
28
38
48
58
68
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8 *
18
28
38
48
58
8
18
28
38
48
8 *
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28
38
8 *
18
8 *
18
8 *
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10
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13
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62
72
2
7 *
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22
32
42
52
62
72
2
7 *
12
22
32
42
52
62
72
82
2
7 *
12 *
22
32
42
52
62
72
82
12
22
32
42
52
62
72
82
12
22
32
42
52
62
12 *
22
32
42
52
12 *
22
32
42
12 *
22
12 *
22
12 *

Table B.3: Equilibrium Fourier components and their amplitudes together with the per-
turbation components which are coupled to the (2,1) mode studied via Eq.(3.5). The
indexes 1 and 2 are related to the "-" and "+" signs. The equilibrium is characterized by
L = 2, Nper = 5, l/ec = 10,13 = 1%, pressure profile prA, J'jJ'norm = 0.35(1 - s20)8 and
82 = 0.265. The mode studied is the (3,2).
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5.259E-05
-9.532E-02
9.353E-06

1.509E-02
-6.686E-06

8.889E-03

-3.947E-06
-2.188E-03

5.187E-06

-4.460E-04
1.900E-05
-1.376E-06
1.517E-03
2.498E-06
3.407E-03
2.958E-05
-1.481E-02

2.606E-05
-6.017E-02

-5.285E-06

-2.280E-03
-8.654E-06

7.375E-03
-1.402E-06
5.144E-04
-2.754E-04
1.135E-05

4.274E-04
1.625E-03
-8.840E-05

-3.936B-03

6.070E-05
-1.959E-02
5.175E-06
6.473E-03
-9.421E-06
4.457E-03
1.610E-06
-1.530E-03
-3.849E-O4

7.522E-05

2.069E-05
1.188E-04
6.306E-04
-2.676E-05
-9.321E-04

(mtl

2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2

,Hi)
1
-3
-7
-11
-15
-19
-23
-27
-31
-39
25
17
13
9
5
1
-3
-7
-11
-15
-19
-23
-27
-31
-39
-25
-17
-13
-9
-5
-1
3
7
11
15
19
23
27
31
39
-25
-17
-9
-5
-1
3
7
11
15
19
23
27
31
39
47
-25
-17
-9
-5
-1

("1(2

• 2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6

.112)

1 *
5
9
13
17
21
25
29
33
41
-23
-15
-11
-7
-3
1
5
9
13
17
21
25
29
33
41
-23
-15
-11
-7
-3
1
5
9
13
17
21
25
29
33
41
-23
-15
-7
-3
1
5
9
13
17
21
25
29
33
41
49
-23
-15
-7
-3
1

i

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

(me

4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8

, "«)
1
2
3
4
5
6
7
8
9
10
12
-6
-4
-2
-1
0
1
2
3
4
5
6
7
8
9
10
12
14
-4
-2
-1
0
1
2
3
4
5
6
7
8
9
10
12
14
-4
-2
0
1
2
3
4
5
6
7
8
9
10
12
14
-2

\/9
-3.897E-05

-5.515E-03
4.136E-06

-2.349E-03
-5.687E-06
3.843E-04
3.660E-06
9.001E-04

2.850B-07

2.292E-04
-3.366E-05

2.370B-05
2.699E-05
3.083E-04
-4.823E-06
-1.133E-04
-6.449E-05

-2.232E-03
-7.054E-06

-1.855E-03

7.173E-06

8.057E-04

-1.568E-06

1.161E-03

8.942E-07

-3.048E-04
-1.652E-04
2.615E-05
8.692E-06
1.402E-04
-5.443E-06

-4.702E-05

-3.158E-05

-7.337E-04

-1.167E-05

-6.467E-04

7.426B-06

6.228E-04
-3.361E-06
4.927E-04
9.029E-07

-1.068E-04

-2.417E-07

2.116E-05

2.074E-06

5.452E-05
-3.664E-05

-1.247E-05

-2.366B-04

-1.136E-05
-2.059E-04
7.729E-07
3.966E-04
1.981E-06

1.923E-04

1.011E-06

4.271E-05
-2.935E-05

-2.623E-05

2.078E-05

(ma

2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6

.nil)

3
7
11
15
19
23
27
31
35
39
47
-25
-17
-9
-5
-1
3
7
11
15
19
23
27
31
35
39
47
55
-17
-9
-5
-1
3 *
7
11
15
19
23
27
31
35
39
47
55
-17
-9
-1
3 *
7
11
15
19
23
27
31
35
39
47
55
-9

(m

6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10

(2, "12)

5 *
9
13
17
21
25
29
33
37
41
49
-23
-15
-7
-3
1
5 •
9
13
17
21
25
29
33
37
41
49
57
-15
-7
-3
1
5 *
9
13
17
21
25
29
33
37
41
49
57
-15
-7
1
5 *
9
13
17
21
25
29
33
37
41
49
57
-7

Table B.4: Free boundary calculated (with NEMEC) equilibrium Fourier components
and their amplitudes together with the perturbation components which are coupled to
the (2,1) mode studied via Eq.(3.5). The coils geometry and plasma parameters are given
by Eq.(6.3) and Eq.(6.4).
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Appendix C

The chaining procedure

When calculating an equilibrium sequence and testing its global stability one varies es-

entially a restricted number of input parameters. The bulk of the calculation is done

with VMEC and TERPSICHORE and a certain number of operations, always the same,

have to be performed before and after each run. The aim of the chaining procedure is to

automatize these repetitive tasks; depending on their complexity, the chaining process is

monitored by one or more shell scripts written in Korn or Bourne shell language. There

are scripts for equilibrium calculations, for stability analysis and for the verification pro-

cedures (c.f. Section 4.3).

At each step of the sequence, the script enters the appropiate NQS queue, executes some

pre-run operations, runs the equilibrium or stability code only once, does some final job

and exits. The script reenters the queue automatically till the end of the sequence is

reached. Compared with the case in which the whole chain is processed during a unique

submission in a much longer (CPU time) NQS queue, this procedure offers two main

advantages:

1) it enables the script to run in shorter queues which are less overloaded than the longer

queues. A single run for both VMEC and TERPSICHORE (for our configurations) takes

between 100 ~ 200 CPUs.

2) it is more flexible because one can intefere at each step in the chaining process and

make appropiate modifications when they are needed.

A brief description of the main tasks executed with these scripts is given below.

A. Chaining the equilibrium calculations
The first task of the chaining script is to find how many steps were already executed and

to determine the new £, input parameter according to Eq.(4.1). The appropiate values for

the Rmvtnv(s = 1) and Zmvin«(s = 1) Fourier amplitudes that specify the new boundary

shape - see Eq.(3.1) to Eq.(3.4), are replaced in the VMEC input file using non-interactive

editing utilities like awk and sed. At the same time, in order to keep j3 constant, the po
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coefficient (Eq.(3.9) or Eq.(3.10)) is also modified as is explained in the paragraph that

follows Eq.(5.5).

After running VMEC, the actual value of (3 is compared with the desired value; if the

difference is larger than a prescribed limit, the next job will calculate an equilibrium with

the same Si and a new interpolated PQ.

B. Chaining the stability calculations

The script determines how many stability runs were already executed and identifies

the equilibrium data files together with the input files containing the appropiate T^°^es

sets. Because TERPSICHORE uses an inverse vector iteration procedure to calculate
w m r " ( ^ ) ' ^ e m ^ia l guess of the most unstable eigenvalue is important. The guess is

made on the basis of the previous calculated wm*n(<£t-i), cjmin(<S,_2), .. values using an

extrapolation technique.

Data related to the program execution like the number of iterations, the value of the resid-

ual forces FR, FZ and FA (c.f. Eq.(2.11)), the number of Jacobian resets, etc, for VMEC

or the relative errors of the equilibrium reconstruction in Boozer coordinates (c.f.Eq.(4.4)

and paragraph that follows), etc, for TERPSICHORE, together with some representative

physical quantities i.e. /?, w^Jf" (<$,•) , etc are gathered in tables after each run. These

tables offer a rapid view of the evolution of the chaining process; if something unexpected

occurs, they permit an easy diagnosis of the problem and appropiate measures can be

readily taken.

C. Automatizing the verification procedure

As explained in Section 4.3, applying this procedure means running TERPSICHORE with

the 7Jn,n set over two loops. The first loop deal with those 8{ 's for which the (m, n) mode

is stable when studied with the T£°£es set. In the second loop, the hierarchy of unstable

eigenvalues u^in(<^) < ojf(Si) < tt>f (£) < .. < 0 is found for each of the preceeding <£, and

the corresponding unstable modes (m,j,rij) are identified - Fig.C.I illustrates a fictious

example. Before starting the execution of TERPSICHORE, the script determines the

appropiate equilibrium data files, estimates the initial guess value for u;J(<£,) - let us call

it ix)j 9ues3(Si ) and does the necessary changes in the input files.

When the TERPSICHORE calculates an eigenvalue, it also indicates how many eigenval-

ues are smaller (more unstable) than the one which was found. At the beginning of each

inner loop, the choice of ajm^ess(Si ) is simple: it should be taken sufficiently low to be

sure that the eigenvalue found by the solver is indeed w^jn(5» ) and not Lo\{Si ) or other

greater value.

Suppose that the eigenvalues a;^,n((J,) < .. < c*?J_1 (<5»-) have already been found, the next
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Figure C.I: An ilustration of the most unstable eigenvalues <^min obtained when studying
the (m, n) mode with the T™™* set are labelled with "*". Some eigenvalues (for two values
of 6) from the o;̂ ,jn(<J,) < wjf(£») < w|(^t) < •• < 0 ensemble obtained when studying the
(m,n) mode with the Tmin set are represented with "o". The numerical values are purely
fictious.

guess J*gues3(Si) is chosen larger than w]-i(6i). It is possible that

1) if ui?9uess(6i ) is too high, the calculated eigenvalue may correspond to u;J+1 or even

worse to wJ+2, etc

2) if u)jgu"s(6i ) is too low, we may recompute u]_-y

If one of these two cases occurs, then new trials are made until the calculated eigenvalue

corresponds to w|(5,). This may require a single run or more. Let us imagine the fol-

lowing situation: case 1) occurs and the eigenvalue found corresponds to u]+i- The new

(8{) must be smaller than the former one but the correction (decrease) should notguess

be too large because o ; ?^^ ) may be found again; the correction should also not be too

weak to recompute w|+1. If these last two situations occur, several scenarios can again be

imagined but the worst is that where the succesive guesses lead to calculate eigenvalues

which oscillates between Wj.^,-) and u>|+1(<S,-). Therefore the complete history of guesses

and results should be examined within the script in order to detect such situations and

take appropiate measures.

Using a trial and error technique it was finally possible to write a script which, when sub-

mitted, manages to determine the complete u> t̂n(<Ji) < < < •• < 0 hierarcy

in a number of runs rarely exceeding 3 x number of eigenvalues in the hierarchy.
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Appendix D

Contribution to the potential energy
of the couplings between the (m, n
mode studied and the (m/,7i/)
perturbation components with

> 1 resonances.
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(">»• "li) x (m l2,n i2) couplings
0.190

0.200

0.220

(11,9) x (11,9)
(2,1) x (5,4)

(2,1) X (10,9)
(2,1) x (12,11)

(14,11) X (14,11)
(2,1) x (5,4)

(2,1) x (10,9)
(2,1) x (12,11)

(5,4) x (5,4)
(2,1) X (5,4)

(2,1) x (10,9)
(2,1) x (12,11)

(7,6) X (8,6)
(2,1) X (5,4)

(2,1) X (10,9)
(2,1) X (12,11)

(7,6) X (7,6)
(2,1) X (5,4)

(2, l )x(10,9)
(2,1) X (12,11)

(9,-1) x (11,9)
(2,1) X (5,4)

(2,1)X (10,9)
(2 , l )x (12,11)

(13,11) x (14,11)
(2 , l )x (5,4)

(2, l )x(10,9)
(2,1) X (12,11)

(5,4) x (6,4)
(2,1) x (5,4)

(2,1) x (10,9)
(2,1) x (12,11)

(12,11) X (12,11)
(2,1) x (5,4)

(2,1) x (10,9)
(2,1) X (12,11)

(10,9) X (10,9)
(2,1) X (5,4)

(2,1) X (10,9)
(2,1) x (12,11)

(11,9) X (12,9)
(2,1) x (6,4)

(2,1) x (11,9)
(2,1) x (13,11)

(9,-1) X (11,9)
(1,1) x (5,4)

(1,1) X (10,9)
(1,1) x (12,11)

(13,11) X (14,11) (14,11) X (15,11)
(2 , l )x(6 ,4) (1,1) X (5,4)

(2,1) x (11,9) (1,1) X (10,9)
(2,1) x (13,11) (1,1) X (12,11)

(5,4) X (6,4)
(2,1)X(6,4)

(2,1) x (11,9)
(2,1) x (13,11)

(8,6) x (9,6)
(2 , l )x(6 ,4)

(2,1) x (11,9)
(2,1) x (13,11)

(7,6) X (8,6)
(2,1) X (6,4)

(2,1) x (11,9)
(2,1) x (13,11)

(10,9) x (11,9)
(2,1) x (6,4)

(2,1) x (11,9)
(2,1) x (13,11)

(11,1) x (13,11)
(2,1) X (6,4)

(2,1) X (11,9)
(2,1) x (13,11)

(4,4) x (5,4)
(2,1) x (6,4)

(2,1) x (11,9)
(2,1) x (13,11)

( l l , l l ) x (12,11)
(2,1) X (6,4)

(2,1) X (11,9)
(2,1) x (13,11)

(10,9) x (11,9)
(2 , l )x(6 ,4)

(2,1) x (11,9)
(2,1) x (13,11)

(4,4) X (5,4)
(1,1) X (5,4)

(1,1) X (10,9)
(1,1) x (12,11)

(8,6) x (8,6)
(1,1) X (5,4)

(1,1) x (10,9)
(1,1) X (12,11)

(8,6) X (8,6)
(1,1) X (5,4)

(1,1) X (10,9)
(1,1) X (12,11)

(11,9) X (12,9)
(1,1) X (5,4)

(1,1) X (10,9)
(1,1) x (12,11)

(14,11) x (14,11)
(1,1) X (5,4)

(1,1) x (10,9)
(1,1) x (12,11)

(6,4) X (6,4)
(1,1) x (5,4)

(1,1) x (10,9)
(1,1) X (12,11)

(10,1) x (12,11)
(1,1) X (5,4)

(1,1) X (10,9)
(1,1) X (12,11)

(8,-1) X (10,9)
(1,1) X (5,4)

(1,1) x (10,9)
(1,1) x (12,11)

(12,9) X (12,9)
(1,1) x (6,4)

( l , l ) x ( l l , 9 )
(1,1) X (13,11)

(12,1) x (14,11)
(1,1) X (6,4)

(1,1)X(11,9)
(1,1) X (13,11)

(6,4) X (6,4)
(1,1) X (6,4)

( l , l ) x ( U , 9 )
(1,1) x (13,11)

(7,6) x (7,6)
(1,1) x (6,4)

( l , l ) x ( l l , 9 )
(1,1) x (13,11)

(6,6) x (7,6)
(1,1) x (6,4)

( l , l ) x ( l l , 9 )
(1,1) x (13,11)

(11,9) x (11,9)
(1,1) x (6,4)

(1,1) x (11,9)
(1,1) x (13,11)

(11,1) x (11,1)
(1,1) x (6,4)

(1,1) x (11,9)
(1,1) x (13,11)

(4,4) X (4,4)
(1,1) x (6,4)

(1,1) x (11,9)
(1,1) x (13,11)

(12,11) X (13,11)
(1,1) X (6,4)

(1,1) x (11,9)
(1,1) x (13,11)

(11,9) x (11,9)
(1,1) X (6,4)

( l , l ) x ( l l , 9 )
(1,1) x (13,11)

-3.89E-04
-4.66E-19
-5.68E-17
6.63E-20

-2.43E-04
-1.69E-23
3.34E-21
2.38E-17

-1.07E-04
-1.04E-15
-3.56E-20
1.04E-22

-8.43E-05
-6.19E-17
-1.68E-21
-1.01E-17

-2.76E-04
1.06E-19
-1.94E-17
-4.18E-19

-1.30E-04
4.07E-19
-3.74E-16
7.28E-20

-5.73E-05
3.84E-19
-1.11E-22
-2.49E-17

-3.52E-O5
-1.18E-15
-3.54E-20
-8.69E-21

-1.70E-04
-3.65E-21
-9.07E-20
-9.02E-15

-4.42E-05
-1.45E-19
-5.52E-16
-4.34E-20

-1.94E-04
4.13E-19
-3.06E-15
4.46E-19

-2.21E-04
1.69E-23
-5.51E-19
2.78E-16

-8.03E-05
-1.58E-16
-8.86E-21
2.93E-21

-7.22E-05
-6.63E-18
-1.75E-22
-3.40E-18

-8.94E-05
-1.45E-20
-1.56E-17
3.16E-20

-1.21E-04
-2.29E-19
-4.05E-16
1.35E-18

-5.67E-05
2.29E-20
1.06E-23
-2.12E-15

-3.44E-05
-1.28E-16
1.06E-21
-7.31E-20

-2.93E-05
-1.51E-22
-2.26E-22
5.50E-16

-1.55E-05
1.33E-19
1.88E-19
-3.50E-21

-1.06E-04
1.40E-18
1.27E-16
2.35E-19

-1.87E-04
2.52E-22
4.20E-21
8.13E-17

-4.75E-05
-9.86E-16
1.87E-20
3.43E-21

4.98E-05
4.46E-17
7.39E-22
2.56E-18

4.06E-05
-8.65E-20
2.23E-18
7.83E-20

-1.10E-04
-1.64E-18
3.95E-16
-7.05E-19

3.06E-05
-2.03E-19
6.09E-23
7.11E-16

1.86E-05
-4.94E-15
1.44E-20
-5.25E-21

-2.72E-05
6.56E-21
1.57E-18
8.47E-15

-1.28E-05
7.63E-19
-3.49E-14
-4.98E-16

7.64E-05
-1.30E-18
-6.37E-15
-3.88E-20

-1.79E-04
-2.46E-22
-7.61E-19
1.66E-16

4.13E-05
1.01E-16
-4.22E-21
2.90E-22

4.33E-05
-1.45E-1S
-5.07E-23
-8.16E-18

-2.47E-05
2.34E-20
-7.98E-17
3.14E-20

-8.14E-05
1.02E-1S
-1.30E-13
2.87E-17

2.76E-05
2.55E-20
1.51E-22

-1.38E-17

1.71E-05
4.87E-17
7.99E-21
4.46E-21

-2.68E-05
5.65E-23
-1.07E-20
5.40E-26

8.48E-06
-7.35E-19
7.50E-18
9.90E-1S

Table D.I: For each unstable eigenvalue from Tab.(5.1) a set of four block rows with
detailed information is presented. The first row of each block shows the four most im-
portant coupling contributions (components and amplitudes) to the potential energy. The
following three rows in each block give the contribution to the potential energy of the
(m,l) x (m/,rcj) with m = 2,1 couplings; (mi,ni) is either the dominant unstable compo-
nent or is coupled to (2,1) via one of the three strongest equilibrium components marked
with "*" in Tab.(B.I)

98



0.065

0.070

0.080

(4,3) x (5,3)
(2,1) X (4,3)
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(2,1) X (11,9)

(8,7)x (9,7)
(2 , l )x(4 ,3)
(2,1) X (6,5)

(2,1) X (11,9)

(6,5) x (7,5)
(2,1) X (4,3)
(2,1) X (6,5)

(2,1) x (11,9)

(4,3) X (5,3)
(2,1) X (4,3)
(2,1) X (6,5)

(2,1) X (11,9)

(10,9) x (11,9)
(2,1) x (4,3)
(2,1) X (6,5)

(2,1) X (11,9)

(8,7) x (9,7)
(2,1) x (4,3)
(2,1) X (6,5)

(2,1) X (11,9)

(9,9) x (10,9)
(2,1) x (4,3)
(2,1) X (6,5)

(2,1) X (11,9)

(10,9) X (11,9)
(2,1) x (4,3)
(2,1) X (6,5)

(2,1) X (11,9)

(8,7) X (9,7)
(2,1) X (4,3)
(2,1) x (6,5)

(2,1) x (11,9)

(mn,nn)x (m
(5,3) X (5,3)
(2,1) X (5,3)
(2,1) X (7,5)

(2,1) X (12,9)

(7,5) X (7,5)
(2,1) X (5,3)
(2,1) X (7,5)

(2,1) x (12,9)

(9,7) x (9,7)
(2,1) X (5,3)
(2,1) X (7,5)

(2,1) x (12,9)

(10,9) X (11,9)
(2,1) x (5,3)
(2,1) X (7,5)

(2,1) x (12,9)

(7,7) x (8,7)
(2,1) X (5,3)
(2,1) X (7,5)

(2,1) x (12,9)

(7,5) x (7,5)
(2,1) X (5,3)
(2,1) X (7,5)

(2,1) X (12,9)

(5,3) x (5,3)
(2,1) X (5,3)
(2,1) x (7,5)

(2,1) X (12,9)

(11,9) X (11,9)
(2,1) X (5,3)
(2,1) X (7,5)

(2,1) X (12,9)

(9,7)x(9,7)
(2,1) x (5,3)
(2,1) x (7,5)

(2,1) x (12,9)

(10,9) X (11,9)
(2,1) X (5,3)
(2,1) X (7,5)

(2,1) X (12,9)

(11,9) x (11,9)
(2,1) x (5,3)
(2,1) x (7,5)

(2,1) X (12,9)

(8,7) x (8,7)
(2,1) x (5,3)
(2,1) X (7,5)

(2,1) x (12,9)

i,ni2) couplings
(3,3) x (4,3)
(1,1) X (4,3)
(1,1) X (6,5)

(1,1) X (11,9)

(6,5) x (6,5)
(1,1) x (4,3)
(1,1) x (6,5)

(1,1) x (11,9)

(9,7) x (10,7)
(1,1) x (4,3)
(1,1) X (6,5)

(1,1) x (11,9)

(11,9) x (11,9)
(1,1) x (4,3)
(1,1) x (6,5)

(1,1) x (11,9)

(9,7) x (9,7)
(1,1) X (4,3)
(1,1) X (6,5)

(1,1) X (11,9)

(5,5)x (6,5)
(1,1) X (4,3)
(1,1) X (6,5)

(1,1) X (11,9)

(3,3) x (4,3)
(1,1) x (4,3)
(1,1) x (6,5)

(1,1) X (11,9)

(11,9) x (12,9)
(1,1) x (4,3)
(1,1) X (6,5)

(1,1) X (11,9)

(7,7)x(8,7)
(1,1) x (4,3)
(1,1) x (6,5)

(1,1) x (11,9)

(9,9) x (9,9)
(1,1) X (4,3)
(1,1) X (6,5)

(1,1) X (11,9)

(9,9) X (10,9)
(1,1) x (4,3)
(1,1) X (6,5)

(1,1) x (11,9)

(9,7) x (9,7)
(1,1) X (4,3)
(1,1) X (6,5)

(1,1) x (11,9)

(3,3) X (3,3)
(1,1) X (5,3)
(1,1) X (7,5)

(1,1) X (12,9)

(5,5) X (6,5)
(1,1) X (5,3)
(1,1) X (7,5)

(1,1) x (12,9)

(7,7) x (8,7)
(1,1) x (5,3)
(1,1) X (7,5)

(1,1) X (12,9)

(12,9) x (12,9)
(1,1) X (5,3)
(1,1) X (7,5)

(1,1) X (12,9)

(7,7) x (7,7)
(1,1) X (5,3)
(1,1) X (7,5)

(1,1) X (12,9)

(5,5) X (5,5)
(1,1) X (5,3)
(1,1) X (7,5)

(1,1) x (12,9)

(4,3) x (4,3)
(1,1) X (5,3)
(1,1) X (7,5)

(1,1) x (12,9)

(9,9) x (10,9)
(1,1) X (5,3)
(1,1) X (7,5)

(1,1) x (12,9)

(8,7) x (8,7)
(1,1) X (5,3)
(1,1) x (7,5)

(1,1) x (12,9)

(11,9) x (11,9)
(1,1) X (5,3)
(1,1) X (7,5)

(1,1) X (12,9)

(10,9) X (10,9)
(1,1) x (5,3)
(1,1) X (7,5)

(1,1) x (12,9)

(7,7) X (8,7)
(1,1) X (5,3)
(1,1) X (7,5)

(1,1) x (12,9)

-4.94E-04
-6.31E-10
1.54E-13
-8.93E-16

-4.23E-04
-8.57E-16
-2.68E-08
-3.23E-13

-3.36E-04
-5.39E-14
-2.17E-15
-9.98E-17

-2.63E-04
3.73E-17
-4.44E-12
-1.55E-12

-1.51E-05
5.35E-17
6.64E-20
1.29E-23

-4.28E-04
-5.65E-14
-5.80E-08
-1.28E-12

-4.69E-04
-3.63E-10
1.37E-15
1.17E-14

-3.03E-04
3.67E-15
-2.59E-12
-1.36E-12

-3.38E-04
-8.47E-13
-3.21E-16
-4.37E-16

-4.63B-05
-1.35E-19
-4.25E-13
-2.26E-14

-3.57E-04
2.30E-16
-9.95E-12
-1.32E-12

-3.35E-04
9.58E-15
1.42E-15
6.86E-17

2.33E-04
-4.10E-12
1.35E-12
2.24E-16

2.37E-04
1.65E-16

-6.37E-09
-3.78E-13

2.06E-04
-1.96E-16
-2.69E-15
3.32E-17

-2.14E-04
1.11E-18

-4.66E-12
7.92E-13

-1.47E-05
-2.09E-17
1.72E-21

-6.45E-24

2.16E-04
1.46E-13
-2.35E-09
-1.24E-13

2.29E-04
5.91E-12
-2.57E-14
1.27E-15

1.74E-04
-5.68E-16
6.51E-14
1.94E-14

1.89E-04
1.83E-14
3.42E-16
-4.91E-17

-4.63E-05
-4.28E-20
3.82E-15
1.05E-15

1.87E-04
2.67E-17
1.08E-12

-1.03E-13

2.41E-04
1.31E-15

-1.03E-15
5.58E-18

-1.54E-04
-1.54E-08
5.35E-12
1.40E-17

1.57E-04
-6.73E-16
-1.18E-08
4.45E-14

-1.35E-04
-1.10E-12
-8.66E-15
-4.69E-17

1.81E-04
2.55E-16
-4.52E-12
-4.52E-12

7.81E-06
6.36E-15
-3.25E-19
-2.98E-24

-1.55E-04
3.52E-12
-6.05E-09
-1.44E-13

-1.85E-04
-5.63E-09
-4.22E-14
-7.S2E-14

-9.75E-05
-2.34E-14
-1.08E-12
8.99E-13

-1.07E-04
-1.59E-11
1.33E-15
-6.37E-17

2.38E-05
-9.45E-19
-1.54E-13
-5.44E-16

-1.76E-04
6.40E-16
-1.81E-13
-6.17E-14

1.81E-04
-5.37E-13
-5.15E-15
2.39E-17

6.65E-05
9.10E-11
7.68E-14
2.3SE-17

-1.48E-04
1.41E-15
-3.06E-11
-1.82E-14

-9.18E-05
3.41E-14
6.34E-19
1.04E-18

1.32E-04
2.25E-1S
-3.62E-15
-3.62E-15

7.28E-06
1.38E-15
1.65E-21

-1.23E-23

7.25E-05
-1.44E-13
1.66E-10
3.77E-14

1.77E-04
-1.20E-10
-1.32E-15
1.96E-15

-9.47E-05
7.50E-17
1.65E-14

-9.61E-15

7.33E-05
-2.31E-13
-1.55E-17
1.78E-18

2.36E-05
9.17E-20
-4.88E-15
3.86E-17

1.08E-04
9.24E-17
-5.27E-14
8.76E-14

-1.74E-04
-4.79E-14
-5.91E-16
-6.27E-18

Table D.2: For each unstable eigenvalue from Tab.(5.2) a set of four block rows with
detailed information is associated. The first row of each block shows the four most im-
portant coupling contributions (components and amplitudes) to the potential energy. The
following three rows in each block give the contribution to the potential energy of the
(m, 1) x {rnun{) with m = 2,1 couplings; (m^n{) is either the dominant unstable compo-
nent or is coupled to (2,1) via one of the three strongest equilibrium components marked
with "*" in Tab.(B.2) g g



(mn,nn) x couplings
1.050

1.100

1.200

(4,3) X (4,3)
(2,1) x (4,3)
(2,1) X (6,5)

(2,1) x (10,9)

(9,7) x (9,7)
(2,1) X (4,3)
(2,1) X (6,5)

(2,1) X (10,9)

(7,5) X (8,5)
(2,1) x (4,3)
(2,1) x (6,5)

(2,1) X (10,9)

(4,3) x (5,3)
(2,1) x (4,3)
(2,1) X (6,5)

(2,1) x (10,9)

(6,5) X (7,5)
(2,1) X (4,3)
(2,1) X (6,5)

(2,1) X (10,9)

(11,9) X (11,9)
(2,1) X (4,3)
(2,1) x (6,5)

(2,1) x (10,9)

(4,3) x (5,3)
(2,1) X (4,3)
(2,1) X (6,5)

(2,1) X (10,9)

(3,3) x (4,3)
(2,1) x (4,3)
(2,1) X (6,5)

(2,1) X (10,9)

(3,3) X (4,3)
(2,1) X (4,3)
(2,1) X (6,5)

(2,1) x (10,9)

(3,3) X (4,3)
(2,1) X (4,3)
(2,1) x (6,5)

(2,1) X (10,9)

(6,5) x (7,5)
(2,1) X (4,3)
(2,1) x (6,5)

(2,1) X (10,9)

(8,7) x (9,7)
(2,1) X (4,3)
(2,1) x (6,5)

(2,1) x (10,9)

(10,9) x ( l l , 9 )
(2,1) x (4,3)
(2,1) X (6,5)

(2,1) x(10,9)

(5,5) x (6,5)
(2,1) X (4,3)
(2,1) x (6,5)

(2,1) x (10,9)

(10,9) x (11,9)
(2 , l )x (4 ,3 )
(2,1) X (6,5)

(2,1) X (10,9)

(4,3) x (5,3)
(2,1) x (5,3)
(2,1) X (7,5)

(2,1) x (11,9)

(8,7) x (9,7)
(2,1) X (5,3)
(2,1) x (7,5)

(2,1) X (11,9)

(7,5) x (7,5)
(2,1) X (5,3)
(2,1) x (7,5)

(2,1) x (11,9)

(3,3) X (4,3)
(2,1) x (5,3)
(2,1) x (7,5)

(2,1) x (11,9)

(7,5) x (8,5)
(2,1) x (5,3)
(2,1) x (7,5)

(2,1) x (11,9)

(9,1) x (11,9)
(2,1) x (5,3)
(2,1) X (7,5)

(2,1) x (11,9)

(5,3) x (5,3)
(2,1) X (5,3)
(2,1) x (7,5)

(2,1) x (11,9)

(4,3) x (5,3)
(2,1) x (5,3)
(2,1) X (7,5)

(2,1) x (11,9)

(4,3) x (5,3)
(2,1) x (5,3)
(2,1) X (7,5)

(2,1) x (11,9)

(4,3) x (4,3)
(2,1) x (5,3)
(2,1) x (7,5)

(2,1) x (11,9)

(5,5) x (6,5)
(2,1) x (5,3)
(2,1) x (7,5)

(2,1) x (11,9)

(7,7) x (8,7)
(2,1) X (5,3)
(2,1) x (7,5)

(2,1) x (11,9)

(11,9) x (12,9)
(2,1) x (5,3)
(2,1) x (7,5)

(2,1) x (11,9)

(6,5) X (7,5)
(2,1) X (5,3)
(2,1) X (7,5)

(2,1) x (11,9)

(11,9) x (12,9)
(2,1) x (5,3)
(2,1) x (7,5)

(2,1) X (11,9)

(2,-5) X (4,3)
(1,1) x (4,3)
(1,1) X (6,5)

(1,1) X (10,9)

(8,7) x (8,7)
(1,1) X (4,3)
(1,1) X (6,5)

(1,1) X (10,9)

(6,5) X (7,5)
(1,1) X (4,3)
(1,1) X (6,5)

(1,1) x (10,9)

(4,3) x (4,3)
(1,1) x (4,3)
(1,1) x (6,5)

(1,1) X (10,9)

(7,5) X (7,5)
(1,1) X (4,3)
(1,1) x (6,5)

(1,1) x (10,9)

(9,1) x (9,1)
(1,1) x (4,3)
(1,1) X (6,5)

(1,1) x (10,9)

(3,3) x (4,3)
(1,1)X(4,3)
(1,1) x (6,5)

(1,1) X (10,9)

(4,3) X (4,3)
(1,1) X (4,3)
(1,1)X (6,5)

(1,1)x (10,9)

(4,3)x (4,3)
(1,1)x (4,3)
(1,1)X (6,5)

(1,1)X (10,9)

(4,3) x (5,3)
(1,1) x (4,3)
(1,1) x (6,5)

(1,1) X (10,9)

(7,5) x (7,5)
(1,1) X (4,3)
(1,1) X (6,5)

(1,1) X (10,9)

(9,7) x (9,7)
(1,1) X (4,3)
(1,1) X (6,5)

(1,1) x (10,9)

(11,9) x (11,9)
(1,1) X (4,3)
(1,1) x (6,5)

(1,1) X (10,9)

(6,5) X (6,5)
(1,1) X (4,3)
(1,1) X (6,5)

(11,9) x (11,9)
(1,1) X (4,3)
(1,1) x (6,5)

lQft

(2,-5) x (2,-5)
(1,1) x (5,3)
(1,1) x (7,5)

(1,1) x (11,9)

(5,-1) X (9,7)
(1,1) X (5,3)
(1,1) X (7,5)

(1,1) x (11,9)

(8,5) x (8,5)
(1,1) x (5,3)
(1,1) x (7,5)

(1,1) X (11,9)

(3,3) x (3,3)
(1,1) x (5,3)
(1,1) x (7,5)

(1,1) x (11,9)

(6,5) x (6,5)
(1,1) X (5,3)
(1,1) X (7,5)

(1,1) X (11,9)

(11,9) X (12,9)
(1,1) X (5,3)
(1,1) x (7,5)

(1,1) x (11,9)

(2,-5) x (4,3)
(1,1) x (5,3)
(1,1) X (7,5)

(1,1) X (11,9)

(3,3) x (3,3)
(1,1) X (5,3)
(1,1) x (7,5)

(1,1) X (11,9)

(3,3) x (3,3)
(1,1) X (5,3)
(1,1) x (7,5)

(1,1) X (11,9)

(3,3) x (3,3)
(1,1) x (5,3)
(1,1) x (7,5)

(1,1) x (11,9)

(5,5) x (5,5)
(1,1) x (5,3)
(1,1) x (7,5)

(1,1) x (11,9)

(7,7) x (7,7)
(1,1) x (5,3)
(1,1) x (7,5)

(1,1) x (11,9)

(10,9) x (10,9)
(1,1) x (5,3)
(1,1) X (7,5)

(1,1) X (11,9)

(5,5) X (5,5)
(1,1) X (5,3)
(1,1) X (7,5)

(1,1) X (11,9)

(10,9) X (10,9)
(1,1) X (5,3)
(1,1) X (7,5)

(1,1) X (11,9)

-7.05E-04
-4.81E-08
-8.16E-12
2.32E-12

-6.80E-04
2.37E-11
1.93E-12
4.84E-15

-7.61E-04
2.96E-11
-1.57E-09
-4.78E-11

-3.45E-04
-1.37E-08
-7.38E-12
1.26E-12

-8.43E-04
-2.44E-13
-1.95E-09
-3.52E-12

-3.58E-04
-1.52E-1O
5.17E-11
2.11E-09

-5.15E-04
-1.93E-08
-2.06E-09
-1.56E-10

-6.89E-04
-1.37E-09
-7.09E-11
-7.11E-12

-6.32E-04
-5.55E-1O
-4.57E-11
-4.45E-12

-4.17E-04
-1.17E-09
-5.00E-11
-5.09E-12

-5.27E-04
4.32E-13
-5.44E-09
5.44E-12

-2.20E-04
2.87E-11
-2.23E-12
1.96E-10

-6.48E-04
-7.00E-14
5.10E-12
-5.41E-10

-5.03E-04
3.38E-12
-2.97E-09
-2.49E-11

-6.47B-04
1.47E-13
-1.82E-11
-8.30E-10

-1.99E-04
4.41E-10
-9.84E-14
4.90E-13

-8.96E-05
-3.03E-12
-1.12E-12
9.55E-16

4.93E-04
5.58E-12
-4.22E-09
-2.14E-11

-3.33E-04
-1.04E-09
-3.05E-11
5.16E-13

-7.92E-04
-8.81E-15
-6.85E-09
2.OOE-12

-2.43E-04
1.76E-11
-2.80E-10
-1.28E-08

2.55E-04
4.78E-09
1.69E-08
5.51E-10

-5.88E-04
-1.94E-10
8.32E-10
1.72E-11

-5.78E-04
2.27E-10
5.55E-10
1.03E-11

3.75E-04
-1.77E-10
6.77E-10
9.43E-12

-4.64E-04
1.56E-13
1.55E-09
-5.25E-11

-1.82E-04
5.50E-12
2.44E-13
1.26E-09

-5.44E-04
-4.51E-15
-2.41E-12
-5.14E-10

-4.78E-04
5.27E-13
2.00E-09
2.22E-11

-5.68E-04
3.19E-15
7.79E-12
-1.99E-09

-1.97E-04
-3.18E-08
-4.56E-12
-9.07E-10

4.33E-05
3.78E-12
9.53E-13
6.67E-16

-4.89E-04
4.71E-11
-2.76E-10
-9.76E-10

2.49E-04
-3.09E-0S
-4.62E-12
-6.73E-13

7.40E-04
-3.07E-12
-4.44E-09
-4.90E-12

1.22E-04
-3.16E-08
-8.59E-09
-2.90E-08

-2.21E-04
-2.2OE-O5
-6.04E-07
-5.87E-08

5.24E-04
-6.93E-07
-2.84E-08
-6.46E-08

5.16E-04
-4.09E-07
-1.80E-08
3.55E-09

-3.54E-04
-4.63E-07
-1.97E-08
-2.18E-10

2.92E-04
-2.05E-11
-3.20E-08
7.01E-10

1.08E-04
5.64E-11
-1.10E-11
8.81E-10

4.30E-04
-7.02E-14
-9.32E-11
-2.11E-10

3.29E-04
-3.37E-11
-3.94E-08
-4.90E-11

5.06E-04
-5.88E-14
1.97E-11

-4.41E-10

9.52E-05
3.54E-09
-1.35E-11
2.19E-10

-7.72E-06
2.01E-11
2.88E-12
7.82E-16

4.46E-04
-2.59E-11
-1.88E-08
-1.88E-08

1.86E-04
8.92E-09
-2.22E-11
1.69E-13

4.54E-04
7.61E-14
-4.55E-09
6.9SE-12

-1.20E-04
3.43E-11
-1.73E-10
-4.88E-09

-1.35E-04
-4.06E-09
1.01E-09
2.70E-09

3.66E-04
1.35E-10
2.66E-12
-2.36E-10

3.31E-04
9.94E-10
-5.93E-12
-2.87E-11

2.23E-04
-3.93E-10
-7.75E-12
6.S0E-11

2.55E-04
-4.07E-12
-4.20E-09
3.59E-11

1.08E-04
1.36E-11
-2.94E-12
-9.97E-11

3.69E-04
-1.33E-14
-8.98E-12
6.91E-10

2.68E-04
-2.13E-12
-3.82E-09
S.40E-12

3.56E-04
-2.87E-15
1.16E-12
-2.17E-10

Table D.3



Table D.3 (on previous page): For each unstable eigenvalue from Tab.(6.2) a set of four
block rows with detailed information is associated. The first row of each block shows the
four most important coupling contributions (components and amplitudes) to the potential
energy. The following three rows in each block give the contribution to the potential energy
of the (m, 1) x (rni,n{) with m = 2,1 couplings; (mi,ni) is either the dominant component
or is coupled to (2,1) via one of the three strongest equilibrium components marked with
"*" in Tab.(B4)
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Appendix E

NEMEC and free boundary
equilibria

The NEMEC code is a combination between the fixed boundary spectral code VMEC
and the vacuum Green's function code NESTOR (NEuman Solver for TOroidal Regions)
[43], [44].
The vacuum magnetic field that confines the plasma By is written in the form By =
Bo + V$ where Bo is the field arising from the net toroidal plasma current and the ex-
ternal coil currents, and $ is a single-valued potential. A free boundary equilibrium is
reached when at the plasma boundary Sp, the total pressure B2/2 + p is continous and
By satisfies the Neuman condition

(Bo + Vfc) • np = 0 (E.I)

For a given Bo the vacuum field solution is obtained by solving the exterior Neuman prob-
lem for the potential $. In the exterior of the plasma domain, $ obeys to the Laplace
equation A$ = 0 and on the plasma boundary, its normal derivative assumes the pre-
scribed value d<&/dn = —BQ-H.

Using Green's theorem, the Laplace equation for $ is converted into a surface integral
equation

where the points x and x' belong to the boundary Sp and G(x,x') = l/\x — x'\ is the
Green's function. If the condition Eq.(E.l) is imposed, the right hand side of this eqaution
can be explicitely evaluated and acts as a source term. The potential $ in the interior of
the toroidal region is obtained in a similar way from the potential and its normal deriva-
tive on the boundary.
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The surface Sp and the potential $ are represented by Fourier series in the angular
variables u and v (c.f. Section 2.1). From the Fourier transform of the integral equation,
a set of linear equations for the Fourier coefficients of $ are obtained. The principal
technical difficulty inherent to this method is the calculation of the Fourier transform
of the singular Green's function and its normal derivative. A regularization procedure
was introduced to solve this problem: appropiate functions with the same singularity
and periodicity are substracted from the integral kernels and their analytical calculated
Fourier transforms are added to the Fourier transformed integral equations. Detailed
explanations and other information can be found in [43].

103



Appendix F

Coil configurations
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Figure F.I: Topview of one pair of HF coils with a = 0 (left) and a = —0.3 (right)
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Figure F.2: Sidewiew of three pairs of VF coils characterized by
and one pair of HF coils characterized by {Rh, Zh, h}-

Zvi, /„,-}, z = 1,2,3

104



-1

3.5

-1

3.5

5.5 6

3 j t /(4V

-1

3n/(2Nper)

3.5 4 4.5 5 5.5 6
R

Figure F.3: Flux surfaces in vacuum produced with a L = 2 torsatron configuration
consisting in one pair of HF coils and three pairs of VF coils. The geometry is described
by Rh = 5.0 [m], rh = 1.7 [m], a = 0., Rvl = 7.0 [m], Zvl = 2.1 [m], i^2 = 8.0 [m],
Zv2 = 1.2 [m], Rv3 = 3.0 [m], Zv3 = 0.5 [m]. The currents in the coils are Ih = 1.0 • 1
7vl = -3.9 • 104[A], Iv2 = -1.0 • 104[A], Iv3 = 2.3 • 104[A].
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-5

Figure F.4: Torsatron configuration consisting of one pair of HF coils and 3 pairs of VF
coils. Fig.6.3, Fig.6.4 and Fig.F.3 show the flux surfaces in vacuum obtained with this
configuration (c.f. Section 6.2).
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