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Abstract
4 model and a computer program*to calculate the

temperature distribution in the target which will be used in the SPI-
RAL project at GANIL. The results of the numerical simulation are
compared with measurements performed with several types of targets.
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1 Introduction

The radioactive beams of the SPIRAL [1] project at GANIL will be produced
by the nuclear reactions of the primary beam on a thick carbon target located
outside an ECR ion source (SIRA-Radioactive Ions Separator). In order to
have a fast diffusion of the unstable particles through the target material, it
is necessary to heat the carbon target up to temperatures around 2400/^. Al-
though these temperatures can be easily reached by heating due to a primary
beam of 6kW, it is well known that the energy loss of heavy-ions is concen-
trated in a small region (Bragg peak) which makes the temperature profile in
the target very non-uniform. Several experiments performed at GANIL have
shown that under a heavy ion beam the target reaches temperatures near
the sublimation point of the carbon. Due to the fact that the evaporation
rate of carbon becomes too high at temperatures of the order of 2700/^, it
is important to optimize the temperature profile as a function of the geo-
metric parameters of the target. The solution adopted in order to obtain a
more uniform temperature distribution was a target with a conic shape. The
target developed consists of thin slices of carbon with an increasing radius,
and separated by a certain distance. In this way, the energy loss near to the
Bragg peak is distributed over several slices avoiding a localised overheating.
The slices are connected to one and other through a central axis of carbon.
If necessary, auxiliary ohmic heating is afforded either by an electric current
through the central axis, or through an external container.

The difficulty of measuring the temperatures of the target near to the hot
zone was the motivation for developing a model and a numerical simulation
which should permit to calculate the temperature distribution in the target
as a function of time due to the heating. We describe the model and compare
the results of the numerical simulation with the measurements performed at
Louvain La Neuve using a 6kW proton beam in a conic target, at ORSAY
with ohmic heating, and at GANIL using a cylindric target hit by 400W 20Ne
and 200W 78Kr beams.

2 The model and the numerical simulation.

In order to obtain the dynamic temperature distribution in the target, it is
necessary to consider the heat diffusion equation with a source term which



accounts for the energy deposited by the incident beam. Due to the fact that
the thermal conductivity and the specific heat of graphite depend strongly on
temperature, and that the radiation boundary conditions have a temperature
dependece as T4, the problem becomes non-linear and can only be solved
numerically [2]. The calculation is performed by the numerical integration
of the non-linear differential equation in cylindrical coordinates:

Where T = T(z,r,t) is a function of the spatial coordinates and of the
time t. p is the density of the target material, C its specific heat and k is
the thermal conductivity all taken as a function of the temperature.

The first two terms in the right side of equation 1 account for the heat
conduction in the radial direction. qa is the energy density deposited per
unity of time either by the beam, or by ohmic heating or both. More details
about the heating will be presented in the next sections. qTad describes the
heat exchanges by radiation between neighbour slices. In fact equation 1
must be modified when the integration is performed over the central axis
of carbon. In this case a term must be included ^ (^ f~) which describes
the conduction in the axial direction(z). Obviously there is no radiation
between slices (qTad) — 0 in this case. The element of volume considered in
the integration is given by dV = 2irrhe where h and e are the integration
steps in the radial and axial directions respectively.

The slice is supposed to be thin and the integration step in the axial
direction e is always taken equal to its thickness. This means that at a given
radial position the temperature is the same at both faces of the slice and
constant in the element of volume considered.

The time step of the integration is related to the integration step h and
with the physical properties of the target material by the formula [2]:

At < PCh2/(2k). (2)

This inequality imposes a time step of integration smaller than the time of
propagation of the heat in the lattice. After a number of simulations with
different target materials and integration steps we found that equation 2
gives a quite precise estimation of the time step necessary for convergence.
For the carbon target this is of the order of milliseconds.



In order to label an element of volume in the target we define the index
m and i such that z = me and r — ih. At high temperatures the dominant
mode of heating exchange is by radiation. The radiation term qTad describes
the heat exchange between one element of volume (i) of a given slice summed
over all elements (j) of the neighbour slices:

q^ = — V^ e (i j)(T4 • — T4 •). (3)

The apparent emissivity between two rings eap is calculated in appendix 1.
No dependence with the temperature of the emissivities is assumed.

In order to solve the differential equation we follow the finite-difference
method [3]. We set:

d2T 1

[(r,-ro-(ri-ri_1)] (5)dr2 h

and

~5~ = ~~r(fc»+i ~ &t-i)- (6)
or 2h

The axial term is taken as:

?L = 1(T +1-T j) (7)
dz 2e m m

and

d2T 1
— / I ^^ [ / -̂— / 1 11 I rS 1
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2.1 Boundary conditions

Basically three situations must be examined concerning the boundary con-
ditions for equation 1:

• For i = 0 (the center of the axis) we impose the temperature distribu-
tion to have an extremum:

^ = 0 (9)



we can write:
BT

Tm<i — Tmfl + h (10)

which due to condition (9) yields:

fi _ d2Tmfi

h dr dr2

and with the symmetry relation T"mi_i = Tm,i we obtain:

(11)

dr[k dr l + r dr

• The target is surrounded by a cylindric container of carbon. We supose
that the last ring of each slice radiates with the slice of the container
immediately in front as a black body. We assume that all the heat
emmited by the last ring is absorbed by the container at the position
corresponding to slice m. For i = imax the heat density exchanged with
the container is calculated by:

( r ^ ) (13)

• Each ring of each slice radiates either with the neighbour slices (equa-
tion 3) or with an exterior enclosure at a fixed temperature T,ub'.

q^-eiT^-Tl,). (14)

2.2 The container and reflectors
Equation 1 is solved in order to calculate the temperature distribution in the
container with the supposition that it absorbes all the heat emitted by the last
ring of each slice m. In this way, the container has a differential distribution
of temperature in the axial direction TmfionX. In the radial direction the
temperature of the container is assumed to be constant. The internal radius
and thickness of the container are taken into account by renormalizing the
heat density with the ratio of the volume elements: qc*dVc = —qi*dV where
qc and qi are the heat densities absorbed by the container and emitted by the



last slice respectively. dVc — 2irrchce is an element of volume in the container
of thickness hc and radius rc and dV is the element of volume in the last ring.

Each slice of the container radiates as a black body either with the enclo-
sure at Taub or with a reflector placed between it and the enclosure. In our
calculation there is the possibility of considering up to 3 reflectors between
the container and the substract. In all cases the temperature of the reflectors
is assumed to be constant and given by [4]:

• 1 reflector

tel =
i

where ecs and ess are the apparent emissivities between the container-
reflector and the reflector-substract given by:

• 2 and 3 reflectors

The temperature of the first reflector is calculated for n = 1,2 reflectors
in the approximation £s <C scy. [4]

fa y )
m m u i i M l

2.3 The heating process
The heating of the target can be made by both the beam and an electrical
current.

• The Beam.

The energy loss of each particle of the beam on each slice of thickness
e is calculated by the program using routine ZSTOP[5]. The energy
deposited by unit time and unit volume is given by:



qa " J dx irRl

where N is the total number of incident particles per unity time, ^ is
the electronic stopping power calculated by ZSTOP, Rb is the radius
of the beam section, and f(r) is a spacial distribution function which
can be either square f(r) = 1 or gaussien:

/(r) = exP(-r2/R2) (19)

Note that:

i°° exp(-r21Rl)2irrdr = 1 (20)
Jo

• Rotating Beam

A common way to control the target overheating is to use a rotating
beam. In the case of a gaussien rotating beam, the argument of the
exponential r2 in equation 20 can be replaced by the effective distance
between the center of the beam (which is now a function of time) and
a certain element of volume m, i of the target:

r
2—> r2 + r2 + 2rr0cos{wt + TT) (21)

where r0 is the position where the center of the beam hits the target
and w is the angular frequency of rotation. If the frequency of rotation
is not very high compared to the integration time step, this procedure
gives a good approximation for the heat density effectively received by a
certain element of volume of the target as a function of time during one
rotation. For the typical case of At = 0.001s frequencies up to lOOHz
are acceptable. For higher frequencies of rotation this procedure can
introduce numerical errors.

• Ohmic heating

In the case where the energy density deposited by the beam is not
sufficient to heat the target up to operating temperatures a system of
heating by electric current is desirable. If an electrical current density



J passes through the axis, the heat density in each element of volume
is given by:

qa = pe,J
2 (22)

where pt\ is the electrical resistivity of the target material and J =
i

• Total incident power

For monitoring purposes the program integrates the total incident power
during one interation time step separetely for the beam and the ohmic
heating. This is given by:

mmax tmoi

P= £ T,q.(i,m)dV (23)
m = l t= l

For the case of a rotating beam, the power density qa is a function of
the time and an average over one period T = 2TT/W is performed.

3 Applications of the numerical simulation.

3.1 The Conic Target and a 6kw proton beam.
Figure 1 presents the conic target used for the tests perfomed at Louvain-La-
Neuve with a 6kW proton beam. The target is made of one single piece of
carbon of 9.4cm length by 4.3cm diameter. It consists of 33 slices (20 slices
in the conic part and 13 slices in the cylindric part) of thickness 0.07cm
separated by 0.13cm. The total angle of the cone is of 45deg. The slices are
connected to each other by an axis of 5.8mm external diameter and 3mm
internal diameter which allows the insertion of a thermocouple in order to
measure the temperature along the axis, lcm of axis is without slices. An
electrical current through the axis provides the auxilary heating. In the rear
there is a solid part which has the double function of fixing the target in the
internal walls of a cylindrical container and making the electric contact for
the return of the electric current, which is made by the container. The entire
system target and container is placed inside a chamber kept at a constant
temperature (Tsub ~ 290A') by a water refrigerating system.
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The cyclotron of Louvain-La-Neuve provided the proton beam of 30MeV
and power from 0 to 6kW. The beam rotates with a frequency of 50Hz. The
radius of rotation of the beam can be varied and was of about 1.25cm during
the experiment. The beam current was integrated in the target throughout
the whole experiment providing a measurement of the incident power. Due
to the difficulty of monitoring a 6kW proton beam, the beam profile was not
measured. The beam size was adjusted at the begining of the experiment by
inserting a slit of 1.5cm diameter in front of a low power beam and adjusting
the focalization in order to achieve 70% of transmission through the slit. The
slit is then removed and the beam power increased. For the simulations we
made the assumption that the beam was gaussien with a FHWM of 1.7cm.
This parameter is very important in order to determine the temperature of
the target in the region of the Bragg peak. The smaller the width of the
beam, the higher the temperature will rise near to the Bragg peak. Hence
a precise measurement of the beam width is necessary if we wish to control
the maximum target temperature.

The target temperature was measured by 3 thermocouples placed respec-
tively in the axis, in the slice at r = 1.7cm from the axis and in the container.
The three thermocouples were at the same axial position (z = 6.2cm), which
means approximately slice 27.

As a first test we performed measurements of the time of response of
the target which consisted of exposing the target, initially cold, to the beam
power and measuring the temperature in intervals of 3 seconds until reaching
the temperature of equilibrium Tmax. After that, the beam was cut off and
we observed the cooling back to the room temperature. This was done for
3 beam powers 0.8kW, 1.7kW and 3.8kW and the results are presented in
figures 2, 3 and 4 (dashed line) with the simulation (solid line). We observed
that the rise time is shorter for the higher beam powers. If we define the
rise time as the time needed to reach 90% of the maximum temperature we
obtain trise = 205s, 300s, 456s respectively for 3.8kW, 1.7kW,Q.8kW. On the
other hand, the decaying time up to room temperatures is much longer, of
the order of 600s. This behaviour can be understood in terms of the interplay
between the conduction and the radiation regimes. For lower temperatures
the radiation term qTad in equation 1 is small and the dynamic is determined
mainly by the conduction. As the temperature increases the conductivity of
the carbon decreases and the conduction becomes negligible compared to the
radiation term. In this situation the heat propagation through the target be-
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comes faster. It is important to take this fact into account in the simulation,
mainly at low incident powers which would require a longer calculation time
to converge.

The conductivity of the carbon used in the simulation was measured by
the [6] in the range 273K to 1800K where it apparently reaches a minimum.
Above this temperature we assumed a constant thermal conductivity equals
to the minimum value. The emissivity of the carbon was assumed constant,
equal to the unity.

The accord between measurements and simulation are quite good. The
rise and decaying times are very well reproduced. The calculated equilibrium
temperature in the slice is a little above the measured. It is necessary to
mention that the measurements on the axis are overestimated due to the fact
that a fraction of the beam hit this thermocouple. In reality the temperature
of the axis is almost the same as the temperature measured in the slice, in
agreement with the results of the simulation. This fact can be observed
comparing the measurements in the region with no beam (t > 850s). The
discrepancies observed at low temperatures of the container are due to the
threshold of this thermocouple (600K).

In figure 5 we present the temperature profile obtained by the simulation
with a 6kW beam. We observe that the Bragg peak is spread over a region
parallel to the cone. The highest temperature in this situation is approx-
imately 2600.fi' and very high temperature gradients are observed. In the
region around z « 6cm (slice 27), the temperature gradient in the axial di-
rection is about 50 deg /mm. On the other hand, the gradients in the radial
direction are very low, as predicted by the simulation and confirmed by the
measurements.

The examination of the target after the experiment has shown the pres-
ence of holes from the slice 10 up to 20, not in the direction of the beam
but parallel to the cone of the target. It proves that the holes were caused
by overheating along the Bragg peak. Temperatures of about 2700/f in the
Bragg peak are sufficient to evaporate a thin slice of 0.7mm in a few hours
[8]. A more uniform profile is needed to operate in a long term with 6kW
heavy ions beam. It can be obtained by decreasing the angle of the cone, for
instance an angle of 30 deg gives a maximum temperature of 2500/^ in the
Bragg peak.
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3.2 The Conic Target and the ohmic heating.

In principle, the energy deposited in the target by a heavy ion beam of a
few kilowatts is sufficient to heat the target up to temperatures of 2400K in
the region around the Bragg peak. However, the range of nuclei produced by
projectile fragmentation can be considerably longer than that of the beam,
if we are interested in nuclei distant from the projectile. The necessity of
additional ohmic heating comes mainly from the fact that we observed large
temperature gradients in the axial direction. The ohmic heating can be done
either by the central axis or by the container. The heating by the container
has the advantage of providing a more uniform temperature profile but very
high powers are required to heat a target of the dimensions of the SPIRAL.
For this reason we adopted the axial heating.

We performed measurements at IPN-ORSAY with a conic target of 8.4cm
long 2.2cm of diameter and a total angle of the cone of 20deg. The heating
was made by an electric current through the axis of power variable up to
a maximum of 2300W. There was a tantalum reflector between the target
and the container. The target temperature was measured by a pyrometer
and thermocouples. The pyrometer measured the temperature in the front
surface of the target in the radial direction and the thermocouples along the
axis and in the container. The measurements of the temperature in the radial
direction show a quite uniform profile with temperatures of about 1800K at
the maximum power in very good accord with the simulation. However in
the axial direction the measurements showed a temperature gradient much
higher than the simulation which had predicted an almost uniform profile
with decreasing temperatures only very near to the ends of the target. The
reason for this discrepancy is probably due to the container which had a large
radiating surface in its rear part, which was not considered in the simulation.
If we consider a container lcm thick, the results approach very much the
measurements as shown in Fig. 6. Other possibilities, as points of contact
with the cold chamber and the heat exchanges with the thermocouple, do
not seem to be the main reason for the observed gradient. We believe that
a container with a smaller radiating surface and thickness should give a
more uniform axial temperature distribution. In particular, measurements
performed in a cylindrical target heated by the container showed that the
temperatures are quite uniform in the axial direction.
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3.3 The cylindric Target.
Experiments have been performed at GANIL using beams of 20Ne and 78Kr
of powers 400VF and 200H^ [7] respectively and a cylindric carbon target of
2cm diameter and 4.2cm length also made of slices of 0.07cm thick separated
by 0.1cm. The FWHM of the beams was 0.74cm, measured during the ex-
periment. The target was heated by the container up to a temperature of
2300A'. These temperatures were attained due to reflectors placed between
the container and the refrigerated chamber. After the experiment a conic
shape hole was observed in the target hit by the 2OiVe beam (Fig. 7). The
hole started at slice 8 up to slice 20 and had a maximum diameter of RS 6mm
at slice 13, which is the position of the Bragg peak for the 95MeV.A 20Ne.
There was no hole in the target hit by the 78Kr beam. The shape of the hole
is basically due to the gaussien shape of the beam and its process of forma-
tion can be undertood if we address to equation 18. There are two effects to
be considered: one due to the stopping power dE/dz which increases with z
reaching a maximum at the Bragg peak and the other due to the beam in-
tensity which decreases with r2 for a gaussien beam. If we assume that there
is a certain value of power density q%, above which a hole will be formed,
it is easy to understand that the hole should start at some place before the
Bragg peak where the smaller energy loss is compensated by the high energy
densities at small radius. As we approach the Bragg peak the energy loss
increases and the limit value q% will be reached respectively for increasing
radii up to the Bragg peak where the radius is maximum. Obviously, as a
hole is formed, the beam will heat the next slice and the hole propagates
beyond slice 13. A stationary situation is attained when the energy is dis-
tributed over several slices forming a cone. The angle of the cone follows the
Bragg peak and can be considered as an estimation of the optimum angle for
a conic target. In this case the angle is of about 30deg.

We performed a simulation which included the possibility of the formation
of a hole. This was done by setting a limit temperature above which a hole
is supposed to be formed. During the simulation, the temperature of a given
position is kept fixed as it reaches the limit, and the corresponding energy loss
of the beam will be deplaced to the next slice. The result of the simulation
for a limit temperature of 2700^ is shown in Fig. 8. The black region
corresponds to the region where the temperature exceeds the limit of 2700A^
and a hole is supposed to be formed. The shape and dimensions of the hole
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obtained by the simulation are very similar to those observed experimentally.
The maximum temperature attained by the target in the simulation is of
28007 ,̂ which is below the sublimation point of graphite (3300K). It indicates
that the hole is not formed immediately but that a certain time is necessary
to evaporate the carbon. Of course the time to form a hole depends on the
beam characteristics, as its width which strongly influences the maximum
temperatures in the target. The closer these temperatures are from the
sublimation point of the carbon, the faster the evaporation process will be.

The simulation performed for the target in the case of the 78Kr beam
resulted in a maximum temperature of 2500/^, well below the 2800A' for the
20Ne case in accord with the experiment.

4 Conclusions

We developed a model and a computer code to calculate the temperature
distribution in the SPIRAL target. The calculation simulates the process
of heat propagation in the target as a function of time due to a rotating
beam or an electric current. The simulation was applied to the cases of
conic and cylindric targets made of thin slices of carbon. The comparison
with the experimental measurements performed at Louvain-La-Neuve with a
6kW proton beam, at GANIL with 20Ne and 78Kr beam, and at IPN-ORSAY
with ohmic heating, show that the simulation reproduces quite well the ob-
served features. In particular the dynamics of the temperature evolution in
the target as a function of time is well reproduced. The calculated absolute
temperatures are a little above the measurements performed with thermocou-
ples at some points of the target however the temperatures around the Bragg
peak seem to be very well predicted. More precise calculations would require
precise measurements of the physical properties of the target material as the
thermal conductivity and emissivities in the region of high temperatures.

If we suppose that above 2700/^ the evaporation rate of the carbon be-
comes very high ([8]), the position and the dimensions of the damage ob-
served in the targets used at Louvain-La-Neuve and at GANIL are very well
reproduced by the simulation.

A large temperature gradient has been observed in the conic targets with
ohmic heating by the central axis. This diagnostic obtained by the simulation
indicates that the container should be the main reason for this gradient
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in particular the large radiating area of the container in its rear part. A
new design for the container with a smaller radiating area and thickness is
desirable.

In summary the calculation seems to be very useful for predicting the
limits of resistance of targets to the heating caused by nuclear beams as
well as by other forms of heating. It is also very useful for determining
the influence of variations of the geometric parameters of the target in the
temperature profile, allowing an optimization of these parameters.

5 Appendix

The heat exchanged by radiation between to elements of surface dSi and dSj
and emissivities £,• and £,• is given by:

1
fi}dSi

where fa is the form factor between dSi and dSj and the term which multi-
plies cr(T* — T?) we call apparent emissivity.

The form factor is calculated by:

1 y f dSi cos QijdSj-cos 0 j ,
fii -^SiJ J 4 (25)

where 0,j is the angle between the normal to the surface i and the line
d{j which connects the two surfaces.

Calculation of the form factor between two coaxial rings

The form factor of two disks of radius Ri and R2, separated by a distance
hx is given by: [9]

/ia = ̂ (*-^x»-4(|ty) (26)

where

* = 1 + M (27)
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We can show that the form factor between two rings of thickness AR1 =
Rj — Ri and Ai?2 = Rl — Rk can be calculated from F^ via the relation:

FlA
 Sjif]l ~ fjk) ~ Sl{ftl ~ flk)

where:
Sj = TTRJ (29)

Si = TTR] (30)

St = KR\ (31)
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Figure 1: Conic carbon target used at Louvain-la-Neuve.

Figure 2: Temperature as a function of time measured (dashed) and calcu-
lated(solid) in the slice(up), axis(middle) and container (down) for 0.8kW
beam power.

Figure 3: Temperature as a function of time measured(dashed) and calcu-
lated(solid) in the slice(up), axis(middle) and container(down) for 1.7kW
beam power.

Figure 4: Temperature as a function of time measured (dashed) and calcu-
lated(solid) in the slice(up), axis(middle) and container(down) for 3.8kW
beam power.

Figure 5: Temperature profile obtained by the simulation for a 6kW proton
beam.

Figure 6: Temperature in the axis(up) and container(down) of the conic
target as a function of the axial position with ohmic heating.

Figure 7: Cylindric target used at GANIL with 95MeV.A 20Ne beam. The
cone represents the hole found in the target after radiation.

Figure 8: Result of the simulation for the cylindric target. Region in black
represents the hole predicted by the simulation.
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