

本レポートは、日本原子力研究所が不定期に公刊している研究報告書です。

入手の問合わせは、日本原子力研究所研究情報部研究情報課 (〒319-11 茨城県那珂郡東 海村)あて、お申し越しください。なお、このほかに財団法人原子力公済会資料センター (〒319-11 茨城県那珂郡東海村日本原子力研究所内)で複写による実費頒布をおこなって おります。

 $\mathcal{A}_{\mathbf{r}}$

This report is issued irregularly.

Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan.

C Japan Atomic Energy Research Institute, 1997

臨界集合体TCAを用いた原子炉物理の教育的基礎実験

日本原子力研究所国際原子力総合技術センター東海研修センター 简井 広明*・大久保雅章*・井頭 政之* 堀木欧一郎・須崎 武則

(1997年10月1日受理)

日本原子力研究所の軽水臨界実験装置TCA (Tank-Type Critical Assembly) は軽水炉の炉 物理研究のための施設である。本書は、今後のTCAを用いた原子炉物理の教育的基礎実験を実 施する上で参考とするため、1996年8月26日から30日まで同施設を用いて行われた東京工業大学 の大学院生実験のテキストを整理したものである。本レポートでは、炉物理実験の基礎となる (1)臨界近接、指数実験、(2)中性子束分布の測定、(3)出力分布の測定、(4)燃料棒価値分布の測定、 (5)ロッドドロップ法による安全板価値の測定について、その実験原理、実験手順、結果の解析手 法について述べている。

東海研究所: 〒319-11 茨城県那珂郡東海村白方白根2-4

* 東京工業大学

Educational Reactor-physics Experiments with the Critical Assembly TCA

Hiroaki TSUTSUP, Masaaki OKUBO*, Masayuki IGASHIRA*, Oichiro HORIKI and Takenori SUZAKI

> Tokai Education Center Nuclear Technology and Education Center Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

> > (Received October 1, 1997)

The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for 1) Critical approach and Exponential experiment, 2) Measurement of neutron flux distribution, 3) Measurement of power distribution, 4) Measurement of fuel rod worth distribution, and 5) Measurement of safety plate worth by the rod drop method.

Keywords : Reacter Physics, Critical Assembly, TCA, Educational Experiment, Critical Approach, Exponential Experiment, Neutron Flux Distribution, Power Distribution, Fuel Rod Worth Distribution, Safety Plate Worth, Rod Drop Method

Tokyo Institute of Technology

 $\mathbf{H}%$ 次

$Contents$

 \hat{A}

1. まえがき

東京工業大学大学院理工学研究科・原子核工学専攻では、1990年度より日本原子力研究所と共同で、東 海研究所の臨界集合体 TCA を用いて学生実験を行ってきた。本年度 (1996年度、平成8年度)は 1993年 [1]、1995年[2]に続いて3度目の TCA を用いた炉物理実験を行うこととなった。このレポートは実験内容 および得られた結果をまとめ、原子炉物理の教育的基礎実験に資することを目的としている。

本実験内容は、東京工業大学 原子炉工学研究所と日本原子力研究所 国際原子力総合研修センターの間で 検討を行い決定した。今回の実験では、前回の学生実験内容に加え、中性子束分布測定実験において新たに リン箔実験をあわせて行い、臨界時の炉心内の高速中性子束分布を測定した。毎回、実験内容が増え、欲 張った内容になったが、適切な協力体制により十分な実験結果を得ることができた。本実験はシンプルな構 造を持つ TCA の特徴が十分に反映され、操作の簡便性、実験条件の柔軟性から、学生たちへの教育効果は 大であったと思われる。また、実験内容は実験を通して学生達が、原子炉物理にとどまらず原子炉システム 全体への関心と理解が深まるよう配慮したつもりである。

臨界沂接および指数実験 $2.$

実験の目的 2.1

世界最初の原子炉はフェルミの指導のもとでシカゴ大学のスコーシ競技場に作られた CP-1 (シカゴ・パ イルとも呼ばれる)という原子炉であるとされている。この装置により原子炉の原理が実証されたといえ るが、その最も重要な時点は臨界の達成時であり、1942年12月2日のことであった。この原子炉は今日の 言い方だと臨界集合体といったほうがよいであろう(出力は 2kW)。その後多くの原子炉が建設されたが、 今でも建設段階のひとつの山となるのは臨界達成である。この臨界達成ではっきりする原子炉の臨界量は、 それまでの原子炉の核設計がどれだけ精度よく行われたかを知る重要な目安となる。

本臨界近接実験はこれらの実験と同様のものであり、炉物理実験の基礎となるものである。臨界は原子炉 理論(もしくは原子炉物理)の中心テーマのひとつであり、授業においてもいくつかの臨界量の計算法を学 んだはずである。本実験では手計算でできる2群2領域計算により臨界量を計算し、実験量と比較しても らう。計算機が使えるなら多群多領域の拡散計算を行うことにより、臨界量を求めるのを奬める。

本学生実験では同時に、未臨界炉内の中性子束分布測定による指数実験を行う。未臨界時に連鎖反応を持 続させるためには、中性子源を設けこれより中性子を絶えず炉心に供給する必要がある。この際、中性子束 分布が中性子源からの距離に応じた指数分布を示すことから、この名が用いられている。

実際の原子炉の臨界条件を決定づけるには、燃料棒の配置、材料バックリング等を得る必要があるが、こ れらは理論計算だけで求めることは困難である。そこで設計に必要なデータを得るために、指数実験が行 われてきた。指数実験は小型炉心で行え、臨界に至らないため操作面での安全性が高い等の利点を持って いる。また指数実験により未臨界の度合いを判断できることから、最近では燃料再処理施設における工程・ 機器の未臨界度の評価への応用も検討されている。本実験では臨界近接に向けての炉心構成変化に伴う中 性子束分布を測定し考察を行う。

2.2 実験の概要

$2.2.1$ 臨界近接実験の原理

いま考えている炉心集合体の実効増倍係数をkとする(kercと書くことが多いが、ここでは簡単のためk とした。無限増倍率 kogと混同せぬよう注意すること。)。臨界近接とは k < 1 の状態から燃料を次第に増や してk=1の状態にすることである。

ける。この効果をかなりあらっぽいが直観的な方法で評価してみよう。中性子源から発生する中性子数をS とすると、これらの中性子は1回核分裂を経ると(1中性子サイクルを経ると)その個数は Skに変化する。 同様に2回、3回と核分裂を経るたびにその個数は Sk², Sk³と変化していく。炉心集合体中の全中性子数 はこれらをすべて足し合わせた数となり、

$$
n=\sum_{m=0}^{\infty} Sk^m
$$

となる。即ち中性子は

$$
M = n/S = \sum_{m=0}^{\infty} k^m = 1/(1-k)
$$
 (2.1)

$$
-2-
$$

だけ増倍されたことになる。

(2.1)式から kを横軸、1/Mを縦軸にグラフを描くと、(0,1) と (1,0) を通る傾き 45°の直線になることが わかる。中性子の空間分布を無視して、中性子源だけが存在し、燃料が存在しないとき、これからの中性子 を測定して得られる単位時間当りの検出数Coとし、炉心集合体の近くに中性子源を置いた場合の単位時間 当りに検出される中性子数 C とすると、Mは

$$
M = C_{\rm i}/C_0 \tag{2.2}
$$

と求められる。…方 kは燃料装荷量の単純な増加関数であると考えて、次のような手順で臨界近接実験を 行う。

即ち固定式中性子カウンターにて測定した Mより、1/Mを得て、これを燃料装荷量の関数としてプロッ トし、プロットを外挿することにより臨界量即ちょ=1に対する燃料装荷量を推定する。1/Mはその絶対 値が必要なのではなく、この線が横軸と交わる点での燃料装荷量を知りたいだけなので、厳密な意味での C_0 を知る必要はなく、適当な燃料装荷時の中性子検出数を C_0 として解析をしてよい。このために組まれる 最初の炉心を基本炉心と呼ぶ。

指数実験の原理 $2.2.2$

未臨界炉内の中性子束分布は特異な分布を示す、この分布を計測・検討することを通常指数実験と呼ぶ。 未臨界時の中性子東分布を得るには、連鎖反応を持続させる必要があり、このために中性子源を設け、中性 子を絶えず炉心に供給する必要がある。本実験では、炉心集合体の中央部の燃料棒2本を空洞管におきか え、その一本の底部に中性子源をおき、他方の管内部に垂直移動式中性子カウンターを設置する。臨界近接 実験にあわせて、炉心構成を更新する毎に一定水位において、定常な未臨界に達した炉心に対して垂直方 向(z軸方向)にカウンターを操作し、各高さでの炉内の中性子束分布を測定し検討を行う。なお、指数実 験からのバックリングの算出については2.6節を参照せよ。

$2.2.3$ 実験装置

図2.1に TCA の実験炉心構成を示す。この図は上部より眺めたもので、平面を xy面、鉛直方向を z軸と する。燃料棒は直径 14.2mm の円筒棒型で、格子状に穴のあいたプレートに必要量を差し込む、これらは タンクに内蔵されており、タンク内に給水し、燃料棒をその水に浸し、その水位調節で臨界が実現される。 炉心データは表 2.1に示した。本実験で用いる中性子源 2 種、中性子カウンター群の位置関係を図中に、ま たそれらの仕様を表 2.1にあわせて示す。

図2.2に指数実験に用いる移動式中性子カウンター、未臨界用中性子源と燃料棒との高さ関係を示す。カ ウンターは任意の高さ位置に移動が可能である。図2.3に燃料棒の挿入箇所の番地を示す。これは本装置特 有のものである。燃料棒は格子状の穴に設置されるが、穴位置を明確にするために番地が割り振られてい る。一単位を 6×6=36 本とし、各穴に 1 ~36 の番号が与えられ、各単位を A、B、C..、1、2、3.. の座標で 呼ぶ。実験時の燃料棒の設置等の際に必要となる。

2.2.4 注意事項

燃料集合体炉心は水平面を xy面、垂直方向を z軸とする。燃料棒の追加は y方向燃料棒本数を固定し、x 方向に列を増やす方法をとる。

安全に実験をおこなうため、基本炉心の燃料装荷量は計算による臨界予測値の1/2以下とする。充分確 信を持って臨界量の予測ができるようになるまでは、追加する燃料の量は外挿による臨界予測量と現在の |全装荷燃料の量の差の 1/2 以下にするのが原則である。

カウンターによって予測臨界量が異なる。このため、臨界近接実験では炉心外部の複数の固定式中性子カ ウンターを用い、合理的な予測臨界値をもとに次回装荷量を決めていく。

中性子のカウントはノイズの3倍以上あるべきだが、あまり大きいと Mが大きくなったとき不感時間が 大きくなり、臨界量を正しい値より大きく見積り危険となるので注意しなければならない。

臨界時には中性子源を除く操作が必要になる。そのため、次回の燃料棒装填量にて臨界に到達すると予想 された時点で、未臨界用中性子源、移動式カウンターを取り除き燃料棒に置き換え、次の近接実験を行う。 次回は可動型の起動用中性子源を用いて臨界到達の確認を行う。

実験方法 2.3

炉心構成

炉心の燃料棒構成(x × y)を以下の順で組み、各々で実験を行う。燃料棒の装荷位置関係を図2.4に示す。 Step1:(17×9), Step2:(17×13), Step3:(17×15), Step4:(17×16), Step5:(17×17)

実験手順

実験の手順はおおよそ以下の用になる。([]内は記録すべき事項)

実験準備段階

- 1) 起動前点検
- 2) 炉心構成の確認

未臨界実験の中性子源には未臨界用中性子源を用いる。

「燃料配置、中性子源、安全板の位置、移動式カウンターおよび固定式カウンターの種類・位置、水 位等]

- 3) 運転開始
- 4) 安全板引き抜き
- 5) 規定の水位まで炉心タンクへ注水

未臨界段階

- 6) 出力が定常値に到達したことを確認
- 7) 固定式カウンターにて中性子計数率測定 [各カウンターの計数率]
- 8) 移動式カウンターにて軸方向に 5cm 毎に中性子計数率を計測し、軸方向中性子束分布を得る。 [カウンター位置、計数率]
- 9) 運転停止 (安全板挿入、炉心タンクから排水、中性子源除去) [計数値記録の処理、逆増倍率曲線から臨界量の推定、中性子束分布の整理]
- 10) 燃料棒を追加

[炉心構成]

11) 2)-10) を行う。

[[]水位]

12) 10)-11) を臨界量が確実に予想されるまで繰り返し行う(未臨界)。

臨界段階

13) 燃料棒追加:

臨界量が確実に予想されたときは、必要量の燃料を追加しさらに移動式カウンター、未臨界用中性子 源を取り去り、燃料棒を代わりに装荷する。

- 14) 2)-3) を行う。
- 15) 起動用中性子源を挿入する。
- 16) 安全板を引き抜く。
- 17) 炉心タングへ注水
- 18) 臨界水位調節
- 19) 臨界到達
- 20) 起動用中性子源引き抜き
- 21) 中性子計数率測定、水位微調整により臨界調整 「出力:中性子源を取り去っても出力が一定であることを確認、水位、水温
- 22) 運転停止
- 23) 停止後点検

2.4 レポート

2.4.1 事前レポート

臨界近接実験

表2.1~4に与えられたデータを用い、臨界となる炉心の大きさとその際の燃料棒の本数を求めよ。臨界 計算の方法は2.5節を参照せよ。そして、臨界の際の、x軸方向の高速群の中性子束分布、熱群の中性子束 分布、出力分布をそれぞれ求め、グラフに表せ。また、この結果から材料バックリング Bagを求めよ。

指数実験

本実験の炉心体系において燃料装荷量(装荷列数とし、臨界列数まで)に応じた2軸方向(水深方向)中 性子束分布の変化を予測せよ。

測定器

TCA の核計装設備で使用されている C.I.C. と¹⁰B カウンターについて簡単に説明せよ。(資料参照) 事前レポートは実験の前の週の金曜日までに提出せよ。

2.4.2 実験レポート

実験の目的、内容、結果、考察をレポートにまとめよ。(レポート提出上の注意参照。)また、以下の問 題に答えよ。

- 1) 1/Mと装荷燃料の量とが直線関係にあれば、臨界予測が正確になると考えられるが、一般には直線に ならない。その理由を説明せよ。
- 2) 炉心が規定の水位になる前に臨界となった場合、臨界量をどのように評価すればよいか。そのために はどのような物理量が分かっていればよいか。また、それを得るにはどのような実験をしたらよいか。

臨界計算 2.5

中性子の拡散は多群拡散方程式で書くのが分かりやすいとおもわれるので、以下の多群拡散方程式から 説明を始めることにする。

$$
-\nabla \cdot D_g(r)\nabla \phi_g(r) + \Sigma_{r,g}(r)\phi_g(r) = \sum_{g' \neq g} \Sigma_{s,g'-g}(r)\phi_{g'}(r) + \chi_g \sum_{g'} \nu \Sigma_{f,g'}(r)\phi_{g'}(r) \qquad (2.3)
$$

ここで

:g群の除去断面積;これは、g群の全反応断面積 $\Sigma_{t,g}(r)$ を用いて、以下のように定義される; $\Sigma_{\mathbf{r},g}(r)$

$$
\Sigma_{\mathbf{r},g}(r) \equiv \Sigma_{\mathbf{t},g}(r) - \Sigma_{\mathbf{s},g \to g}(r) \tag{2.4}
$$

拡散方程式は近似式であるため境界条件は必ずしも自明ではないが、媒質どうしの境界では $\phi_g(r)$ と中性 子流密度 J_a(r) の連続性を用い、中心で対称の場合には、そこでの中性子束の傾きが0の条件を用いれば よい。真空境界の場合、体系の外側に外挿距離と呼ばれる距離dだけ離れた位置でφ.(r)が0になるという 条件

$$
\phi_g(R+d) = 0 \tag{2.5}
$$

が一般に用いられる。

式(2.3)で 0 以外のφ.(r) が求められるためには、係数が特別な関係(これが臨界を満足する関係という ことになる。)を満たしていなければならない。通常は実効増倍率kを用いて、次のような固有値問題に変 形して取り扱う。

$$
-\nabla \cdot D_g(r)\nabla \phi_g(r) + \Sigma_{r,g}(r)\phi_g(r) = \sum_{g' \neq g} \Sigma_{s,g'-g}(r)\phi_{g'}(r) + \frac{\chi_g}{k} \sum_{g'} \nu \Sigma_{f,g'}(r)\phi_{g'}(r) \qquad (2.6)
$$

これらの多群拡散方程式はコンピューターを用いて解かれるが、熱中性子にたいするエネルギー群(熱 群)と熱群以外の群をひとまとめにした高速群の2群に分けた解析が行われることも多い。このようにし て得られる方程式は2群拡散方程式とよばれている。本実験ではこの2群拡散方程式を用いて解析するこ とにする。2 群拡散方程式も色々な形に書かれるが、表 2.2のような群定数が得られているので以下のよう な2領域に対する方程式で解析することにする。

炉心に対して高速群は

$$
-\nabla \cdot D_{1,c}\nabla \phi_1(r) + (\Sigma_{a,1,c} + \Sigma_{1\to 2,c})\phi_1(r) = \frac{1}{k}(\nu\Sigma_{f,1}\phi_1(r) + \nu\Sigma_{f,2}\phi_2(r))
$$
(2.7)

となり、熱群は

$$
-\nabla \cdot D_{2,c}\nabla \phi_2(r) + \Sigma_{a,2,c}\phi_2(r) = \Sigma_{1\rightarrow 2,c}\phi_1(r)
$$
\n(2.8)

となる。炉心での定数であることを示すため添字 c をつけた。Σa,g,cは g群でのマクロ吸収断面積である。 反射体に対して高速群は

$$
-\nabla \cdot D_{1,r}\nabla \phi_1(r) + (\Sigma_{a,1,r} + \Sigma_{1\to 2,r})\phi_1(r) = 0
$$
\n(2.9)

となり、熱群は

$$
-\nabla \cdot D_{2,r}\nabla \phi_2(r) + \Sigma_{\mathbf{a},2,r}\phi_2(r) = \Sigma_{1\rightarrow 2,r}\phi_1(r) \qquad (2.10)
$$

となる。反射体での定数であることを示すため添字rをつけた。 (2.7) 式~(2.10) 式を簡単に以下の様に書き直す。

$$
-\nabla^2 \phi_1(r) + a_{1,c} \phi_1(r) = b_{1,c} \phi_2(r) \qquad (2.11)
$$

$$
-\nabla^2 \phi_2(r) + a_{2,c} \phi_2(r) = b_{2,c} \phi_1(r) \qquad (2.12)
$$

$$
-\nabla^2 \phi_1(r) + a_{1,r}\phi_1(r) = 0 \qquad (2.13)
$$

$$
-\nabla^2 \phi_2(r) + a_{2,r} \phi_2(r) = b_{2,r} \phi_1(r) \qquad (2.14)
$$

ここで

$$
a_{1,c} = \frac{1}{D_{1,c}} \left(\Sigma_{a,1,c} + \Sigma_{1 \to 2,c} - \frac{\nu \Sigma_{f,1}}{k} \right)
$$
 (2.15)

$$
b_{1,c} = \frac{\nu \Sigma_{f,2}}{k D_{1,c}} \tag{2.16}
$$

$$
a_{2,c} = \frac{\Sigma_{a,2,c}}{D_{2,c}} \tag{2.17}
$$

$$
b_{2,c} = \frac{\Sigma_{1\to 2,c}}{D_{2,c}} \tag{2.18}
$$

$$
a_{1,r} = \frac{\sum_{a,1,r} + \sum_{1 \to 2,r}}{D_{1,r}} \tag{2.19}
$$

$$
a_{2,r} = \frac{\sum_{\mathbf{a},2,r}}{D_{2,r}} \tag{2.20}
$$

$$
b_{2,r} = \frac{\sum_{1 \to 2,r}}{D_{2,r}} \tag{2.21}
$$

である。

炉心に対する式 (2.11) と (2.12) を結合すると、

$$
(-\nabla^2 + a_{1,c})(-\nabla^2 + a_{2,c})\phi(r) = b_{1,c}b_{2,c}\phi(r)
$$
\n(2.22)

となる。ここで $\phi_1(r)$ も $\phi_2(r)$ も (2.22)式をみたすので、区別せず $\phi(r)$ と書いた。もちろん方程式は同じで あるが、解の形は $\phi_1(r)$ と $\phi_2(r)$ で違ってくる。(2.22) 式は更に

$$
(\nabla^2 + \mu^2)(\nabla^2 - \lambda^2)\phi(r) = 0
$$
\n(2.23)

のように変換できる。ここでμ2及びλ2は

$$
\mu^2 = \frac{1}{2} \left[-(a_{1,c} + a_{2,c}) + \sqrt{(a_{1,c} + a_{2,c})^2 + 4(b_{1,c}b_{2,c} - a_{1,c}a_{2,c})} \right]
$$
(2.24)

$$
\lambda^2 = \frac{1}{2} \left[(a_{1,c} + a_{2,c}) + \sqrt{(a_{1,c} + a_{2,c})^2 + 4(b_{1,c}b_{2,c} - a_{1,c}a_{2,c})} \right]
$$
(2.25)

であり、正の定数である。なおμ²は大きさの近い数の差になっているので、桁落ちを避けるため、λ²をま ず計算し、その後

$$
\mu^2 = \frac{b_{1,c}b_{2,c} - a_{1,c}a_{2,c}}{\lambda^2} \tag{2.26}
$$

を使って計算するのがよい。(2.23)式は次の2式に分解できる。

$$
(\nabla^2 + \mu^2)X = 0 \tag{2.27}
$$

$$
(\nabla^2 - \lambda^2)Y = 0 \tag{2.28}
$$

これらの解 Xと Yを用いると、(2.23)式の解は Xと Yの線形結合で表わすことができる。即ち炉心での 高速中性子束Φ1と熱中性子束Φ2はそれぞれ次のように表わせる。

$$
\phi_1 = AX + BY \tag{2.29}
$$

$$
\phi_2 = \tilde{A}X + \tilde{B}Y \tag{2.30}
$$

(2.27) 式と (2.28) 式の解は各々の炉心の形状に対して表 2.3のように求められる。(2.29) 式と (2.30) 式を (2.12) 式に代入し、更に (2.27) 式と (2.28) 式の関係を使うと、

 $\mu^2 \tilde{A}X - \lambda^2 \tilde{B}Y + a_{2,c}(\tilde{A}X + \tilde{B}Y) = b_{2,c}(AX + BY)$

XとYは独立な関数であることから、これらに係る係数はそれぞれ0にならねばならない。即ち以下の2 式が満足されねばならない。

$$
\begin{aligned}\n\mu^2 \tilde{A} + a_{2,c} \tilde{A} - b_{2,c} A &= 0 \\
-\lambda^2 \tilde{B} + a_{2,c} \tilde{B} - b_{2,c} B &= 0\n\end{aligned}
$$

即ち

$$
\frac{\bar{A}}{A} = \frac{b_{2,c}}{a_{2,c} + \mu^2} \equiv F_A
$$
\n(2.31)

$$
\frac{\ddot{B}}{B} = \frac{b_{2,c}}{a_{2,c} - \lambda^2} \equiv F_B \tag{2.32}
$$

 F_A 及び F_B を使って(2.30)式を書き直すと

$$
\phi_2 = AF_A X + BF_B Y \tag{2.33}
$$

反射体に対する式(2.13)の解は簡単に求められる。

$$
\phi_1 = CZ_1 \tag{2.34}
$$

ここで Z_1 は

$$
(\nabla^2 - \kappa^2)Z = 0\tag{2.35}
$$

の解であり、各々の反射体の形状に対して表 2.3のように求められる。もちろん Z1に対しては

$$
\kappa^2=a_{1,r}
$$

である。φ2は (2.14) 式の形から

$$
\phi_2 = F_c \phi_1 + EZ_2 \tag{2.36}
$$

と置いてやるとよいことがわかる。ここで Z2はやはり (2.35) 式の解で表 2.3で与えられるが、こんどは

$$
\kappa^2 = a_{2,\mathrm{r}} \tag{2.37}
$$

である。(2.36)式を(2.14)式に代入し、更に(2.35)式を使うと、

$$
-a_{1,r}F_{c}\phi_{1}+a_{2,r}F_{c}\phi_{1}=b_{2,r}\phi_{1}
$$

即ち

$$
F_{\rm c}=\frac{b_{2,\rm r}}{a_{2,\rm r}-a_{1,\rm r}}
$$

と Fcが決まる。解を整理して以下に書いておく。

$$
\phi_{1,c} = AX + BY
$$

\n
$$
\phi_{2,c} = AF_A X + BF_B Y
$$

\n
$$
\phi_{1,r} = CZ_1
$$

\n
$$
\phi_{2,r} = CF_c Z_1 + EZ_2
$$

ここで炉心と反射体を添え字cとrで区別した。

炉心と反射体の境界では中性子束と中性子流は連続でなければならない。即ち境界で次のような式が成 り立たねばならない。

$$
\phi_{1,c} = \phi_{1,r} \tag{2.38}
$$

$$
D_{1,c}\phi'_{1,c} = D_{1,r}\phi'_{1,r} \tag{2.39}
$$

$$
\phi_{2,c} = \phi_{2,r} \tag{2.40}
$$

$$
D_{2,c}\phi'_{2,c} = D_{2,r}\phi'_{2,r} \tag{2.41}
$$

ここで 'はグラディエントを表わす。(2.29), (2.33), (2.34) 及び (2.36) 式を (2.38)~(2.41) 式に代入すると、

$$
AX + BY = CZ_1
$$

\n
$$
AD_{1,c}X' + BD_{1,c}Y' = CD_{1,r}Z'_1
$$

\n
$$
AF_AX + BF_BY = CF_cZ_1 + EZ_2
$$

\n
$$
AD_{2,c}F_AX' + BD_{2,c}F_BY' = CD_{2,r}F_cZ'_1 + ED_{2,r}Z'_2
$$

A、B、C、Eが未知数になっていることを意識して書き直すと、以下のように書ける。

$$
AX + BY - CZ_1 = 0 \qquad (2.42)
$$

$$
AD_{1,c}X' + BD_{1,c}Y' - CD_{1,r}Z_1' = 0 \qquad (2.43)
$$

$$
AF_A X + BF_B Y - CF_c Z_1 - EZ_2 = 0 \qquad (2.44)
$$

$$
AD_{2,c}F_A X' + BD_{2,c}F_B Y' - CD_{2,r}F_c Z_1' - ED_{2,r} Z_2' = 0
$$
\n(2.45)

これらの式で A、B、C、Eが0以外の解を持つためには、係数からなる行列式が0にならなければならな い。即ち

$$
\begin{vmatrix}\nX & Y & -Z_1 & 0 \\
D_{1,c}X' & D_{1,c}Y' & -D_{1,r}Z'_1 & 0 \\
F_A X & F_B Y & -F_cZ_1 & -Z_2 \\
D_{2,c}F_A X' & D_{2,c}F_B Y' & -D_{2,r}F_cZ'_1 & -D_{2,r}Z'_2\n\end{vmatrix} = 0
$$
\n(2.46)

この行列式は2群2領域の臨界行列式とよばれている。この式は少し変形すると次のように書ける。

$$
\begin{vmatrix}\n1 & 1 & 1 & 0 \\
D_{1,c}x & D_{1,c}y & D_{1,r}z_1 & 0 \\
F_A & F_B & F_c & 1 \\
D_{2,c}F_Ax & D_{2,c}F_By & D_{2,r}F_cz_1 & D_{2,r}z_2\n\end{vmatrix} = 0
$$
\n(2.47)

ここで

$$
x = \frac{X'}{X}
$$
 (2.48)

$$
y = \frac{Y'}{Y} \tag{2.49}
$$

$$
z = \frac{2}{Z} \tag{2.50}
$$

であり、具体的な関数形は表 2.4に載せてある。(2.46) 式を解くことにより臨界量を決めることになるが、 これは繰り返し計算になる。収束をよくすることを考え、通常 (2.46) 式を変形した次のような繰り返し式 を使って求められる。

$$
x = \frac{D_{1,c}D_{2,r}(F_c - F_A)yz_2 + (D_{1,r}D_{2,c}F_B - D_{1,c}D_{2,r}F_c)yz_1 + D_{1,r}D_{2,r}(F_A - F_B)z_1z_2}{D_{1,c}D_{2,c}(F_B - F_A)y + (D_{1,r}D_{2,c}F_A - D_{1,c}D_{2,r}F_c)z_1 + D_{1,c}D_{2,r}(F_c - F_B)z_2}
$$
(2.51)

本実験においては炉心は直方体でy軸、z軸方向(高さ方向)の長さは固定しておいて、臨界となるx軸 方向の炉心の長さを決定する。計算においてはy軸およびz軸方向の拡散項はバックリングを使って近似す ればよい。(2.51)式を満足するように、炉心の x 軸方向の厚さが決められたら、(2.42)~(2.45)式はもはや 独立ではなく、この内の3つの式だけが独立ということになる。(2.42)~(2.45)を使って B/A, C/A, E/A を求めることができる。これらが求められると $\phi_q(r)/A$ も (2.29)、(2.33)、(2.34) 及び(2.36) 式を用いて一 意的に求めることが出来る。Aは出力で規格できる。即ち

$$
P = \gamma \int \left[\Sigma_{\mathbf{f},1} \phi_{1,c}(r) + \Sigma_{\mathbf{f},2} \phi_{2,c}(r) \right] dV \tag{2.52}
$$

ここでyは1核分裂当りの発生エネルギーであり、235Uの場合

$$
\gamma = 192.9 \text{MeV} \qquad (1 \text{MeV} = 1.6022 \times 10^{-13} \text{J})
$$

としてよい。また積分は全炉心領域にわたって行う。本実験では中性子束分布も測定するが相対分布だけし か測定しない。このため中性子束の規格化はあまり意味はない。

余裕があれば、中性子束の軸方向分布についても検討してみるとよい。

指数実験からのバックリングの算出 2.6

本実験系(図2.2-3)における、未臨界時の中性子束分布を考える。高さ方向を z軸、水平方向を x-y面と する。今、中性子源を炉心底部に設置すると、境界条件より、水平方向の中性子束分布は、x 方向、y方向 ともに原点に関して対称な正弦波状になるが、z方向は、指数分布になる。よって、炉内の中性子束分布 $\phi_q(x,y,z)$ it,

$$
\phi_g(x, y, z) \propto \cos(\pi \frac{x}{a}) \cos(\pi \frac{y}{b}) e^{-\kappa z}
$$
\n(2.53)

となる。ここで、a,bはx,y方向の各炉心外挿厚さをあらわす。材料バックリング B_m^2 は (2.3) 式より以下の 式で定義される。

$$
\nabla^2 \phi_g + B_{\rm m}^2 \phi_g = 0 \tag{2.54}
$$

 (2.53) , (2.54) 式より

$$
B_{\rm m}^2 = \left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2 - \kappa^2 \tag{2.55}
$$

の関係を得る。従って、指数実験により z軸方向の中性子束分布からKを得ることで、材料バックリングを 得ることが出来る。

図 2.1: 実験炉心の燃料棒と測定装置との配置関係(装置上部より見る)

図 2.2: 燃料棒・中性子カウンター・中性子源の下端付近の配置関係

 $\left(\begin{array}{c} \end{array}\right)$

 \bigcirc ()

O

 \cap $\left(\begin{array}{c} 0 \\ 1 \end{array}\right)$ $\left(\begin{array}{c} 0 \\ 0 \end{array}\right)$ ()

⌒ () () $\left(\begin{array}{c} \cdot \end{array} \right)$

 $(\)$

() ()

 \bigcirc

◯ \curvearrowright

 \subset

OOD

OOU

 \overline{O}

 \bigcirc ◯ ◯ ◯

 \bigcap

 \bigcap

 \bigcap \bigcap

◯

 \bigcap

図 2.3: 炉心燃料挿入箇所番地図

図 2.4: 燃料棒追加順序 (但し 17×17 炉心は省略)

	炉心データ	
	燃料	2.6 wt%濃縮 $UO2$
減速材		H ₂ O
	減速材対燃料体積比	1.83
燃料棒格子間隔		1.956×1.956cm(正方格子)
	y軸方向燃料棒本数	17本 (固定)
	炉心水位	121.0cm
	y軸方向外挿距離(両端合計)	14.3cm
	z軸(高さ)方向外挿距離 (両端合計)	12.2cm
	装置データ	
	移動式中性子カウンター	$^3{\rm He}$ カウンター
	固定式中性子カウンター	10B カウンター
	未臨界用中性子源	252Cf
起動用中性子源		Ra-Be
	安全板	Cd-Al 2mm of thick
	実効水位	水位計指示値-23.88cm

表 2.1: TCA 炉心/装置データ

表 2.2: 2 群定数 (TCA 1.83U 炉心)

	第1群			第2群			
領域	D_1 [cm]	Σ_{1a} $[cm^{-1}]$ $[cm^{-1}]$	Σ_{12}	$\boldsymbol{\nu}$	$D_{\rm 2}$ [cm]	$\Sigma_{2\bf a}$ $\lbrack cm^{-1}]$	$\boldsymbol{\nu}$
炉心	1.22	0.00871	0.0241	2.56	0.304	0.0976	2.44
反射体	1.15	0.000515	0.0584	0.0	0.152	0.0188	0.0

表 2.3: 各種形状に関する X, Y, Z

反射体に対して

形状	Z (反射体厚さ:b)	Z(反射体厚さ:無限大)
無限大平板	$\sinh \kappa \left(\frac{a}{2} + b - x \right)$	$e^{-\kappa x }$
無限長円柱	$I_0(\kappa r)K_0[\kappa(R+b)] - I_0[\kappa(R+b)]K_0(\kappa r)$	$K_0(\kappa r)$
球	$\sinh \kappa (R+b-r)$	۳۳ - م

表 2.4: 関数 $x = X'/X, y = Y'/Y, z = Z'/Z$

中性子束分布の測定 3.

実験の目的 3.1

原子炉の主要な特性の多くは主として中性子束分布によって決定される。ここでは中性子検出箔を用い て中性子束分布を測定する。このような測定法は中性子箔放射化法と呼ばれている。

中性子箔放射化法は、中性子との相互作用で箔物質に生成された放射性同位元素の量を定量することに より、中性子束の大きさを知る方法で、次のような特徴を有している。

長所:

- 1) 検出器が小さいので、測定しようとしている中性子場を乱すことが少なく、位置分解能がよい。
- 2) 箔の種々の構成物質との核反応を直接知ることができる。
- 3) γ 線の分離が容易である。
- 4) 絶対測定が比較的容易である。
- 5) 検出感度が広範囲にわたり、中性子束の強弱に対する処置が簡単である。

短所:

- 1) エネルギー分解能があまりよくない。
- 2) 照射したときから結果をみるまでに相当時間がかかる。
- 3) データ処理が煩雑である。(特に絶対測定の場合)
- 4) 放射化断面積等の詳しいデータを必要とする。(特に絶対測定の場合)
- 5) 較正用標準パイルを必要とする場合がある。

本実験では金を放射化箔として用いる。天然の金は197Au のみからなり、中性子捕獲により生成される 198Auは半減期2.698日で、図3.1のような崩壊を行うが、本実験ではこの崩壊で生じるγ線を測定すること により¹⁹⁸Au の生成量を測定する。¹⁹⁷Au(n, y)¹⁹⁸Au 断面積は図 3.2に示すように熱中性子に対して 1/v断 面積を有しており、ほぼ理想的な熱中性子測定用反応となっている。しかしながら、熱中性子炉においては 熱領域の中性子スペクトルはマックスウェル分布を持ち、熱外領域においては 1/E分布となるため、¹⁹⁷Au は熱外中性子によっても放射化される。この効果を考慮するために通常カドミウム差引法が使われる。Cd は図 3.2に示すとおり、0.18eV の大きな吸収の共鳴をもつ。このため、放射化箔を薄いカドミウムカバー でおおって照射すると、放射化箔は熱外中性子のみによって放射化される。ここで、カドミウム比 Rcdを、 裸の箔とカドミウムカバーを付けた箔の放射能比 (= $C_{\sf bare}/C_{\sf cd}$) で定義すると、熱中性子による放射化量 C_{th} it.

$$
C_{\text{th}} = C_{\text{bare}} - C_{\text{cd}} = C_{\text{bare}}(1 - \frac{1}{R_{\text{cd}}})
$$
\n(3.1)

となる。すなわち、裸の放射化箔での放射化量からカドミウムカバーでおおった放射化箔の放射化量を差し 引くことで、熱中性子による放射化量を評価できることになる。この方法で、熱中性子による放射化量を正 確に求めるには、放射化箔の厚さやカドミウムカバーの厚さ等による種々の補正が必要であるが、ここでは 省略することとする。また、本実験では相対分布の測定のみ行う。

図 3.1: 198 Au の壊変図

図 3.2: Au と Cd の吸収断面積のエネルギー変化

図 3.3: P の中性子吸収断面積のエネルギー変化

以上の方法で、熱中性子領域と熱外中性子領域に関しては放射能量の相対値を測定し得る。しかしなが ら、高速中性子束分布に関しては測定方法が確立していなかった。本学生実験ではリンの ³¹ P(n,p)³¹Si 反 応 (図 3.3、 $E_{Thr} \simeq 2\text{MeV}$, $T_{1/2} = 2.62\text{hr}$, $E_{\beta}^{\text{max}} = 1.47\text{MeV}$, $\sigma = 0.1\text{b}$ at $E > 3\text{MeV}$) を利用して、赤リ ンを木工ボンドで練り固め、乾燥し、打抜き、成形する方法で製作した試料を照射し、そのβ線強度を計測 することにより高速中性子束分布を測定する。

放射化試料 3.2

実験では、次のような金線、及びリン箔を用いる。

(注:これらの値は変更される場合があるのであらかじめ確かめ記録しておくこと)

試料のセット方法 3.3

金線は、厚さ 5mm、幅 5cm のアクリル製ホルダーの 5mm の面 (上:裸、下:Cd カバー付き) に設置 する。リン箔も、同様に別のアクリル製ホルダーに設置する。取付高さをほぼ中央とする事で、上下の位置 の違いによる中性子束の違いは無視できる。設置の前に金線の汚れをアルコールで拭き取っておく。 金線及びリン箔は、y軸の中点に沿って設置し、分布の測定方向はx 軸方向のみ行う。取付位置等の記録 を忘れないこと。

放射化量の測定 3.4

照射後取りだした金線は、燃料ピン格子に合わせて、19.56mm 間隔で切断し、その質量を天秤で測定す る。(測定時間に余裕のある場合は格子間隔の半分の9.78mm間隔で切断し、より詳細な分布を測定する。)

つぎに、¹⁹⁷Au(n, γ) 反応により生成した¹⁹⁸Au (T_{1/2} = 2.698d) によるγ線をウェル型 NaI (Tl) 検出器 により測定する。測定は 300keV 以上のγ線に対して行う。照射量にもよるが、測定時間は 1 試料 10~20 秒 程度である。試料の交換は手作業にて行う。計測系は PC-9801 により GP-IB を介して制御でき、試料番 号、測定時間、計数時間、計数のデータが ASCII ファイルとして、FD にセーブされ、プリンタにも出力 される。

一方、リンには図 3.3に示すように、³¹P(n, γ)³²P 反応 (T_{1/2} = 14.3d, E_{β}^{max} = 1.71MeV, σ = 0.18b at 2200m/s) もあるので高速中性子による放射化量と熱中性子による放射化量を分離する必要がある。このた め測定は、当日に1回行い高速中性子と熱中性子による放化量を測定し、翌日20数時間後、高速中性子に よる³¹Si の放射化量がほぼ減衰した時点で再度測定し、この二つの放射化量測定値から、高速中性子のみ の相対的な放射化量を計算する。

試料照射時間 3.5

15W 運転で 10 分間程度照射する。

$3.6₁$ 実験手順

本実験は出力分布測定の実験と同時におこなう。手順は出力分布測定の項を参照のこと。

3.7 データ処理

本実験では中性子束の絶対値は測定せず、中性子束の相対分布のみを測定する。このため、データ処理は 極めて簡単になる。以下にいくつかの検討事項を示すが、本実験では裸、Cd カバー付きのそれぞれの測定 に対し、以下の3)及び4)の補正を行った後、試料の重さで測定値を割れば、それが中性子束の相対分布に なっているとする。

1) カドミウムカバーの実効切断エネルギー及び熱中性子透過の効果

カドミウムカバーをつけた場合の実効的な切断エネルギーはカバーの厚さにより変化し、また一般に 熱中性子領域のエネルギーの上限より大きいことが多い。また、カドミウムカバーが薄い場合にはカ バーを透過して箔を放射化する熱中性子も存在する。しかし、本実験ではこれらの効果に対する補正 等はおこなわない。

2) 熱中性子束分布の箔挿入による摂動効果

挿入した箔の大きさが異なる場合、それに対する補正を行う必要がある。しかし、相対測定の場合、 補正係数がすべての測定で等しいと考え、無視してよい。

3) 198 Au の半減期の補正

放射化量は照射時間を増やせば増加し、取り出し後の時間を伸ばせば減少する。このため、基準とな る放射化量を定義するのが便利である。そのような量として、無限時間照射を行った場合に箔に誘導 される放射能(取り出し時間は0)が用いられる。このような放射能を飽和放射能と呼んでいる。照 射時間が有限な場合、照射が矩形(ある一定時間は一定値で、他は0)であれば以下の式によって飽 和放射能 Cosを計算できる。

$$
C_{\infty} = \frac{\lambda D}{(1 - e^{-\lambda T_{\mathsf{t}}})e^{-\lambda T_{\mathsf{w}}}(1 - e^{-\lambda T_{\mathsf{c}}})}
$$
(3.2)

ここで

- T_t : 照射時間
- Tw : 照射終了から測定開始までの時間 (冷却時間)
- T_c : 測定時間
- D : 測定時間内の全崩壊数
- λ : 崩壊定数
- 4) γ 線検出に伴う誤差

バックグラウンドの補正、デッドタイム補正を行う必要がある。詳しくは、次章の「4.4 データ処理」 を参照のこと。

5) 試料の厚みによる自己遮蔽効果

31Si と32P は共に Bエミッターであるから、測定に際しては、試料の厚みによる自己遮蔽効果を考慮 する必要がある。検出器試料全部が完全に均一に製作されているとは考えられず、このことを考慮す ると試料毎の相対的計数補正係数が必要になる。本実験では、この補正は資料の質量に依存するとし、

を補正係数とした。

3.8 レポート

レポートは後に述べる出力分布測定実験と合わせて1つのレポートとせよ。注意事項等は出力分布測定 の項を参照のこと。

4. 出力分布測定

実験の目的 4.1

原子炉内の出力は空間的分布をもっている。この出力の分布は原子炉の除熱を考える場合、非常に重要な 特性である。本実験では、先の中性子束分布の測定と同時に炉心内の出力の相対的な分布の測定を行う。 出力分布測定法としては、

1) 小型核分裂計数管を炉心内に挿入して測定する方法

2) 核分裂箔を炉心内に設置し、その反応率分布を測定する方法

3) 燃料の核分裂生成物から放出される y 線を測定する方法 (y スキャンニング法)

等がある。1)と2)の方法の場合、炉心を構成している核物質の各核種について反応率を測定しなければな らない。さらに 1) の場合、核分裂計数管を炉心内に挿入することによって場を乱す可能性がある。これら の欠点を解決し、簡便に炉心内の相対出力分布を測定する方法として、3)の方法の開発が進められてきた。 本実験では、このッスキャンニング法を用いて、TCA 炉心の x 軸方向の相対出力分布 (核分裂分布) を測 定する。

4.2 測定方法

y スキャンニング法による出力分布の測定は、炉心内で照射された燃料からのy 線強度が炉内で照射中 に生起した核分裂数に比例するという事実に基づいている。本測定では、照射後の燃料板から放出される γ線のうち 0.6MeV 以上のものを全て計測する。ここで 0.6MeV 以上のγ線に着目した理由は、²³⁸U の中 性子捕獲反応で生成される²³⁹Np からの y 線が 0.5MeV 以下であることなどによる。

測定は、TCA 炉心の燃料棒の高さ(z軸)方向について、炉心中央部、および周辺部の数本の燃料棒につ いて行う。

γ線の測定には NaI(Tl) 検出器を使用するが、測定系のプロック図を図 4.1に示す。NaI(Tl) 検出器は鉛 で遮蔽されており、その上部には幅約 2cm の鉛スリット(コリメータ)が固定されている。NaI(Tl) 検出 器からの信号は前置増幅器から線形増幅器に送られ、波形整形された後に波高弁別器に送られる。ここで 0.6MeV 以上の y 線が弁別され、スケーラで計測される。

実験手順 4.3

本実験は中性子束分布測定の実験と同時におこなう。以下にその手順の概略を示す。

1) 測定対象となる燃料棒バックグラウンド計数率を測定する。

2) 炉心の構成及び中性子束分布測定用の金線及びリンペレットを設置する。

3) TCA を起動し臨界にする。15~20W で 10 分程度照射を行う。

4) 炉室内の放射線レベルが下がるまで30分程度の冷却時間をおく。

図 4.1: 測定系のプロック図

- 5) 燃料棒、金線及びリンペレットを取り出す。
- 6) 金線を切断する。
- 7) 燃料棒及び金線のγ線、リンペレットのβ線を測定する。 (燃料棒は0.6MeV 以上、金線は0.3MeV 以上の y 線を測定する。)
- 8) 金線片及びリンペレットの重量を測定する。(7,8は前後しても可)。
- 9) リンペレットについては、翌日も測定をする。

測定は4つのグループに分かれて、燃料棒、裸金線、Cdカバー付き金線、リンペレットのそれぞれを担 当しておこなう。ただし、データ処理の結果得られたそれぞれの分布は他のグループに配布すること。レ ポートでは、他のグループからの結果も含めて各自が考察すること。

データ処理 4.4

照射後の各燃料棒について計測された 0.6MeV 以上の y 線の計数率 n に対して、計測系のデッドタイム r、照射に先だって計測したバックグラウンド計数率 BG、および y 線の照射後時間経過につれて減衰する 時間減衰の補正を行って、同一時刻(冷却時間4500秒)の計数率 Nに変換する。Nは、

$$
N = \left\{ \frac{n(t)}{1 - n(t)\tau} - BG \right\} \frac{A(4500)}{A(t)}
$$
(4.1)

で与えられる。ここで、 $A(t)/A(4500)$ は冷却時間tでの燃料棒からのy線の時間減衰特性でt = 4500 秒の ときに1になるように規格化されており、既に行われた実験から、

$$
A(t)/A(4500) = 6.494 \exp(-0.001709t) + 3.663 \exp(-0.0005711t)
$$

+ 1.273 \exp(-0.0001276t) \t\t(4.2)

と表されることが分かっている。時間減衰の補正にはこの式を使えばよい。

- レポート 4.5
- 4.5.1 事前レポート

NaI(Tl) 検出器の動作原理を述べよ。また、デッドタイム補正について、説明せよ。

- 実験レポート $4.5.2$
	- 1) 実験条件

炉心名称、放射化素子及び燃料棒の配置、線形出力計の指示、γ線測定条件、その他必要な事項。

2) 測定結果

生データ、データ処理方法とその結果、相対中性子束分布、出力分布等。 他のグループの測定結果等を引用する場合には、その出所(グループ名、個人名等)を明記すれば、 必要な結果のみをコピー等の形で用いてよい。

3) 考察

事前の臨界計算で求めた中性子束分布、出力分布と実験で得られた分布を比較して考察せよ。両者は 一致したか。もし違いがある場合はそれはなぜか。

中性子束、出力はどのような分布を持っているか。互いにどのような関係にあるか。またなぜそのよ うになるのか。

出力のピークはどこに発生するか。動力炉での除熱を考える場合はどのような分布が望ましいと考え られるか。また、そのためには炉心をどのようにすればよいか。

出力分布の測定でァスキャンニング法を用いたが、これは原子炉停止後にも燃料がエネルギーを放出 していることを意味している。これは原子炉(動力炉)の安全性にどのように関係するか。1979年 3月28日ペンシルバニア州スリーマイル原子力発電所2号機で発生した炉心溶融事故について調べ、 このこととの関係を議論せよ。

燃料棒価値分布の測定 $5.$

実験の目的 5.1

臨界近接実験では、燃料棒を追加していくにつれ臨界に近づいていくことを経験した。しかしながら、燃 料棒の反応度の価値は、空間分布を持ち、炉心の位置により異なる値を取る。すなわち、燃料棒を入れる 位置により、生ずる反応度は異なる。本実験では、まず、ペリオド法で水位による反応度の変化を測定し、 バックリング-反応度換算係数を求める。次に、燃料棒を挿入、或は取り去った時の臨界水位の変化を測定 し、その結果と換算係数から反応度変化を評価し、この反応度が空間的にどのように分布しているかを調 べる。ペリオド法は制御棒較正をはじめ、あらゆる反応度測定の基準となる測定法である。

原理 5.2

5.2.1 原子炉動特性方程式

原子炉の動特性方程式は、一点炉心近似で、

$$
\frac{\mathrm{d}n}{\mathrm{d}t} = \frac{k_{\text{eff}}(1-\beta_{\text{eff}})-1}{l}n + \sum_{i=1}^{6} \lambda_i C_i \tag{5.1}
$$

$$
\frac{\mathrm{d}C_i}{\mathrm{d}t} = \frac{k_{\text{eff}}\beta_{i\text{eff}}}{l}n - \lambda_i C_i \tag{5.2}
$$

となる。ここで、n(t) は中性子密度、 k_{eff} は実効増倍率、 β_{ref} は第i群の実効的な遅発中性子生成率、 β_{eff} $\sum_{i=1}^{6} \beta_{i \in \mathbb{N}}$ 、/は即発中性子平均寿命、 C_i は第i群の遅発中性子先行核濃度、および λ_i はその崩壊定数である。 (5.1)、(5.2)式は定数係数を持つ7元連立1階微分方程式であるから、t >0に対する解は、

$$
n(t) = n(0) \sum_{j=1}^{7} \frac{\rho \exp \omega_j t}{\rho - \omega_j^2 \sum_{i=1}^{6} \frac{\beta_{i \text{eff}}}{(\lambda_i + \omega_j)^2}}
$$
(5.3)

で与えられる。即ち、n(t)は

$$
n(t) = \sum_{j=1}^{7} A_j e^{\omega_j t} \tag{5.4}
$$

の形に書ける。ただし、ω;は与えられたρに対する反応度方程式、

$$
\rho = \frac{k_{\text{eff}} - 1}{k_{\text{eff}}} = \frac{\omega l}{1 + \omega l} + \frac{\omega}{1 + \omega l} \sum_{i=1}^{6} \frac{\beta_{i \text{eff}}}{\omega + \lambda_i} \tag{5.5}
$$

のj番目の根である。反応度方程式(5.5)について、ρとωの関係をプロットすると、図5.1のようになる。図 から分かるように、正の反応度を与えた場合、正のω;は一つで他は全て負である。負の反応度を与えた場 合、wiは全て負となる。

図 5.1: 反応度方程式のpとωの関係

5.2.2 水位による反応度変化の計算

修正1群理論によると、体系の反応度ρは次式で表される。

$$
\rho = \frac{k_{\text{eff}} - 1}{k_{\text{eff}}} = 1 - \frac{1 + M^2 B_{\text{g}}^2}{k_{\infty}} \tag{5.6}
$$

ここで、 $B_{\rm g}^2$ は幾何学バックリング、 k_{∞} は中性子無限増倍率、Mは移動面積である。臨界状態では、 $\rho = 0$ であり、 $B_{\rm g}^2 = B_{\rm m}^2$ (材料バックリング)であるので、以下の関係がなりたつ。

$$
\frac{1+M^2B_m^2}{k_{\infty}}=1
$$

この体系の形状が変化し、幾何学バックリングが6B2だけ変化した時の反応度pは次のようになる。

$$
\rho = 1 - \frac{1 + M^2 (B_m^2 + \delta B_g^2)}{k_{\infty}}
$$

=
$$
-\frac{M^2 \delta B_g^2}{k_m}
$$
 (5.7)

形状の変化による中性子スペクトルの変化はないと考えると、上式の移動面積や中性子無限増倍率は定数 とみなせる。従って、

$$
\rho = K \delta B_{\mathbf{g}}^2 = K_{\mathbf{H}} \Delta H \tag{5.8}
$$

となる。ここで、Kは定数であり、バックリング-反応度換算係数と呼ばれる。KHの値は、臨界状態の炉心 から水位を△H上昇させ反応度を測定することから実験的に求めることができる。

 $-26-$

5.2.3 ペリオド法

臨界状態にある原子炉に正の反応度ρを与えると、原子炉の出力はやがて、

$$
n(t) \sim A_1 e^{\omega_1 t} \tag{5.9}
$$

に従って増加するようになる (式 (5.4) と図 5.1参照)。このω1の逆数 Τ ≡ 1/ω1のことを、原子炉の安定周 期 (stable period) あるいは単にペリオドという。1/Tは (5.5) 式の根の一つだから、系に与えた反応度ρと の間に、

$$
\rho = \frac{l}{T+l} + \frac{T}{T+l} \sum_{i=1}^{6} \frac{\beta_{\text{left}}}{1 + \lambda_i T}
$$
\n(5.10)

の関係がある。従って、臨界状態の原子炉に (未知の) 反応度ρを与えた時、そのペリオド Τを測定すれば、 $(l, \beta_{\text{ref}}, \beta_{\text{ref}}, \beta_{\text{ref}})$ が既知なら) 与えた反応度 ρ を知ることが出来る。

実際の実験で与える反応度の大きさは、測定を容易にするため、及び安全上の配慮から、ペリオドが100 秒から 200 秒程度になるようにとる。ところで、即発中性子平均寿命 Iは、どんな原子炉でも 10^{–2}秒以下で あり、更に軽水減速の場合は 10⁻⁴秒以下である。従って、軽水減速の原子炉で T > 100 秒の条件で測定す ると、(5.10) 式の右辺第 1 項は 10⁻⁶以下であり、第 2 項は少なくとも 10⁻³程度である。そこで、(5.5) 式 の第1項を省略して、

$$
\rho = \sum_{i=1}^{6} \frac{\beta_{i \text{eff}}}{1 + \lambda_i T} \tag{5.11}
$$

で計算しても十分である。

ところで、(5.11) 式の $\beta_{\rm ref}$ は実効的な遅発中性子生成率であるが、これは同じ 235 U を燃料とする原子炉 であっても、その燃料中に含まれている他の核種、炉の大きさや構造、中性子スペクトルなどによって異 なった値を持ち、通常これを得るには計算に頼らざるを得ない。このため、ある原子炉でペリオド測定を するとき、その時点では未だその炉に固有な $\beta_{\rm left}$ が決定されていないことが多い。我々のデータ処理では、 その不確定さは一応おあずけにして、以下のようにする。今、遅発中性子生成率βな用いて、

$$
\beta_{i \text{eff}} = \gamma_i \beta_i \tag{5.12}
$$

とおくと、yiは、遅発中性子の群番号iによって異なる。しかし、これをiによらない共通な因子yで近似し、

$$
\beta_{\rm{ieff}} \simeq \gamma \beta_i \tag{5.13}
$$

とすれば、

$$
\beta_{\text{eff}} \equiv \sum_{i=1}^{6} \beta_{i \text{eff}} \simeq \gamma \sum_{i=1}^{6} \beta_{i} = \gamma \beta \tag{5.14}
$$

となる。(5.13) 式を (5.14) 式で辺々割ると、 $\beta_{\text{ref}}/\beta_{\text{eff}}$ は炉の種類によらない核定数 $\alpha_i = \beta_i/\beta$ で近似できる ことになる。即ち、

$$
\frac{\beta_{\text{left}}}{\beta_{\text{eff}}} \simeq \alpha_i \tag{5.15}
$$

である。これを用いて (5.11) 式を変形すると、

$$
\frac{\rho}{\beta_{\text{eff}}} \simeq \sum_{i=1}^{6} \frac{\alpha_i}{1 + \lambda_i T}
$$
\n(5.16)

と書け、ドル単位の反応度、ρ/β_{eff}を既知の核物理パラメータα;及びλ;と、測定したペリオド Τから求める ことが出来る。妾5.1に必要なデータを示した。

JAERI-Review 97-014

表 5.1: TCA1.83U 炉心の遅発中性子に関するデータ

Effective delayed neutron fraction $\beta_{\text{eff}} = 0.0075$

実験手順 5.3

燃料棒価値分布測定は、出力分布測定の線上 (x 軸方向) で炉心領域 3 点、反射体領域 1 点について行 う。(測定点は時間により調整する。)炉心領域では臨界の基準炉心から燃料棒を1本取り出した状態にし たときの反応度を測定することで、燃料棒1本を水に置換した場合の反応度変化量をもとめる。反射体領 域では、基準炉心に燃料棒を1本追加した場合の反応度を測定することで、水を燃料棒1本に置換した場 合の反応度変化を求め、その正負を逆にした値を燃料棒1本を水に置換した場合の反応度変化量とみなす。 以下に測定の手順を示す。

1) 炉心構成の確認 (基準炉心)

- 2) 起動前点検
- 3) TCA 起動、水位上昇により臨界とし基準炉心の臨界水位の確認を行う。
- 4) TCA 停止
- 5) 反射体領域の場合:燃料棒を1本入れる。 燃料領域の場合:燃料棒を1本取り去る。
- 6) 炉心構成の確認。
- 7) TCA 起動、水位上昇により一度臨界にする。
- 8) 基準炉心の臨界水位まで上昇させ、ペリオド法で余剰反応度を測定する。
- 9) 水位上昇後 150-200sec のち、あらかじめ決めた線形出力計でダブリングタイム (T2) を測定する。

測定したダブリングタイムからペリオド Tを求める。ダブリングタイムを測定する際、炉出力の統計的 ゆらぎが測定に影響しないような出力レベルで測定すること、炉に反応度変化を与えてから炉周期の高次 モードの成分((5.4)式のω2以上の項)が消滅するまで十分の待ち時間を取ること、などに注意しなければな らない。

- 10) 測定が終わったら炉を停止する。
- 11) 測定は反射体で1点、炉心で3点外側から中心方向に行う。(時間によって測定点は調節) 「基準炉心の臨界水位になっても臨界とならない場合は、更に水位を上げ臨界の水位を記録しておき つぎの基準炉心でのペリオド法により評価する。]
- 12) 炉心を基準炉心とし、臨界水位の確認をする。先の測定で、基準炉心の臨界水位で臨界とならなかっ たケースについて、各ケースでの臨界水位まで水位を上昇させペリオド法によって反応度を測定する。
- 13) 実験終了後、停止後点検

5.4 レポート

5.4.1 事前レポート

臨界計算で得られた中性子束分布をもとに、燃料棒を水に置換した場合の反応度変化の分布を予想せよ。 体系を、炉心(中心付近)、炉心(反射体との境界近く)、反射体と分けて考えた場合反応度はそれぞれど のようになるか予想せよ。そのように予想した理由も示せ。

中性子吸収体である制御棒の代わりに、燃料棒の出し入れによって原子炉の運転を制御する事は可能で あろうか。

5.4.2 実験レポート

測定結果をもとに、横軸を炉心中心からの距離、縦軸を燃料棒を水に置換した場合の反応度変化を表すグ ラフを作成せよ。反応度変化の分布は予想と一致したか。もし、異なった場合はその原因を考察せよ。

また、ペリオド法による反応度測定は正のペリオドを求めることで通常行われ、負のペリオドを測定して 行うことは殆どない。この理由を考察せよ。

6. ロッドドロップ法による安全板価値の測定

6.1 実験の目的と意義

原子炉は通常、制御棒の移動によって反応度を与え原子炉を制御するため、制御棒の反応度効果を較正 しておくことは(つまり、ストロークの大きさに応じた反応度効果を決定しておくことは)、原子炉の反応 度効果の基準を定める意義がある。その上、制御棒それ自体について考えてみても、安全上の課題として、 制御棒の引き抜きまたは挿入の操作の際に、時間とともに原子炉にいかなる率で反応度が印加されるかを 知る必要がある。さらに同じく安全上の理由から、設計された原子炉の余剰反応度(制御棒、安全棒を全部 抜き切ったとき生ずる反応度)や、運転停止時の停止余裕(制御棒、安全棒をすべて挿入したときに生じる 原子炉の負の反応度の絶対値)を知ることは大変重要である。そこで、制御棒の反応度較正は、臨界の炉心 を構成した後に最初に行われる大変重要な実験となっている。

さて、制御棒効果の測定法としては、

- 1) ペリオド法
- 2) 補償法 (標準反応度法)
- 3) 未臨界 (中性子源) 増倍法
- 4) ロッドドロップ法
- 5) パルス中性子法

などが用いられる。

TCA には反応度調整用の制御棒がないため、いわゆる制御棒の反応度較正の実験を行うことができない。 しかしながら、TCA にはスクラム時及び停止余裕の確保に使用される安全板が存在する。そこで本実験で は、大きな負の反応度の測定に用いられるロッドドロップ法を用いて、この安全板の価値の測定を行う。

ロッドドロップ法の原理 6.2

原子炉の制御棒全部が(TCA の場合は安全板全てが)完全に挿入されたときに炉がどの程度臨界未満で あるかは、原子炉の停止余裕と呼ばれ、安全上重要な量である。このような臨界未満度の測定はロッドド ロップ法によって比較的簡単に行うことができる。この停止余裕はしばしば大きな値をとるが、このような 場合にもロッドドロップ法は有効とされている。ロッドドロップ法による停止余裕の測定では、外挿法と呼 ばれる方法と積分法と呼ばれる方法があるが、本実験では積分法により測定を行う。

ロッドドロップ法の原理も、第5章で説明したペリオド法の原理と同じく原子炉動特性方程式にもとづい ている。(5.1) および (5.2) 式において $k_{\text{eff}} = 1 - \Delta k_{\text{eff}}$ としてラプラス変換をすれば、

$$
l + k_{\text{eff}} \sum_{i=1}^{6} \frac{\beta_{i\text{eff}}}{s + \lambda_i}
$$

$$
n(s) = n_0 \frac{\frac{6}{s}}{s! + sk_{\text{eff}}} \sum_{i=1}^{6} \frac{\beta_{i\text{eff}}}{s + \lambda_i} + \Delta k_{\text{eff}}
$$
 (6.1)

となる。ここで、noはロッドドロップ前の出力である。ところで

$$
\lim_{s \to 0} n(s) = \lim_{s \to 0} \int_0^\infty e^{-st} n(t) dt = \int_0^\infty n(t) dt \qquad (6.2)
$$

なので、(6.1)式でs→0の極限をとって、これを(6.2)式と等しいとおけば、

$$
\int_0^\infty n(t) \mathrm{d}t = n_0 \frac{l + k_{\text{eff}} \sum_{i=1}^6 \frac{\beta_{\text{ref}}}{\lambda_i}}{\Delta k_{\text{eff}}} \simeq n_0 \frac{l + k_{\text{eff}} \beta_{\text{eff}} \sum_{i=1}^6 \frac{\alpha_i}{\lambda_i}}{\Delta k_{\text{eff}}}
$$
(6.3)

となる。ここで、α_i = β_{ieff}/β_{eff} である。 lt β_{eff} $\sum_{i=1}^{6} (\alpha_i/\lambda_i)$ に対して無視できるので、

$$
\frac{\Delta k_{\text{eff}}}{k_{\text{eff}}\beta_{\text{eff}}} = \frac{n_0 \sum_{i=1}^{6} \frac{\alpha_i}{\lambda_i}}{\int_0^\infty n(t) \, \mathrm{d}t} \tag{6.4}
$$

としてドル単位の反応度が求められる。

実験手順 6.3

本実験は臨界近接実験に引き続いて行う。

炉心を臨界状態に保持した後、安全板を急速挿入して、ロッドドロップ法により安全板の反応度抑制効果 を測定する。この際先ず、臨界状態における中性子の計数率 noを測定する。そして、安全板落下時から中 性子計数がほぼ自然計数値になるまでの中性子計数の積分値 [n(t)dt を測定する。これらの測定値を用いて 反応度を求める。

ただし、TCA では核計装起動系 3ch. のうち 2ch. の計数率が 3cps. 以下になると、ダンプ動作(炉心タ ンクの排水弁が開となる)を行うインターロックが働くためバックグランドレベルまで計測を続けることは できない。そこで、本実験ではダンプ動作までの計数を行いこの計数値を用いることとする。

計数は、臨界近接実験で分担した各計測系で行う。

6.4 レポート

各グループで分担した計装系での測定から、それぞれ安全板の反応度抑制効果をドル単位とΔkeff/keffで 求めよ。得られた結果は他のグループに配布し、もし違いがあればそれについて考察せよ。

また、本実験では装置の制約からバックグランドまでの計測を行わなかったが、この結果得られた値は、 過大に評価したことになるか、あるいは過小に評価したことになるか。

さらに、デッドタイムの影響についても考察せよ。

7. 実験結果

1996年度の東京工業大学理工学研究科原子核工学専攻の学生実験(原研グループ)の実験は、平成8年8 月 26日(月)から30日(金)にかけて行われた。実験で得られたデータを参考資料として示す。

臨界沂接および指数実験 7.1

$7.1.1$ 実験方法

炉心構成 炉心構成(x,y)を以下の順で構成し実験を行った。

 $Step 1:(17 \times 9 - 2)$, $Step 2:(17 \times 13 - 2)$, $Step 3:(17 \times 15 - 2)$, $Step 4:(17 \times 16 - 2)$, $Step 5:(17 \times 17)$

検出器 固定式中性子カウンター:¹⁰B型、装置内の Channel 4.5.6 を使用 移動式中性子カウンター: 3 He 型 (Step1~4)

実効水位 燃料棒内の燃料部の実際の水位

実効水位=水位計指示値-23.88cm

7.1.2 臨界近接実験

中性子束は相対値が求まればよいので、各炉心で得られたカウント数を基本炉心 Step1(17×9) でのカウ ント数で割ったものを Mとし、各 1/Mを求めた。測定値を燃料棒数と 1/Mで整理した結果を図 7.1に示し た。この図よりこの体系を臨界にする燃料棒の本数は 17×18(=306 本) 以上になっており、実際の臨界値 (17×17=289本)より多く予測された。この原因としては、Step1~4の実験では、指数実験用の移動式中 性子源、及びカウンターを挿入するために、燃料棒を2本抜いてあるので、その影響であると考えられる。 また、検出器によって、大きく予想値が異なるのは、中性子源と検出器の位置関係による。

Step5 では、指数実験用の中性子源とカウンターを取り除き、経験的に臨界と予想された燃料棒 17×17 のクリーンな炉心で、実験を行った。17×17 炉心の実行水位と1/Mの関係を図7.2に示す。臨界水位は各 Channel ともに約 113cm が予想された。実際の臨界水位 (図中×) は 111.97cm であった。

7.1.3 指数実験

z軸方向の中性子束分布を図7.3に示した。17×9 炉心の最下端で観測されたカウント数を1に規格化し ている。この図から各炉心の材料バックリングを計算すると表7.1のようになった。ただし17×16 炉心の

炉心構成	材料バックリング B2
17×9	1.27×10^{-2}
17×13	1.04×10^{-2}
17×15	1.01×10^{-2}
理論	0.91×10^{-2}

表 7.1: 材料バックリング

場合は臨界に相当近く、指数関数に近似するには無理があるため省いた。3つの Step のうち、臨界に近い 17×13 と 17×15 との平均の値を用いると、17×17 のときの臨界水位は 115.3cm と予測された。

Step1 では指数関数的な中性子束分布が観察された。その後 Step2~4 に進むにつれ余弦曲線への変化が 観察された。昨年の実験では、中性子源を炉底に置いたため、カウンターは炉心からの中性子束と同時に、 中性子源からの直接的な中性子束の影響を受け、曲線の変化の様子がはっきりとは観察されなかった。今回 の実験では、中性子源を高い位置に設置する事により、曲線の変化が、はっきりと観測された。

7.1.4 補充問題

- 1) 炉心に水のない状態から、注水を始めた。水位が実効水位で約0~300mmに上昇する際に中性子強度 に変化が見られた。この強度変化の理由を考察せよ。
- 2) 炉心の燃料棒の増加に伴う逆増倍をプロットしたが、実際の臨界列数17列を越えた約18列とグラフ から読みとれた。プロットから読みとった列数と実際の臨界列数に差が生じた原因を考察し、その対 策を述べよ。

 $\ddot{}$

3) デッドタイム補正の意味を示せ。本実験での要、不要を考察せよ。

中性子束分布及び出力分布の測定 7.2

図7.4に、金線実験により得られた、熱中性子の x 方向分布を示す。丸で示したのが実験データであり、 破線が解析的に得られた分布である。ともに、最大値が1となるように規格化されている。かなり良い一致 が得られたが、x = -6cm 付近で実験値と解析値が異なるのは、その位置の燃料棒を抜いている(軽水に置 換) からである。

次に、燃料棒による出力分布測定の結果を示す (図 7.5)。位置 3C-34 では、出力分布は、指数実験で得ら れたとおり、コサイン分布をしている。一方、2C-14 では、頂点にくぼみが見られる。それは、その位置に 金線(中性子吸収体)を置いているからである。

今回の実験では、さらに、リンを使い高速中性子束分布を測定した。(図7.6)。事前レポートによる解析 値と非常に良い一致を得た。

燃料棒価値分布の測定 7.3

基本炉心として、(17 × 17) を用いた。まず、ペリオド法、及び反応度計で、水位 1cm あたりの反応度 $K_H = 4.3$ [cent] を求めた。次に、炉心構成を変化させ、水位法で反応度の変化を求めた。その結果得られ た、燃料棒の価値を図7.7に示す。熱中性子束分布と、強い相関があることが分かる。

安全板価値の測定 7.4

安全板#2の価値をロッドドロップ法により測定した(表7.2)。測定器の位置により、得られた値が異な る。ペリオド法は、一点炉心近似を前提にしているが、この実験では、この前提が成り立たなくなっている。

チャンネル	$\mathop{\mathrm{Ch}}\nolimits.4$	Ch.5	Ch.6	3He
臨界時の計数 (20[s] 間)	181405	69749	91706	260166
臨界時の計数率 (CPS)	9071	3481	4571	13010
安全板落下後 201.3[s] 間の積分計数	38724	11173	18377	56346
反応度{\$]	2.938	3.908	3.120	2.895

表 7.2: 安全板価値測定

図 7.1: 臨界近接実験結果 その1:装荷燃料棒本数と臨界の関係

図 7.2: 臨界近接実験結果 その2:実効水位と臨界の関係 (Step 5, 17×17 炉心において)

図 7.3: 指数実験結果。炉心構成を変えた時の、z軸方向中性子束分布。

図 7.4: 金線/Cd による熱中性子束分布。〇は実験値、破線は解析値。

図 7.5: 燃料棒測定による、出力の鉛直方向分布。

図 7.6: リンによる高速中性子分布。○は実験値、破線は解析値。

図 7.7: 燃料棒価値分布

参考文献

- [1] 小原徹、中島健、井頭政之、関本博、須崎武則: 臨界集合体 TCA を用いた原子炉物理の基礎実験, JAERI-M 94-004 (1994)
- [2] 加藤之貴、筒井広明、井頭政之、須崎武則、堀木欧一郎: 臨界集合体 TCA を用いた原子炉物理の教育 的基礎実験, JAERI-Review 96-010 (1996)

付録 A 学生への連絡事項

必要な手続き $A.1$

- 1) 学生実習生として受け入れられるので必要な以下の書類をまとめて原研に提出する。
	- (a) 学生実習生身上調書
	- (b) 研究計画書
	- (c) 健康診断個人票
- 2) 宿舎は真砂寮を利用する。寝具は業者からまとめて借りる。
- 3) 留学生は事前に大使館を通して、科学技術庁に申請をする必要がある。
- 4) 旅費、宿泊料の負担は不要。

持参すべきもの $A.2$

- 1) 印鑑
- 2) テキスト
- 3) 事前レポート
- 4) 筆記用具
- 5) レポート用紙 (A4版)
- 6) 電卓
- 7) 作業着または作業しやすい服装
- 8) 着替え、洗剤 (洗濯機が使える)
- 9) 洗面用具
- 10) 雨具
- 11) 目覚し時計
- 12) 現金 (間食費など)
- A.3 レポート
	- 1) 事前レポート

事前レポートは出発の前週の金曜日 17:00 までに提出する。レポート用紙は普通横罫の A4 版を用い る。表紙には以下のことを書くこと。即ち、レポートタイトル、報告者名、研究室、学生番号

2) 実験レポート

実験レポートの提出締め切りは実験の翌週の金曜日 17:00 とする。レポートに関する注意事項は各 実験項目で示してあるが、共通の事項を以下に示す。

- (a) レポート用紙は普通横罫のA4版を用いること。
- (b) レポートは各個人毎に作成する。但し、実験法の説明、測定値等、共通項目に関しては、グルー プ内で分担して書き、そのコピーを用いてもよい。
- (c) テーマ毎にレポートを書くこと。但し、中性子束分布、出力分布の測定は1つのレポートとする こと。
- (d) 表紙には以下のことを書くこと。 報告者名、研究室、学生番号、実験テーマ、共同実験者名、 実験日、実験場所、その他必要な条件
- (e) 内容は次のようにまとめること。
	- i. 目的
	- ii. 理論 (解析に用いる数式)
	- iii. 実験方法、手順、条件
	- iv. 装置(炉心名称、機器形式、回路プロック図等)
	- v. データ
	- vi. 結果 (単位、有効数字に注意)
	- vii. 考察(誤差、理論値との比較)
	- viii. 参考文献、定数の出典(テキスト以外の場合)
	- ix. 感想

平成 8 年度 TCA 学生実験スケジュール $A.4$

8月26日 (月) (第1日) (ガイダンス、臨界近接および指数実験 Step1)

- 8:30 東京工業大学正門集合、バス乗車
- 9:00 出発
- 12:00 真砂寮に到着 荷物を置く、実験に必要な道具をもって出発
- 12:15 阿漕浦クラブで昼食
- 13:00 原研東海・事務棟 入所手続き (学生用身分証明書発行)
- 14:00 TCA 居室 挨拶、ガイダンス、装置概要説明、放射線安全に関する説明、フィルムバッチの発行
- 14:30 TCA 炉室等 装置に関する説明
- 15:00 TCA 操作室 実験内容説明 (臨界近接および指数実験)
- 15:20 臨界近接および指数実験 Step1 炉心 17 × 9 起動前点検、炉心構成の確認
- 16:00 運転開始-中性子計数率、分布測定
- 16:30 炉室等 運転停止、停止後点検
- 17:00 操作室 実験終了
- 17:30 真砂寮 入寮手続き
- 8月27日 (火) (第2日) (臨界近接および指数実験 Step2~5、安全板価値測定)
	- 9:00 TCA 居室集合
	- 9:10 作業内容、作業分担の確認
	- 9:30 起動前の確認、炉心確認
	- 10:00 臨界近接実験 Step2 炉心 17 × 13
	- 11:00 臨界近接実験 Step3 炉心 17 × 15
	- 12:00 昼食
	- 13:00 臨界近接実験 Step4, 5 炉心 17 × 16, 17
	- 16:30 臨界炉心にて安全板価値測定 (ロッドドロップ)
	- 16:40 運転停止、停止後点検
	- 17:00 終了
- 8月28日 (水) (第3日) (中性子束・出力分布の測定)
	- 9:00 TCA 居室集合
	- 9:10 作業内容説明、作業分担の確認
	- 9:30 金線/リン試料の準備、燃料棒バックグラウンド計数率測定、 炉心設定(燃料棒構成、金線、リンペレット設置) 炉心構成確認
	- 12:00 昼食
	- 13:00 運転開始-試料照射-停止-冷却
	- 15:00 金線、リンペレット、燃料棒取り出し
	- 15:30 燃料棒計数率測定、金線切断-計数率測定-重量測定、リンペレット計数率測定-重量測定
	- 17:00 停止後点検、終了

8月29日 (木) (第4日) (燃料棒価値分布の測定)

- 9:00 TCA 集合
- 9:10 作業内容説明 作業分担の確認
- 9:30 起動前点検、炉心構成確認
- 10:00 運転開始-炉周期測定-停止-炉心変更(繰り返し)、(12:00-13:00 昼食)
- 16:30 運転停止、停止後点検
- 17:00 終了

8月30日 (金) (第5日) (施設見学)

- 9:00 TCA 集合
- 9:15 施設見学 JRR-3、NUCEF
- 12:00 昼食
- 12:30 TCA をバスにて出発
- 17:00 大学着解散

表1 SI基本単位および補助単位

	柇 名	룍 記	
長 ð	N ŀ	m	
質 ∎	キログラム	kg	
時 M	眇	s	
電 旐	ペ	A	
熱力学温度	ビ ン ル ヶ	K	
物 質	モ ル	mol	
光 度	デ ラ ヵ ン	cd	
角 ₽ 面	\mathcal{L} ジ τ ラ	rad	
体 τŤ 角	ステラジアン	sг	

表3 固有の名称をもつ SI 組立単位

 $1 eV = 1.60218 \times 10^{-19} J$ $1 u = 1.66054 \times 10^{-27} kg$

表4 SIと共に暫定的に 維持される単位

 $1 \text{ A} = 0.1 \text{ nm} = 10^{-10} \text{ m}$ 1 b=100 fm² = 10^{-24} m² $1 \text{ bar} = 0.1 \text{ MPa} = 10^5 \text{ Pa}$ $1 \text{ Gal} = 1 \text{ cm/s}^2 = 10^{-2} \text{ m/s}^2$ $1 \text{ Ci} = 3.7 \times 10^{10} \text{Bg}$ 1 R=2.58×10⁻⁴C/kg $1 rad = 1 cGy = 10^{-2} Gy$ 1 rem = $1 \text{ cSv} = 10^{-2} \text{ Sv}$

 $\mathbf{\ddot{x}}$

表 5 SI接頭語

 (iE)

 \overline{a}

- 1. 表 1-5は「国際単位系」第5版,国際 度量衡局 1985年刊行による。ただし, 1 eV および1uの値は CODATA の1986年推奨 値によった。
- 2. 表4には海里、ノット、アール、ヘクタ ールも含まれているが日常の単位なのでこ こでは省略した。
- 3. barは、JISでは流体の圧力を表わす場 合に限り表2のカテゴリーに分類されてい \mathbf{z}_\circ
- 4. EC閣僚理事会指令では bar, barn およ び「血圧の単位」mmHg を表2のカテゴリ ーに入れている。

换

 $\pmb{\mathbb{N}}$

(86年12月26日現在)

臨界集合体TCAを用いた原子炉物理の教育的基礎実験

 $\begin{array}{c} \mathbb{E} \\ \frac{1}{2} \left(\frac{1}{2} \log \left(\frac{1}{2} \right) \right) \\ \frac{1}{2} \left(\frac{1}{2} \log \left(\frac{1}{2} \right) \right) \end{array}$

 $.$

 $\ddot{}$