## REORIENTACJE KATIONU A PRZEJŚCIA FAZOWE W SOLACH PIRYDYNIOWYCH

Asja Kozak, Jan Wąsicki, Zdzisław Pająk



Instytut Fizyki UAM, Poznań

Przejścia fazowe w solach pirydyniowych są wynikiem osiągnięcia przez jony pewnego stanu dynamiki. Stwierdzono m.in., że w pobliżu tempoeratury przejścia fazowego następuje zrównywanie częstości reorientacji anionu i kationu - czterofluoroboran pirydyniowy [1] oraz sześciofluorofosforan pirydyniowy [2]. Podobny efekt obserwowaliśmy w solach guanidyniowych [3,4,5]. W wymienionych przypadkach wyniki eksperymentalne dobrze opisywał model izotropowej lub pseudoizotropowej reorientacji anionu. Natomiast ruch kationu można było wytłumaczyć przyjmując model anizotrowej reorientacji względem osi prostopadłej do płaszczyzny pierścienia pirydyniowego [6]. Jednakże w temperaturach poniżej przejścia fazowego nie jest to reorientacja typu  $C_{6r}$  a raczej przeskoki między kolejnymi jamami potencjału o nierównoważnych barierach - jodek pirydyniowy [7].

Ostatnio stwierdziliśmy, że w pobliżu przejścia fazowego obserwuje się wyrównywanie barier potencjału - azotan pirydyniowy [8].

## Przedmiotem pracy było zbadanie:

## 1/ jak reorlentacja anionu wpływa na kształt bariery potencjału dla reorlentacji kationu,

2/ co się dzieje z kształtem barlery w pobliżu przejścia fazowego.

Do badań metodą magnetycznego rezonsu jądrowego wybrano jodek pirydyniowy jako posiadający nieruchomy anion w niskich temperaturach oraz sześciofluoroantymonian pirydyniowy z prawdopodobną izotropową reorientacją jonu SbF<sub>6</sub>. Dla obu soli w funkcji temperatury zmierzono drugi moment linii rezonansowej oraz czasy relaksacji spin-siatka T<sub>1</sub> (przy częstotliwości 90, 60 i 25 MHz) i T<sub>10</sub> (H<sub>1</sub>=1.6 mT). Dla jodku pirydyniowego dodatkowo zmierzono czas relaksacji w polu lokalnym T<sub>1d</sub>, a także drugi moment linii rezonsowej przy przyłożonym ciśnieniu 300 MPa.

Na podstawie badań drugiego momentu linii MRJ stwierdzono,że:

- anion SbF<sub>6</sub> podlega izotropowej reorientacji (a podstawie wartości plateau drugiego momentu  $M_2(F)$ ),

- reorientacja anionu SbF<sub>6</sub> zachodzi z większą częstotliwością niź reorientacja kationu,

- uruchomienie reoriantacji kationu przed przejściem fazowym związane jest ze mianą drugiego momentu ca 2,5 Gs w obu solach,

- w przejściu fazowym następuje skokowa zmiana drugiego momentu,

- po przejściu fazowym wartości plateau drugiego momentu świadczą o istnieniu reorientacji kationu względem osi  $C_{\rm er}$ 

- przyłożenie ciśnienia powoduje znaczne przesunięcie przejścia fazowego w jodku pirydyniowym w stronę wyższych temperatur (około 20 K).

Na podstawie pomiarów czasów relaksacji stwierdzono, że:

 poniżej prześcia fazowego w jodku pirydyniowym obseruje się minimum czasu relaksacji o tym wyższej wartości im wyższa jest częstotliwość spektrometru, ale nie jest zachowana prosta proporcjonalność,

- minima czasów relaksacji obserwowane w niskich polach magnetycznych nie odzwierciedlają tej samej reorientacji, co minima  $T_1$ ; mogą odpowiadać skróceniu czasów  $T_1$  obserwowanemu bezpośrednio przed przejściem fazowym,

w przejściu fazowym jodku pirydyniowego czasy relaksacji ulegają skokowej zmianie,
czasy relaksacji protonów w sześciofluoroantymonianie pirydyniowym są o rząd wielkości krótsze niż w jodku pirydyniowym,

 obserwowane minima czasów relaksacji zmierzone w niskich polach magnetycznych odpowiadają tym obserwowanym w wysokich polach, co dowodzi, iż śledzimy ten sam proces relaksacji,

- relaksacja jąder fluoru ( wartość minimum) potwierdza, że głównym jej mechanizmem jest izotropowa reorientacja anionu,

 zależność czasów relaksacji od temperatury sugeruje, że energia aktywacji dla reorientacji kationu pirydyniowego dla niektórych przynajmniej przeskoków jest niższa w fazie niskotemperaturowej niż wysokotemperaturowej.

Do opisu reorientacji kationu zastosowano trzy modele bariery reorientacyjnej:

- dwujamowy odpowiadający ujęciu Ripmeestera [7],

- trzyjamowy odpowiadający ujęciu Ito [6],

- czterojamowy, zaproponowany przez nas,uwzględniający prawdopodobną

w pierścieniu pirydyniowym nierównocenność azotu i leżącego naprzeciw niego węgla.

W wyniku potraktowania parametrów aktywacyjnych jako parametrów najlepszego dopasowania obliczonych czasów relaksacji do eksperymentalnych w funkcji temperatury otrzymano wysokości barier w prawdopodobnym modelu 4 - jamowym dla jodku pirydyniowego.



Jeśli w miejscu krystalograficznie przeznaczonym dla azotu znajduje się węgiel i z takiej sytuacji rozpoczyna się reorientacja, to

K=5.8\*10<sup>11</sup> s<sup>-1</sup>; E<sub>c</sub>=15.1 J/mol; 
$$\Delta_c$$
=5.9 J/mol.

Rozpoczęcie reorientacji kationów ze swojego położenia krystalograficznego związane jest z innymi stałymi:

K=2.2<sup>\*10<sup>10</sup></sup> s<sup>·1</sup>; E<sub>N</sub>=21.0 J/mol,  $\Delta_N$ =2.5 J/mol.

Powyższe oznacza, że w poniżej przejścia fazowego istnieje nieporządek ułożeń wektora N-C w krysztale. Niestety, brak jest dotąd badań krystalograficznych fazy niskotemperaturowej. Jednakże taki opis dobrze tłumaczy rozbieżność eksperymentalną czasów relaksacji zmierzonych dla wysokich i niskich pól magnetycznych - pomiary T, odzwierciedlają reorientacje kationu "z końca C", a pomiary relaksacji w niskich polach: reorientacje "z końca N".

W dużym uproszczeniu można taki model zastąpić dwoma różnymi modelami dwujamowymi o różnych wartościach  $\Delta$ .

Reorientację jonu pirydyniowego w **PyH-SbF**<sub>6</sub> dobrze opisuje się modelem trzyjamowym o stałej K=6.5\*10<sup>10</sup> s<sup>-1</sup>; E<sub>A</sub>=12.6 J/mol; E<sub>B</sub>=10.9 J/mol; E<sub>C</sub>=2.9 J/mol oraz  $\Delta$ =1.7 J/mol. Oznacza to, że końce jonu pirydyniowego; N oraz leżący naprzeciwko C są nierozróżnialne. Nie przeczą temu modelowi wyniki pomiarów T<sub>1p</sub>. Izotropowa reorientacja jonu SbF<sub>6</sub> w fazie niskotemperaturowej jest opisana parametrami aktywacyjnymi:  $\tau_{a}$ = 9.0\*10<sup>-14</sup> s; E<sub>a</sub>= 15.5 J/mol.

W temperaturze przejścia fazowego wartość RT moźna porównać z odpowiednimi wartościami różnicy  $\Delta$  barier energetycznych:

| PyH- J                       | PyH - SbF <sub>e</sub>        |
|------------------------------|-------------------------------|
| T,= 257 K                    | T,= 267 K                     |
| RT.= 2.1 J/mol               | RT.= 2.2 J/moi                |
| $\Delta_{\rm N}=2.5$ J/mol   | $\Delta_{\rm N}$ = 1.7 J/mol  |
| $\Delta_{\rm c}$ = 5.9 J/mol | $\Delta_{\rm c}$ = 1.7 J/mol. |

Wnioski:

1. Reorientacja jonu SbF, powoduje, że przeciwległe końce N i C jonu

pirydyniowego stają się nierozróżnialne.

2. Przejście fazowe w badanych związkach pirydyniowych jest związane z osiągnięciem temperatur, w których RT  $\approx \Delta_{n}$ 

Zatem można oczekiwać, że:

 w kryształach pirydyniowych zawierających reorientujący się anion kształt bariery dla reorientacji kationu może być opisywany uproszczonym 3-jamowym modelem Ito,
w solach pirydyniowych z zahamowaną reorientacją anionu bądź jej brakiem kształt bariery energetycznej dla reorientacji kationu powinien uwzględniać różnicę między położeniem węgla a azotu w pierścieniu i to w taki sposób, że bariera dla ruchu końca związanego z azotem jest wyższa niż dla związanego z węglem leżącym naprzeciw tego azotu,

 w pobliżu przejścia fazowego rożnica energetyczna między barierą wyjścia "z końca kationu związanego z azotem" a "wyjścia z pozycji sąsiedniego węgla " dąży do RT.

Literatura:

- [1] J. Wąsicki, Z. Pająk, A. Kozak Z. Naturforschung 45a, 33 (1990)
- [2] A. Kozak, M. Grottel, J. Wąsicki, Z. Pająk Phys. Stat. Sol. 141, 345 (1994)
- [3] A. Kozak, M. Grotteł, A. Kozioł, Z. Pająk J. Phys. C. Solid State Physics 20, 5433 (1987)
- [4] M. Grottel, A. Kozak, A.E. Kozioł, Z. Pająk J. Phys. : Condens. Matter 1, 7069 (1989)
- [5] Z. Pająk, A. Kozak, M. Grottel Solid State Communications 65, 671 (1988)
- [6] Y. Ito, T. Asaji, R. Ikeda, D. Nakamura Ber. Bunsenges. Phys. Chem. 92, 885 (1988)
- [7] J. A. Ripmeester J. Chem. Phys. 85, 747 (1986)
- [8] A. Kozak, M. Grottel, J. Wąsicki, Z. Pająk Phys. Stat. Sol.(a) 143, 65 (1994)