EXCITATION OF K* (3p³4s² P₁₀, ²P₁₀) BY ELECTRON IMPACT: ALIGNMENT AND CROSS SECTION RATIOS

B. Matterstock, R. Huster, B. Paripas", A.N. Grum-Grzhimailo", W. Mehlhorn

Fakultät für Physik, Universität Freiburg, D-79104 Freiburg, Germany *Department of Physics, University of Miskolc, H-3515, Miskolc-Egyetemvaros, Hungary *Institute of Nuclear Physics, Moscow State University, 119899 Moscow, Russia

We have measured the alignment A_{20} of K*($3p^34s^2P_{y2}$) and the ratio of cross sections $R_0 = \sigma (3/2)/\sigma(1/2)$ of the fine structure states K*($3p^34s^2P_{y2}$) for electron impact excitation in the range of incident energy $E_0 = 31.4 \text{ eV} - 500 \text{ eV}^1$. The alignment A_{20} was measured via the anisotropic angular distribution of autoionization electrons

 $I_{3/2}(\vartheta) = I_{3/2} \{ 1 + A_{20}(E_0) \propto_2 P_2(\cos \vartheta) \},$

where α_2 is the decay parameter (with the value -1) and $P_2(\cos \vartheta)$ is the second Legendre polynomial. The ratio of cross sections $R_0 = \sigma (3/2) / \sigma(1/2)$ were measured as ratio of line intensities $I_{3/2}/I_{1/2}$ of autoionization electrons at the magic angle $\vartheta_m = 54,7$. The results for A_{20} are plotted in Fig. 1 as function of impact energy E_1 .

We have also calculated the quantities I_{20} and R_0 in the plane wave Born approximation (PWBA) and distorted wave Born approximation (DWBA). For I_{20} best agreement with experiment is achieved if the exchange distortion potential V_{ex} and the exchange amplitude T_{ex} are included in the DWBA calculation (curves 5,6,7 in Fig. 1). The DWBA values of Pangatiwar and Srivastava² do not agree with the experimental values for $E_n < 100 \text{ eV}$.

This work is part of the Sonderforschungsbereich 276 "Correlated dynamics of highly excited atomic and molecular systems" at the Universität Freiburg and is supported by the Deutsche Forschungsgemeinschaft.

- B. Matterstock, R. Huster, B. Paripas, A.N. Grum-Grzhimailo, W. Mehlhorn // J. Phys. B 1995, v. 28, in print
- 2. A.W. Pangantiwar, R. Srivastava // J. Phys. B 1987, vol. 20, 5881

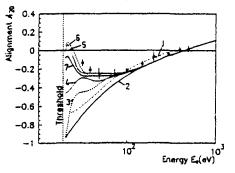


Fig. 1. Alignment A_{20} of K* ($3p^5 4s^{22}P_{y_2}$) as function of electron impact energy E₀. Present experiment = \bullet . Theory: curve 1 = DWBA², curves 2 to 7 = present calculations. (2) = PWBA; (3) = DWBA, $V_{ept} = V_{ab}$ ground-state electron density, T = T_{ab}; (4) = DWBA, $V_{ept} = V_{ab}$ ground-state electron density, T = T_{ab}; (5) = DWBA, $V_{ept} = V_{ab} + V_{eb}$ ground-state electron density, state electron density, T = T_{ab}; (6) = DWBA, $V_{ept} = V_{ab} + V_{eb}$ ground-state electron density, T = T_{ab} - T_{ab}; (7) = DWBA, $V_{ept} = V_{ab} + V_{eb}$ excited-state electron density, T = T_{ab} - T_{ab}.