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Abstract

We study the infra-red limit of the O(N) gauge theory that describes the low energy
modes of a system of A* type I D-strings and provide some support to the conjecture that,
in this limit, the theory flows to an orbifold conformal theory. We compute the elliptic
genus of the orbifold theory and argue that its longest string sector describes the bound
states of D-strings. We show that, as a result, the masses and multiplicities of the bound
states are in agreement with the predictions of heterotic-type I duality in 9 dimensions,
for all the RPS charges in the lattice F(117).
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1 Introduction

The putative duality between Type I string theory and the 50(32) heterotic string theory

[1, 2] requires the existance of Type I D-string bound states. The way to see this is to

begin by compactifying on a circle of radius RH in the A'9 direction. On the heterotic side

the electric charge spectrum in the nine dimensional theory sits in the lattice F^ir). This

lattice arises on taking into account the charges associated with the gauge fields of the

Cartan subalgebra of 50(32), the G^ component of the metric and the B& component

of the Neveu-Schwarz antisymmetric tensor. In particular, the states carrying N units of

0M9 charge correspond to the fundamental heterotic string wrapping A' times around the

X9 circle. This particular charge corresponds to a null vector in F(, l7) and scrutiny of

the partition function shows that the multiplicity of such BPS states, which arise at the

level one oscillator mode of the bosonic sector, is 24. The general BPS spectrum, with all

the electric charges, is given by

kN-]-P2 = NH-l, (1.1)

where P is a vector in r(0i6), A'K is the bosonic oscillator number and k is an integer,

related to the Kaluza-Klein momentum pg carried by the state in the following way:

where B' are the holonomies in the Cartan subalgebra of 50(32) in the A'9 direction

(Wilson lines). The multiplicity is then given by the NH th oscillator level in the pi rtition

function T]~2i. Furthermore, the mass m in the string frame is given by

, NliH
(1.3)

On the other hand, the Type I theory is related to the heterotic by a strong-weak

duality. The coupling constants and metrics are related by

-V = 7 ' ^ M K
 = "T • (1-4)

The duality relations imply that a heterotic state labelled by N, k and P is mapped to a



P9 = -±-(k+B.P+]-B2N)
R,

NR,
a'\[

type [ state with Kaluza-Klein momentum pg and mass m, in the string frame, given by:

(1.5)

(1.6)

where /?; is the type I radius along the A'9 direction.

The Neveu-Schwarz two-form, BMN, of the heterotic string is mapped to the Ramond-

Ramond antisymmetric tensor field, B^N, of the Type I string. Consequently, the winding

modes of the fundamental string on the heterotic side are mapped to the D-string winding

modes on the Type I side. Duality, therefore, predicts that a BPS system of A' D-strings,

in the Type I theory, each of which is wrapped once around the circle, should have a

threshold bound state with multiplicity equal to 24. Furthermore, when there are other

charges turned on, the multiplicities of the resulting Z?-string threshold bound states

should reproduce the hcterotic multiplicity (1.1).

Our aim in this letter is to establish that this is indeed the case. We begin by reviewing

the effective world volume gauge theory of N type I D-strings and argue that in the

infrared limit, this gauge theory flows to an orbifold conformal field theory [3, 4, 5, 6], in

analogy with a similar phenomenon in the type II case [7, 8, 9, 10, 11] or in the study of 5-

dimensional black holes [12, 13, 14]. We compute the elliptic genus of this conformal field

theory and show that the twisted sector corresponding to the longest string reproduces

the results expected from heterotic-type I duality. We also argue that the threshold

bound states arise precisely in the longest string sector. The above orbifold conformal

field theories have also appeared in the study of D-string instantons, which contribute to

the F4 coupling in the type I case, and to R4 coupling in the type II case[15, 16].

2 Type-I D-Strings

We begin by recalling the form of the world volume action which describes the low lying

modes of a system of A' D-strings in the type I theory:

S =
2

+A0A x'B'\'. (2.1)

The fields transform in various representations of the gauge group O(N). X and 5

transform as second rank symmetric tensors, while A and \ transform in the adjoint

and fundamental representations respectively. There is an 5'O(8)K, R symmetry group,

under which X, 5, A and \ transform as an 8v (this is the I label), an 8s, an 8€ and

a singlet, respectively. The x transforms under the 50(32) in the vector representation

with x" a nd X° denoting the positive and negative weights. The A and \ are negative

chira! (right-moving) world sheet fcrmions while the 5 are positive chiral (left-moving)

fermions. Finally B" are the background holonomics (i.e. Wilson lines on the 9-brancs)

in the Cartan subalgebra of 50(32). The Yang-Mills coupling g is related to the type

I string coupling via g2 = A;/o'. The vev's of the .Y fields, appearing in the action

above, measure the distances between the D-strings in units of sJTTX]. This fact will be

important later, when we compare the spectrum with that of the heterotic theory.

Geometrically the fields appear in the following fashion [2, 17]. The above action

arises as the Zi projection of the corresponding theory in the type II case. Recall that in

the type II situation a system of N branes has a U(N) symmetry. Write the hermitian

matrices as a sum of real symmetric matrices and imaginary anti-symmetric matrices.

The Zi projection, for type I /^-strings, assigns to the world volume components of the

gauge field the anti-symmetric matrices, that is, it projects out the real symmetric part

and so reduces the gauge group to O(ft~). On the other hand, the components of the gauge

field in the transverse directions, A', have their imaginary part projected out and so are

symmetric matrices transforming as second rank symmetric tensors under the O(N). The

diagonal components of the A" give the positions for the A' branes. The trace part, which

we factor out, represents the center of mass motion.

The x carry the 50(32) vector label, as they are the lowest modes of the strings which

are stretched between the 9-branes and the Z>-strings.

As mentioned earlier, the winding mode N of the fundamental heterotic string is

mapped, via duality, to N D-strings on the Type I side that wind around the A'9 circle.

Since the former appears as a fundamental BPS state with multiplicity 24, we should

find that the system of N D-strings in type I theory admits threshold bound states with

multiplicity 24. In other words, in the O(N) theory, there should be 24 square integrable



ground states that are 10 dimensional N = 1 vector short BPS super-multiplets. That

every ground state appears with 8 bosonic and 8 fermionic modes, necessary to form the

N = 1 short vector supermultiplet, follows from the the fact that there are zero modes of

the O(N) singlet free field S, describing the center of mass motion (which has not been

included in the action (2.1)). The remaining part of the 0{N) theory described in the

action (2.1), therefore, must have, 24 bosonic normalizable ground states as predicted by

the hetcrotic-type I duality. In other words, we want to show that the Witten Index for

the above theory is 24.

More generally, in the heterotic theory, we can also turn on other charges, namely the

one associated with Kaluza-Klein modes that couple to G^g and the ones associated with

the Cartan subalgebra of the SO(32) gauge group. These charges can also be excited in

the system of N D-strings in the type I theory. Indeed, one can include states carrying a

longitudinal momentum along the string and thereby generate Kaluza-Klein momentum.

Similarly, one can generate 50(32) quantum numbers by suitably applying x modes.

The information about the multiplicities of states carrying these extra charges will be

contained in the elliptic genus of the above theory (2.1).

Since the Witten index and, more generally, the elliptic genus do not depend on the

coupling constant, we can take a limit which is most convenient for our present purposes.

We will consider the infra-red limit of the theory, as it has been conjectured in [3, 4, 5, 6],

that in this limit the theory flows to a (8,0) orbifold superconformal field theory. This

is in analogy with a similar conjecture for a system of type IIB D-strings [9]. In the

following we give some support to this conjecture by, first, gauge fixing (2.1) and then by

performing a formal scaling which yields the orbifold theory directly.

3 Type II and the IR Limit

Before discussing the type 1 theory we make a digression on the type II theory that will

prove useful later. Our aim here is to show that with a prudent choice of gauge one

can simplify matters considerably. This prepares the way for taking the large coupling

limit in a fashion that is, to a large extent, controlable. We will work with a little more

generality than is really required and begin with an analysis of D dimensional Yang-Mills

5

theory reduced to d dimensions. D dimensional vector labels are denoted by M,N,...,

those in d dimensions are denoted by ft, v,... and those in the remaining D — d (reduced)

dimensions by / , J, To make contact with the type II £)-brane world volume theories

one sets D = 10.

The D dimensional Yang-Mills theory has a 'potential' of the form.

Minimising, in any dimension d, we learn that we are interested in the fields that live in

the Cartan subalgebra. Decompose the Lie-algebra, g, of the gauge group as p = t ffi t,

where t is the prefered Cartan subalgebra and t is its ortho-complement. It makes good

sense, therefore, to perform a non-canonical split,

AM = A<M + A'MI (3-2)

where the superscripts indicate the part of the Lie-algebra that the fields live in. Before

proceeding we need to gauge fix. Given the splitting of the algebra, it behoves us to

choose the 'background field' gauge'

D [gAi)gA*M = 0, (3.3)

which preserves the maximal Torus gauge invariance. The ghosts come in as

uC'DM(gA')DM(gA)Ct+ U g2?{{A>M,C']', A">\. (3.4)

We choose a Feynman type gauge with a co-efficient chosen to give the most straightfor-

ward analysis namely we add

(3.5)

to the action. With this choice the potential becomes

(3.6)

where the ellipses indicate higher order terms in A\f and which, directly, will be seen to

be irrelevant.
JAt this point the connection is gA, which explains some of the, what appear to be,

spurious factors of g. We are gauge fixing the 'canonical' gauge field and not the one
scaled by g so that the BRST transformations are Q(gA,\i) = DM(gA)C and QC =• C2.



We now perform the following sequence of scalings on the fields appearing in a N = 1

super Yang-Mills theory in D dimensions

(3.7)

On a torus, Td, with periodic boundary conditions on all the fields appearing, this scaling

has unit Jacobian. We can now take the g —Y oo limit. The action, in this limit is:

S = tr

(3.8)

All the fields in the £ part of the Lie-algebra can be integrated out and clearly give

an overall contribution of unity to the path integral. Thus, we are left with a free,

supersymmetric, system of Cartan valued fields. By invoking the Weyl symmetry that is

left over, one finds that the target space of the theory is (R(°-d)r x Tdr)/W, where r is

the rank of the group and W is the Weyl group.

Fixing D = 10, gives us the Type II world volume theories of parallel D branes. The

limit just described, the strong coupling limit in the gauge theory, when d = 2 and D = 10

(the D-string) gives rise to the orbifold conformal field theory as in [9].

4 Type I and the IR Limit

The flat directions of the potential in this case require mutually commuting matrices

once more. We denote those X's, with a slight abuse of notation, by A*' (for example

one may choose these to be diagonal). A convenient way to proceed is to start with

the (complexified) SU(N) Lie algebra and to split it into a Cartan subalgebra t and

into positive and negative roots, E+ and 6_, respectively, that is, 4 = t+ © t_. The Zi

projection means that, in this basis, the world volume gauge fields are proportional to

the anti-symmetric (imaginary part of t) generators, m_ = t+ — £_, while the X's are

proportional to the symmetric generators, t and (real part of 6) m+ = t+ -f E_. With these

identifications the bosonic parts of the type I and type II theories coincide. We choose

the same gauge fixing as in the type II theory, now restricted to the m_ directions,

and we scale the fields in a similar way, that is

s/9

rAm-,

(4.2)

The remaining fields X1, Sl, Cm~ and \ are unchanged. As before the Jacobian of these

scalings is unity if we take periodic boundary conditions for the fcrmions S and A. There

is no such requirement on the \\ Consequently the g —• oo limit may be safely taken.

The action now takes the form

S = [

(4.3)+Am-r'[x;,5m+] + p"1-,x}][cm-,x}] + Y, \"P\a + T, xas
o=l a= l

Formally, since the x fields are chiral, only the right moving part of the gauge field is

coupled to it and one can perform the integral over the left moving part of the gauge field

which sets the right moving part to zero. Hence, on integrating out the massive modes,

one would be left with a completely free theory of the massless modes A'', 5 l and \. The

determinant factors would then, at least formally, cancel between the fields of various

statistics.

However, the above cancellation of the determinant factors is a bit quick. If correct,

it would imply that even if we had started with an anomalous theory we would end up,

in the limit, with a well defined superconformal field theory. For example, this would

seem to be the case if we simply ignored the \ fields altogether. The point is that each

fermionic determinant appearing is anomalous. These determinants, when defined in a

vector gauge invariant way, involve extra quadratic terms in the gauge field. The presence

of these would mean that the functional determinants would not cancel, since the gauge

field contribution would not be Det(X')2. Happily, the condition that the theory be

anomaly free means that the total sum of these extra pieces is zero and this is exactly

what is required to make our formal argument above work.

On including the center of mass one gets N of the X's and S"s, each transforming

as a 8v and 85 of SO{8) respectively and N x's each transforming as a fundamental of

50(32). The field content is like that of N copies of the heterotic string in the light-cone



gauge with an effective inverse tension

"Iff = a'xl- (4.4)

The condition (4.1) does not completely fix the gauge, there are still discrete trans-

formations which leave the action invariant. There is the permutation group SN which

permutes the N copies of (.Y, 5, \ ) and which has the interpretation of permuting the iV

D-strings. There are also O(N) transformations which leave invariant X and 5 but which

act non-trivially on the \ ' s by reflection giving rise to a Z%. The full orbifold group is

therefore the semidirect product SNKZ£ •

5 Orbifold Partition Function

We are interested in calculating the elliptic genus of the orbifold conformal theory. In

this case the 5 fermions have periodic boundary conditions on the world sheet torus. The

elliptic genus for our conformal field theory will be zero due to the fact that the center

of mass S will have zero modes in all the twisted sectors as it is orbifold group invariant.

However, the zero modes of the center of mass 5 precisely give rise to the 8 bosonic and

8 fermionic transverse degrees of freedom that fill out the 10-dimensional N = 1 vector

supermultiplet corresponding to a BPS short multiplet. Our goal here is to calculate

the multiplicities of these BPS states, that are clearly governed by the elliptic genus of

the remaining conformal field theory that describes the relative motions of the D-strings.

This means that we need to consider only those twisted sectors that have at most the

zero modes of the center of mass 5.

Let us briefly review how the orbifold elliptic genus is computed [18, 19]. Each twisted

sector of the orbifold corresponds to a conjugacy class of the orbifold group. A general

clement of the group C = 5,v K Z% can be denoted by (g,u) where g 6 SN a n d ui € Z^.

First let us identify the twisted sectors where the 5's have no other zero modes besides

the center of mass one. For this it is sufficient to consider the action of the elements

of SN since the Z^ part does not act on S fields. A general conjugacy class [g] in SN

is characterized by partitions {Nn} of Ar satisfying YlnNn = N where Nn denotes the

multiplicity of the cyclic permutation (n) of n elements in the decomposition of g as

\g] = (lf'(2)N'•••(*)": (5.1)

In the [<7]-twisted sector the fields satisfy the boundary condition: (A', 5, \)(<r + 2nRi) =

g(X,S,x)(cr) where a is the coordinate along the string.

In each twisted sector one must project by the centralizcr subgroup Cs of g, which

takes the form:

C9 = II (5.2)

where each factor SN* permutes the Nn cycles (n), while each Zn acts within one particular

cycle (n). In the path integral formulation this projection involves summing over all the

boundary conditions along the world-sheet time direction <, twisted by elements h of C9.

We shall denote by ([g], h) the twisted sector with twist g along the cr direction and twist

h along the t direction.

We will now show that if [g] involves cycles of different lengths, say (n)° and (m)6 with

n y£ m, then the corresponding twisted sector does not contribute to the elliptic genus.

To see this, we note that there are now at least two sets of zero modes for 5, which can be

expressed, by a suitable ordering of indices, as (5i +52+ • • • Sna) and (Sna+\ + - • • 5na+mb),

where the two factors (n)a and (m)b act on the two sets of indices in the obvious way.

These zero modes survive the group projection because the centralizer of [g] does not

contain any element that mixes these two sets of indices with each other, thereby giving

zero contribution to the elliptic genus. Thus we need only to consider those sectors with

[g] = (L)M where N = LM.

The centralizer in the case where [g] = (L)M is Cs = 5M « Z}f. From the boundary

condition along a it is clear that there are £ combinations of 5's that are periodic in a.

By suitable ordering, they can be expressed as 5* = Efitt+i ^ for * = 0 , . . . , A/ - 1.

These zero modes have to be projected by the elements h in the centralizer Cs. In

particular, when h is the generator of ZM C SM C Cg, it acts on the zero modes Sk

by cyclic permutation. It is clear, therefore, that only the center of mass combination

Htlo ' Sh is periodic along the t direction. Hence, this sector contributes to the elliptic

genus. More generally any h = (e, / ) 6 Cs = 5M K Z}f will satisfy the above criteria

10



provided e = (A/) € SM and / is some clement of Z^f. The number of such elements h is

(M - 1)! x £M .

In particular when N is prime the sectors that contribute to the elliptic genus are:

(1,/i) where h € Zy and ([</], ft) with [p] = (A') and /i in the corresponding centralizer Z,\.

In the following we shall refer to these two types of sectors as the shortest and longest

string sectors, respectively.

The full orbifold group G is specified by an element of 5,v (discussed above) together

with an element of Z% that acts on the x's. Let us denote a general element by (g, (.)

where g 6 S,v and c G Zj . Now 5,v acts as an automorphism in Z^ by permuting the

various 7,i factors. We denote this action by g(c). Then the semi-direct product is defined

in the usual way: (g, c).(g', (!) = (gg',cg((')). Twisted sectors will now be labelled by a

conjugacy class in G- The relevant sectors, for the elliptic genus computation, as discussed

above, are the conjugacy classes [g] in 5/v of the form [g] = (L)M with N = LM. One

can easily verify that the various classes in G are labelled by ([ff],t) with c = Ci.c2...tt\i

where each e, is in the quotient subgroup of 2% by its even subgroup. Combining this with

the condition that we have found for h we may conclude that all the c,'s must be equal

(i.e. all e,'s must be either even or odd clement of Z^) in order for such h to exist in the

centralizer of ([g], () in G. In this case the centralizer is the group of elements of the form

(h,a) where h 6 Cg and a £ Z? satisfies th(c) = ag(a). The number of independent

such o's is 2/Vf and therefore the order of the centralizer of ([#], c) is M\LM2M.

We now proceed to compute the elliptic genus t r ( - l ) f e~^ " + ^7r!/>ri "<r where //

and Pa are the Hamiltonian and the longitudinal momentum. The computation for general

L and M is quite tedious, therefore we will only describe it for the longest string sector

(i.e. M = 1 and L = A'). The centralizer Cg = Z,v and consists of elements of the

form h — g' for * = 0 .1 , . . . , N - 1 and as a result their action is obtained by modular

transformations T] —>• T\ + $ from the h = 1 sector. Thus we can restrict ourselves to

h = 1. The eigenvalues of [g] are a/ for r = 0, 1, . . . , A7 — 1 where us = e2"^. As a result

the iV copies of A"s and 5:s come with fractional oscillator modes that are shifted by r/Ar

in units of \/Ri- The left moving part of the non-zero mode partition function cancels

between A s and 5's. The zero modes appear for the center of mass (i.e. r = 0): the

11

zero modes of S give rise to the usual 8 bosonic and 8 fermionic degrees of freedom filling

out the BPS vector supermultiplet, while the zero modes of the left and right moving A"s

give a factor r2~"4. The right moving A"s, upon taking the product over r, give l/r/(<7« )8,

upto a zero point shift, where q = cxp(2niT) with T = T^ + ij~^- = T\ + ir2.

To include the contribution of the \ ' s we must specify the group elements in Z% as

well. There are two possible c's that come with \g\: the even and odd element of Z£.

First, let us consider the situation when the Wilson lines Ba arc set to zero. By taking

the product of all the eigenvalues of the twist, these for odd N, give rise, respectively,

to the Neveu-Schwarz and Ramond sectors of the 50(32) fermions, with q replaced by

qT* (again upto zero point shifts). For even N, on the other hand, the Neveu-Schwarz

and Ramond sectors appear for f odd and even, respectively. Furthermore the centralizer

contains two elements with h = 1 namely o = ±1. These two choices give rise to the

usual GSO projection.

Finally, one can compute the zero point shift for the right moving A"s and \'s and the

result is that one actually gets I/A' times the right moving part of the heterotic 5O(32)

partition function with q replaced by q~*. Including also other elements h ^ 1, the final

result is:

where Z[q) is the right moving part of the 5O(32) hetcrotic partition function:

i

with F16 is the spin(32)/Z2 lattice.

(5.3)

(5.4)

For the sector with [g] = ((L)M,c), we can again repeat the above steps. Recall that

in this case there are only two possible c that give non zero contribution to the elliptic

genus. These are given by c = r,.c2. .f,w, with all c, either an even or odd element of

Z%. As described above, the order of the centralizer Cg is M\LM2M, while the number

of elements h € Cg that give rise to non-zero trace is [M — \)\LM2M, and therefore these

are the relevant elements for the computation of elliptic genus. However, not all the k's

of this form give different traces. Indeed, if h and h' are in the same conjucacy class in

Cg. they will give the same trace. It is easy to verify that the number of elements in the

12



centralizer Ch in C9, for a relevant h, is 2ML = 2N. As a result, the number of elements

in the conjugacy class of such k in Cg is \Cg\/\Ch\ = (M - l)\LM''2M~'. The distinct

conjugacy classes, that give non-zero traces, can be labelled by [/if] for i = 1,. . . , L, and

the superscript ± refers to the GSO projection on the \ ' s . Each of these classes appear

with a prefactor, which is given by the number of elements in the class divided by the

order of Cg, and is equal to l/(2/V). The factor 1/2, together with the GSO prjection

implied in 5Z±<r[/!*], for each i, gives either the scalar or spinor conjugacy classes of

spin(32)/Z2- The scalar and the spinor classes of spin(32)/Z2 appear for the two choices

of f in [g\. For each distinct i in ^2itr[hf], one gets a different trace, and the elliptic

genus, after some tedious algebra, turns out to be:

•^ZV-*,*). (5-5)
T 2 ' 1=0

Here, the prefactor M4 appears due to the zero modes of 8(M — 1) S"s in the [</]

twisted sector (excluding the center of mass S). Indeed, these contribute to the trace

as v/n^ii'O — e2i">/*')» = M4. Note that when M and L are not coprime, the differ-

ent terms in the sum above are not all related by modular transformations of the type

T —• r + s. It is, however, clear that each term, which survives the projection, comes with

integer multiplicity, as it should be.

So far we had not turned on the Wilson lines B in the Cartan subalgebra of 50(32).

The presence of these Wilson lines twists the boundary conditions for \ ' s . The determi-

nants for the \ 's with these additional twists can be calculated in the standard way and,

after including the zero point shifts, one finds that, for the longest string sector, the result

and for the intermediate strings:

(5.6)

(5.7)
2 J* . , = o T][c L q L ) P e r , , - ,

Note that in the presence of Wilson lines, the different terms in the sum over s are not

obtainable from the .« = 0 term by modular transformations r —> T + S. This is so, because

the Wilson lines, which are turned on only in the a direction, break the symmetry between

the a and t directions.

13

6 Longest string versus intermediate or short strings

Even though the computation of the elliptic genus received contributions from both the

longest string sector and the intermediate or short string sectors, it is only the longest

string sector that corresponds to the threshold bound states of N D-strings. Consider

for example the shortest string sector. It receives contributions only from the sector

tr/i( — 1)F where [h] = (N). In this sector only the states having zero relative transverse

momenta survive. In position space, therefore, the wavefunction of each of the N strings

is constant along the relative separations. As a result such states are not normalizble.

The same argument also applies to the intermediate strings. In this case there are M

groups of strings of length L each and the wavefunction is constant as a function of the

relative separations between these M groups. This state therefore represents a state of

M strings, each of which is a threshold bound state of L strings. The analogue of a single

particle state appears only in the longest string sector with M = 1 and L — N. This

interpretation is also clear intuitively from the orbifold conformal field theory description,

since the twisted states in this sector correspond to wavefunctions which arc localized at

the fixed point.

To see this more clearly, we can compactify one of the transverse directions, say .Y8,

on a circle of radius r and give the system a total momentum 1/r along this direction.

Note that this is the minimal unit of quantized momentum. We will now show that only

the longest string sector can carry this momentum.

The zero modes for Xg (i = I , . . . , N) for a general twisted sector of relevance labelled

by (/,, M) reads, after suitable ordering of indices, as:

—— + - —
M T + LR,' (6.1)

where a' satisfy

,•+'< -= a' +
M '

L '
j= (6.2)

and k and ( are arbitrary integers. Note that the integers k and (. are independent of

i because only the center of mass A's is a zero mode under the combined actions of the
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twists along the ( and <T directions. I here denotes the winding number along A'8 direction.

These zero modes contribute to the action as

n N kr 2 (r 2

The total momentum is h ^ , / da J2, QtX^ = ^ ' v • We can now perform a Poisson

resummation in order to go to the Hamiltonian formulation, with the result that the total

momentum p along the A's direction is:

Mk
V =

with k some integer and the partition function is

(6.4)

(6.5)

where -pi. = M{-*?—h ?r) and p/j = A/(^j? (r). This shows that the smallest unit of

momentum, p = 1/r, gets contributions only from the M = 1 (i.e. the longest string).

From the above partition function we see that this state carries an extra energy given by

a'clfp
2f2NRi which, as we shall see below, is exactly what is expected from the heterotic

string side. When p = A//r, the (L.M) sector also contributes to the elliptic genus.

However, this is consistent with the interpretation that it corresponds to M groups of

strings, each carrying a momentum 1/r.

7 Comparison with the heterotic spectrum

Let us now compare the above results for the bound states of N type I D-strings wrapped

around the A*9 circle with the heterotic spectrum in 9 dimensions. Clearly the relevant

states on the heterotic side are the ones carrying a winding number iV. The remaining

quantum numbers arc the (/(I)16 charges of the Cartan subalgebra of 50(32) and the

Kaluza-Klein momentum along the A'9 direction. The t/(l)16 charges, on the type I side,

can be read off from the T16 lattice charges that appear in the partition function Z{1, N).

The Kaluza-Klein momentum P9, on the other hand, is the longitudinal momentum Pa

of the D-string system along the a direction. Given the fact that Pa is the difference of

the left and right Virasoro generators Lo - Lo, its charge is just given by the coefficient of

15

2TTJ/?|TI in the partition function. From the expression (5.6) for Z(\, N) and taking into

account the projection implied by the sum over .«, we conclude that

P" = ji{

(7.1)

where (/VH — \)/N appears from the expansion of T]{qv)~2*. Note that the multiplicity

of these states is the same as the coefficient of q'%R~l in the expansion of ';(<?)~24. The

value of k is bounded below by (— 1) for N = 1 and by 0 for iV > 1, while the value of Pa

is bounded by —X/NRi. These two equations arc exactly the ones appearing in (1.5) for

the Kaluza-Klein momentum and the level matching condition (1.1) for the BPS states.

It is also clear that the two multiplicities match, as both are given by the coefficient of

(j^""1 in the expansion of i?(q)~24.

Furthermore, the mass of the bound state is the original mass of N D-strings wrapped

around the circle, plus the energy carried by the excitation, which is given by the coefficient

of T = R[Ti in Z(\, N). Since the partition function depends only on q the latter is equal

to Pa. Thus the total energy is ~^- + Pa. This is exactly the mass given in (1.6)

predicted by the duality upto a sign. As mentioned earlier P, > -1/iVfi,. Therefore, for

R] > o'Xi/N2 the quantity £ ^ + Ps is positive definite and hence it coincides with the

absolute value appearing in (1.6). However, for R] < nXf/N2 this quantity is negative,

for a suitable choice of the Wilson line B, and the result would not make sense. But this

is exactly the region in which the type I perturbation theory breaks down, as argued in

[2]-

Finally, we consider the situation discussed in the last section where a transverse

direction is compactified on a circle of radius r/ and the system carries a momentum

k/r/. This does not alter the level matching condition and therefore the multiplicity of

the state. Recalling that a'eff = a'A;, we find that the extra energy is k2a'\r/2NR[r2,.

On the heterotic side the mass for a state with winding number Ar along the A'9 direction

and carrying momentum k/rn along the ,Y8 direction is given by

-( — ) 2 - (7.2)

By using the duality relations (1.4) and expanding the square root to the leading order in
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A; we find that the extra mass is exactly k2a'^i/2NRirf, in agreement with the prediction

of duality.

To conclude, we have analysed in detail the orbifold conformal theory arising in the

infra-red limit of the O( N) gauge theory that describes the low energy modes of a system

of N type I D-strings. We argued that the longest string sector of the orbifold theory

describes the bound states of D-strings. An additional support for this identification

also comes by compactifying one of the transverse directions. We have shown that this

identification gives masses and multiplicities of the bound states in agreement with the

predictions of heterotic-type 1 duality in 9 dimensions, for all the BPS charges in F(itn)-

In particular the Kaluga-Klein momentum of the heterotic theory is mapped to the lon-

gitudinal momentum of the D-strings.
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