Nuclear Physics Division IEP UW ANNUAL REPORT 1997

In-beam spectroscopy of ²³¹Pa

M. Würkner^a, J. de Boer^a, M. Loewe^a, H. Steffens^a, J. Srebrny, P.J. Napiorkowski^b,

J. Iwanicki^b, A. Kordyasz^b, M. Kisielinski^b, M. Kowalczyk, J. Choinski^b, T. Czosnyka^b,

Ch. Droste, A.I. Levon^c, J. Kvasil^d, C. Günther^e, T. Weber^e, H. Kusakari^f, T. Shizuma^g,

M. Sugawara^h, Y. Yoshizawaⁱ, G. Sletten^j

^a Physics Section, Ludwig-Maximilians University, Munich, Germany ^bHeavy-Ion Laboratory, University of Warsaw, Poland ^cInstitute for Nuclear Research, Kiev, Ukraine ^dCharles University, Prague, Czech Republic ^eInstitute for Radiation and Nuclear Physics, University of Bonn

^fFaculty of Education, Chiba University, Japan

^gFaculty of Science, Department of Physics, Kyushu University, Japan

^hChiba Institute of Technology, Japan

ⁱCollege of Industrial Technology, Amagasaki, Japan

 j Niels Bohr Institute Tandem-Accelerator-Laboratory, Roskilde, Denmark

An extended study of ²³¹Pa located near the boundary of octupole correlations region was carried out by Coulomb-excitation. Particularly, the investigation of the side-bands is

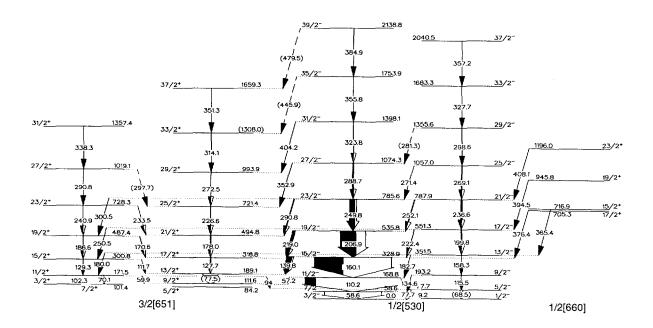


Figure 1: ²³¹Pa level scheme

possible in this case because strong K-mixing of the bands enables their excitation. Comparison of ²³¹Pa and ²²⁹Pa at the boundary of octupole correlations allows to test the influence of these correlations on the nuclear structure . A $105 \,\mu g/cm^2 \, ^{231}$ Pa oxide target on a $15 \,\mu g/cm^2$ carbon backing was bombarded by 148 MeV ³²S and 255, 260, 261 MeV ⁵⁸Ni projectiles. The particle- $\gamma\gamma$ coincidences of 20 Compton-suppressed germanium detectors of NORDBALL were read out in coincidence with backscattered projectiles. Position and energy of backscatered particles were measured with either a PSD-silicon detector[1] or a multi-PIN Si-diode detector[2].

A continuation of the known part of the $3/2[651] 5/2^+$ band was identified up to $37/2^+$ (see Fig.1) in addition to the $1/2[530] 3/2^-$ g.s. rotational band [3] by evaluating 400kevents of particle- $\gamma\gamma$ coincidences. The Radware97 computer code [4] was installed and used for this purpose. Energy and intensity of the gamma lines were fitted using the GASPAN [5] computer code. Intensity of Coulomb excited gamma lines are analyzed by the least-square search Coulomb excitation computer code GOSIA[6]. From the GOSIA analysis in a model independent way E2, E3 and M1 matrix elements will be deduced. Theoretical calculations of the ²³¹Pa structure are done in the quasiparticle-phonon-model [7]. A comparison of theoretical and experimental data gives interesting information about the 3/2[651] band structure and a possible structure change at high spins in the 1/2[530]band, as well as new insight into the nature of the weakly excited 1/2[660] band.

Acknowledgments: This work was jointly funded by the following agencies: the Munich and the Niels Bohr Institute Tandem-Accelerator-Laboratories; the Polish State Committee for Scientific Research; DFG, grant Bo 1109/1-5; Volkswagen-Stiftung, grant I/70 407; WTZ grant UKR-036-96

References

2

- M. Sugawara et al., Activity Report, Niels Bohr Inst. Tand. Acc. Lab., 1994, p.94 Nucl. Phys. A557, 1993, p.653c
- [2] M. Würkner et al., Annual Report, Munich Tand. Acc. Lab., 1995, p.115
- [3] M. Würkner et al., Annual Report, Munich Tand. Acc. Lab., 1996, p.35
- [4] D.C. Radford, Nucl. Instr. Meth. A361,1995, p.297 and Proceedings of the International Seminar on the Frontier of Nuclear Spectroscopy, ed. Y. Yoshizawa, H. Kusakari and T. Otsuka, World Scientific,1993, p.229
- [5] F. Riess, Annual Report, Munich Tand. Acc. Lab., 1991, p.168
- [6] T. Czosnyka et al., Bull. Am. Phys. Soc., 28, 1983, p.745
- [7] A.I. Levon et al., Nucl. Phys. A598,1996, p.11-46