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ABSTRACT

A low temperature lattice modulation of the chains of the YBa;Cu3zO7 is
considered by deriving a Hamiltonian of electron-lattice interaction from
density-functional calculations for deformed lattices and solving it for the
groundstate. Hubbard-type Coulomb interaction is included. The obtained
groundstate is a charge-density-wave state with a periodicity of four lattice
constants and a gap for one-electron excitations of about 1leV, sensitively
depending on parameters of the Hamiltonian. There are lots of polaronic
and solitonic excitations with formation energies deep in the gap, which can
pin the Fermi level and thus produce again metallicity of the chain. They
might also contribute to pairing of holes in adjacent CuQO,-planes.

1. Introduction

Treating in mean field approximation a Holstein type model Hamiltonian with
reasonable assumptions on the deformation potentials for chain states of YBa;CuzO7,
a charge density wave (CDW) groundstate of the chains was predicted some time ago
[1]. In the present work, the model is refined and extented to include Coulomb
correlations. A great number of deformation potentials have been determined by
density-functional calculations. The treatment of the model is improved by using
Hartree-Fock theory plus many-body perturbation theory. This has been checked by
direct diagonalization for short chains to give correct results. The previous results for
the CDW state and the low-energy polaronic excitations are confirmed. The CDW
groundstate was recently directly seen experimentally [2].

In subsequent sections, the electron count for the chain is considered, then
the model is introduced in three steps: first a tight-binding fit for the undistorted
chain is found, second the deformation potentials are determined, and finally screened
Coulomb correlation terms—again provided with deformation potentials—are added.
The model is solved by minimizing the total energy, and results are given.
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2. Electron Count in YBa,;Cu30;

The stacking sequence of the unit cell of YBa;Cu3zO7 in c-direction is as follows:

cationic sheet Y13
metallic plane [CuQ,]~?**
cationic sheet Bat?
metallic chains [CuQ3]=3-?

cationic sheet Bat?

metallic plane [CuQ,)~2*

6 i1s the number of holes per unit cell in one CuO;-plane. Experimentally it is close
to 0.25 [3). If in the CuOj-radical of the chains all Cu(3d)-states and all O(2p)-
statles were occupied, a [CuQ3]~°-layer would result. At the top of the Cu(3d)-O(2p)-
band complex, a single antibonding band is nearly separated, which can hold two
clectrons per unit cell (one per spin), if it is not split by correlation. In order to get
a [Cu03)73~% situation, this band must be occupied by 26 electrons, which number
is experimentally close to 0.5. This means that on average only every second unit
cell is occupied with one electron in this band, and hence the band is expected to be
quarterly filled and only weakly correlated (in contrast to the half-filled—with one
electron per unit cell—strongly correlated plane-band of YBa,Cu30s).

3. Electronic Chain Model

The singled out antibonding Cu(3d)-O(2p)-band of the chains hybridizes only
very weakly with other orbitals in the structure. Fig. 1 shows the relevant orbitals
of the chain. The chain band of interest is the upper band of the 2 x 2 Hamiltonian

matrix
N E; 2T sin k
(H)*(szink E, ) (1)

1.e., the band

e(k) = E + /A4 + (2Tsink)?, E=(Ei+ E:)/2, A=E —E. (2

All-electron selfconsistent density-functional calculations yield a width of this band of
2.5 eV. With the simple model (2) we were able to fit the result of such an all-electron
calculation within 0.04 eV (maximal deviation).

Our aim is to study electron-lattice interaction. To this goal we consider dis-
placements u? of type v related to the chain site :. v may, e.g., denote a direction
for the chain oxygen atom or an internal molecular mode of the CuQ; radical formed
with the apical oxygens, or even a displacement of another atom off the chain. We
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FFigure 1: Orbitals of the chain band model. F; is the orbital energy of the anti-
bonding CuQ, molecular orbital of the chain-Cu and the two apex oxygens, E; is
thie orbital energy of the chain oxygen, and T is the transfer matrix element between
both orbitals.

generalize the Hamiltonian (1) into a Holstein-type Hamiltonian

a=% [Eié:'réi — Tiiqr(&léipr + é:'r+1é‘)] ’ (3)

E;=E)+> aul, = TO + Z (fy,,u + fy:,u;’) (4)
with deformation potentials v, and v,, 4".

4, Deformation Potentials

In order to obtain reliable deformation potentials (4) for the real solid, and also
to get a better understanding on what are the relevant lattice modes, we performed
independent all-electron selfconsistent density-functional calculations for quite a num-
ber of frozen in zone center and zone boundary displacive modes. For each displace-
ment pattern, the resulting bands originating from the band (2) of the undistorted
structure were fitted with our tight-binding model parameters (4). In order to track
possible changes in hybridization with other orbitals when the symmetry of the lattice
is lowered, we used an all-electron LCAO scheme for the density-functional calcula-
tions, which gave reasonable agreement with full-potential results {4]-—particularly
with respect to the considered chain band—, but yielded directly projections on
atomic orbitals for all band states. The quality of the tight-binding fits for the en-
ergies was in all cases as reported in the previous section, although the fit was not
always quite unique for the matrix elements E;, £, and T'.

Results of such density-functional calculations of deformation potentials are
given on I'ig. 2a-e for zone-center modes, and on Fig. 3a-c for zone-boundary modes.
The deformation dependence shown on Fig. 2a agrees with a previous independent
calculation [5]. Note in Fig. 3 the large gap in the upper chain band produced by
quite small displacements of the oxygen atoms of the chain.
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Figure 2: Band structure of YBa;Cu307 in dependence of various zone-center dis-
placements of atoms. The bands of the undisplaced lattice are given in dashed lines
on all panels. Energies are given in mHartree units, displacements in A.

a) Symmetric apex oxygen displacement in z-direction, u is the change in oxygen-
oxygen distance.

b) In phase displacement of plane oxygen O(2) and O(3) in z-direction, u is the in-
crease of the distance between planes across the chain.

c) Antiphase displacement of plane oxygens in z-direction.

d) Plane-Cu displacement in z-direction, u is the increase of the distance between
planes across the chain.
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IFigure 2: Continuation.

e) Ba displacement in z-direction, u is the increase of the Ba-Ba distance across the
chain.
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Figure 3: Effect of zone-boundary displacements on the band structure. The dis-
placement patterns are alternating along the chain with a doubled unit cell. Two
chain bands appear from folding in the previous single one. They are marked in the
panels.

a) Apex oxygen displacement in z-direction, alternatingly up and down, u = £0.1A
is the sign-alternating change in oxygen—oxygen distance.

b) Chain oxygen displacement in y-direction, v = 0.1A is the alternating change in
Cu-0 bond length.

¢) Simultaneous displacement as in a) by u = +0.075A and as in b) by v = £0.15A.
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One can see from Fig. 2 and Fig. 3 that the chain oxygens produce by far
the strongest deformation potentials for the antibonding chain band. It is, however,
interesting to note that the influence of z-displacements of plane-Cu, plane-O, and
also of Ba on the chain band is not symmetric. Displacements towards the chain
and away from it produce amplitudes of band deformation, very different in absolute
value. This results in a dependence of the average occupation of the chain band, that
is, of the doping parameter 8, on the amplitude of those vibrations. A consequence
may be a contribution to the isotope effect on T, via an isotope effect on §. This
contribution to the isotope effect on 7, would be weakest at optimal doping, where
the influence of & on T, is weakest [6].

Our results for the model parameters are

E, = 2V —1.76eV/A - u+0.55eV/A - v,
E, = 0-0.88eV/A :u+0.55V/A v,
T = 1.70eV —1.23eV/A -u —1.60eV/A - v, (5)

where u is the change in the vertical distance of the two apex oxygens from each
other, and v is the change in chain-Cu—chain-O bond length. These numbers fit
simultaneously the results of Fig. 2a and of Fig. 3. The other modes, producing much
weaker band deformations, were not considered further.

5. Screened Coulomb Interaction

As a next step, we generalize the Hamiltonian (3) by introducing Coulomb
correlation terms according to

0= hji(u)éle; + Y Us(u)eladle, (6)

<ig> <>
where the sums are over on-site and nearest-neighbour contributions, and the first
sum is a short notation of (3). In order to obtain the Coulomb matrix element U for
our CuO, molecular orbital we started from atomic values Uy = 8eV, U, = 2.5eV,
and Vy, = 1.3eV for the Cu-d orbital, the O-p orbital, and the nearest-neighbour
interaction matrix element, respectively. Those are characteristic values used in the

literature.
The molecular orbital of Fig. 1 is a linear combination

¢ = ca(u)da + cp(u)(dp1 — ¢p2) (7)

of the copper-d state and the apical oxygen-p states. Using the above U’s and V, and
coeflicients c(u) obtained from our model (3), we get

Uy = 4.5eV+1.5eV/A - u,
U22 = 2.56\/,
U, = 1.3eV—1.3eV/A -v. (8)
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The last deformation potential with respect to v is a guess. The subscript 1 stands for
the CuO; radical and 2 stands for the chain oxygen atom. Spin indices are suppressed
here, while in (6) ¢ and 7 denote both chain site and spin.

6. CDW Groundstate and Excitations

The Hartree-Fock groundstate of (6) is a Slater determinant of single-particle
spin-orbitals .
bulr) = X chbi(r). )

Here, ¢ again denotes both chain site and spin. The corresponding single-particle
spin-density matrix is

i occ.
Py ={&¢) = ) cie (10)
n

We use the following expression for the total energy of a frozen deformation pattern:

1
Ewor =Y, Pijhij(u) + E PyUsj(uw)Pij — Y|P [PUij(u) + Emp2 + 5 E IG,u,. (11)
) w

17 13

The first three contributions comprise the Hartree-Fock expectation value of (6).
The fourth term denotes the second order Mgller-Plesset perturbation contribution,
and the last term is the elastic energy of the lattice, originating from direct ion-ion
interaction and the energy of the valence electrons, except those of the chain band
states. We determined the force constants K;, so that the experimental vibration
{requencies of the corresponding zone-center modes are reproduced by the total energy
expression (11). The obtained values are

K., =79eV/A?,  K,=09.1eV/A%. (12)

The deformation parameters u and v are those used in (5) and (8).

The parameters of the expression (11) are the cL of (9) and u and v. For finite
chains of lengths typically of 60 to 100 formula units, and for given electron numbers,
those parameters were varied iteratively to find the minimum of (11). The results are
deformation patterns and charge distributions over the chain. In order to check the
approximations of (11), we compared the results with direct diagonalization of (6) for
short chains and found very close agreement.

Fig. 4 shows the deformation pattern and the CDW for an exactly quarter
filled chain band. As expected, a Peierls distorted superstructure with a period of
four original unit cells is obtained. The corresponding Peierls gap in the band is
1.2eV, but this number depends sensitively on Uj; and its deformation potential.
This CDW, which was predicted already in [1] by calculations on the basis of model
(3), was recently directly seen by scanning tunneling microscopy [2]. (Note that the
experimental period is very close to four unit cells, while for a strongly correlated
situation considered in [7] a period of two unit cells should be expected.). Further
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[ligure 4: Deformation pattern and CDW of a quarter filled chain. The corners of the
plaquettes are the oxygen positions (true scale). Dotted lines give the undistorted
chain. The charge p per plaquette of the CDW is given in proton charge units.
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experimental support of our CDW picture, involving large displacements of the chain
oxygeun, is provided by thermal diffuse scattering data [8] and x-ray-diffraction data
[9]. In this context also difficulties to observe the longitudinal vibrations of chain
oxygen off the zone center by inelastic neutron scattering [10} are noteworthy. The
amplitude of displacements of the apical oxygens in c-direction is experimentally less
clear. Relatively large split-positions of 0.13A reported by EXAFS-studies [11] might
be caused by chain oxygen vacancies affecting strongly the apex oxygen positions at
the chain ends 12, 13].

Starting with the commensurate CDW groundstate we put additional electrons
or holes into the chain and find their charge autolocalized in local deformation pat-
terns extenting over a few formula units. A rich variety of such solutions is found
with formation energies (differences of results for (11) with additional particles taken
{rom the Fermi level) of a few tenths of an eV and hence deep in the Peierls gap.
There are electron and hole polarons, electron and hole bipolarons, solitons, neutral
polarexcitons, and others. An example of a hole bipolaron is given in Fig. 5.

7. Conclusions

One-dimensional structure elements are either present in the primary structure
of cuprates as in YBa,Cu3zOy7, or appear as low temperature structural modulations
[14]. I a quasi-onedimensional band is singled out in the vicinity of the Fermi level,
a CDW is very likely forming due to the large oxygen deformation potentials arising
{rom the large polarizability of the O~2-ion.

The Peierls gap of the commensurate CDW is filled with nonlinear polaronic
excitations of both fermionic (e.g. polarons) and bosonic (e.g. bipolarons) type. The
chemical potential is expected to adjust within the density of states of those polaronic
excitations, because charge shifts are connected with those excitations producing
Madelung potential terms.

Bipolarons may form heavy scattering centers for conduction holes of the
cuprate planes. They also may mediate attraction between those conduction holes
and hence contribute to the pairing mechanism of superconductivity [15, 16].

Acknowledgements

We would like to thank Prof. A. Miiller and Prof. D. Mihailovic for useful
discussions and the DG under Grant No. Dre-269/1-5 for financial support.

References

1. H. Ischrig and S.-L. Drechsler, Physica C 173 (1991) 80; H. Eschrig, S.-L.
Drechsler, and J. Malek, in Phase Separation in Cuprate Superconductors (Eds.
IC.A. Miiller and G. Benedek, World Scientific Singapore 1993) p. 280.

. H.L. Edwards et al., Phys. Rev. Lett. 73 (1994) 1154.

. N. Nucker et al., Phys. Rev. B (submitted) (1994).

. W.LE. Pickett, R.E. Cohen, and H. Krakauer, Phys. Rev. B 42, (1990) 8764.

= e N



104

L XN o

10.
11.

12.

13.
14.
15.
16.

O.K. Andersen et al., Physica C 185-189, (1991) 147.

V.Z. Kresin and S.A. Wolf, Phys. Rev. B 49 (1994) 3652; these Proceedings.
R. Fehrenbacher, Phys.Rev. B 49 (1994) 12 230.

Y. Koyama and Y. Hasebe; Phys.Rev. B 37 (1988) 5831.

J.D. Sullivan et al., Phys. Rev. B 48, (1993) 10 638.

W. Reichardt, these Proceedings.

J. Mustre de Leon et al., Phys.Rev.Lett. 85 (1990) 1675; E.A. Stern et al.,
Physica C 209 (1993) 331.

‘T. Egami et al., in Electronic Structure and Mechanisms of High-Temperature

Superconductivity, ed. J. Ashkenazi et al. (Plenum Press, N.Y., 1993); these
Proceedings.

J. Rohler, these Proceedings.

A. Bianconi, these Proceedings.

J. Ranninger, Z. {f. Phys. B 84 (1991) 167; these Proceedings.
Y. Bar-Yam, Phys.Rev. B 43 (1991) 359.



