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Abstract /
theoretical part and some results obtained from a model realised

for fission processes in wide range of mass-asymmetries: The fission barriers are com-
puted in a tridimensional configuration space using the Yukawa - plus - exponential
macroscopic energies corrected within the Strutinsky procedure. It is assumed that
channel probabilities are proportional with Gamow penetrabilities. The model is ap-
plied for the disintegration of the 239U in order to determine the relative yields for
the production of neutron rich nuclei at diverse intermediate energies.

I. INTRODUCTION

A few years ago, an ongoing program was started in order to produce neutron rich
beams obtained through fission processes induced by fast neutrons [1]. These neutrons are
obtained by breaking up an intense deuteron beam in a dedicated converter. The aim of
this program is the investigation of the optimum conditions for the production of neutron-
rich fission fragment beams extracted from thick targets. The challenge consists in the
R&D for a device in which the produced activities are transferred to an ion-source with
high efficiency. This will be crucial for the viability of projects like the one proposed by
the National Argonne Laboratory [2]. It will also be of high interest for radioactive beam
facilities under construction [3, 4], like SPIRAL at GANIL, which may benefit from an
intense deuteron beam.

An appropriate theoretical tool for estimations of fission products towards neutron
drip line is needed in order to investigate the optimum conditions of their production in
connexion with the excitation energy and the reaction channel. In the following, such a
model developed in the frame of PARRNE [1] (Production d'Atomes Radioactifs Riches en
Neutrons) projet is described. For the time being, the variation of the neutron rich nuclei
relative yields are studied as a function of the excitation energy of the parent nucleus 239U
to try the determination of optimum production conditions. These nuclei are produced in
our experiments by bombarding the 238U with the intense secondary neutron flux obtained
by breaking up a deuteron beam in a Be converter. For the simulation purposes, the range
of the excitation energy was choosed in the interval [5-100] MeV.
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II. FORMALISM

We realised a code able to calculate the relative probabilities for the formation of a
binary system of two different nuclei characterized by different mass and charges (A\,Zi)
and (A2, Z2) from a parent nucleus (AQ, ZQ) as function of its excitation energy.

II.1. Nuclear shape parametrization

The nuclear parametrization is defined by joining smoothly two intersecting spheres
of radius R\ and #2 with a neck surface generated by the rotation of a circle of radius
R3 around the symmetry axis, as presented in figure 1. The distance between the center
of this circle and the axis of symmetry is given by p3. By imposing the condition of
volume conservation, the surface is perfectly determined by the values of the parameters
R (distance between the centers of the spheres), R3 (the radius of the neck) or C = S/R3
(where S = +1 when p3 — R3 > 0 and S = — 1 when p3 — R3< 0) and R2 (the radius of the
emitted fragment). These three parameters characterize the elongation, the necking and
the mass-asymmetry, respectively. Due to the axial-symmetry of this system, the surface
equation is given in cylindrical coordinates:

r [a* - (z - zi)*?'* z<Zcl

Ps(z) = \ p3-S[R\-{z- z3)
2}1/2 zcl<z< zc2 (1)

{ [Rl-{z-z2f]
112 z>zc2

For extremely large values of R3, that means for C = S/R3 ~ 0 fm"1 the parametrization
in the interval zcl < z < zc2 is described by relation:

p,(z) = [a(z - zcl) + b]1'2

with
a = {[Rl- (zc2 - z2)

2}* - [R\ - (zcl - z1)
2]^}/(zc2 - zcl)

b=[R\- (zcl - *i)2]*

The significance of all the geometrical symbols are presented by means of figure 1. The
subscripts 0,1 and 2 help to assign the parent, daughter and the emitted nuclei, respectively.
The initial radius of the parent is RQ = TQAQ , the final radii of the two fragments are
Rif = TQAJ , with i — 1,2 and the constant radius 7*0 = 1.16 frn. In equation (1), ps

denotes the value of the coordinate p on the nuclear surface. "Diamond"- like shapes are
obtained for S = — 1 and necked-in shapes for 5 = +1 . When 5 = — 1, the volume of the
emitted fragment V2 is always computed in the interval [zc2,z2 + R2]. In the case 5" = +1
we compute this volume between [zc2, z2 + #2] when zc2 < z3 and between [z3, z2 + R2]
when zc2 > z3. During the deformation process, the condition of volume conservation
Vi + V2 — Vo is preserved. When R3 = 0. fm, the simple parametization of two intersecting
spheres is obtained. This nucleus shape parametrization was widely used in nuclear dynamic
calculations [5] in a large range of mass asymmetries because it accounts for the most
important degrees of freedom encountered in fission processes: elongation, necking and
mass-asymmetry. In the following, sometimes, in place of R we use Rn = (R—Ri)/(Rf — Ri)
which defines the normalised coordinate of elongation. Here Ri = RQ — R2f represents
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Figure 1: Nuclear shape pararnetrization

always the initial moment when a nascent fragment starts to escape from the spherical
parent nucleus and Rf = Rif + R2/ represents the touching point configuration when the
two fragments have a spherical shape.

A single trajectory in the configuration space is used for all the channels, i.e., the
dependence of R3 as function of R is the same for all the processes. This trajectory
assumes that, during the fission process, the nucleus has a prolate deformation with a very
large neck radius R3 The scission is approximatively achieved when the neck radius reaches
zero. The sequence of nuclear shapes during the fission process for the disintegration of a
parent nucleus with mass Ao=239 in two fragments with masses 96 and 143 is shown in
figure 2. In this representation the normalised elongation coordinate Rn begins at 0 and
varies with 0.1 steps.

II. 2. Macroscopic deformation energy

The deformation energy was computed in the framework of the Yukawa-plus-exponential
[6] model extended for binary systems with different charge densities [7] where another de-
gree of freedom is introduced, namely the charge asymmetry. The charge density of the
system is kept initially unchanged, and in the final stages of the process where very necked
forms are reached, the charge densities of the two fragments are linearly varying function of
R up to their final values in the output channel. This behaviour is suggested by the exper-
imental observation of a fast equilibration processes. The potential has been used in 1979
in one of the three variants of the numerical superasymmetric fission model developed to
study a-decay as a fission process. We are now employing updated values of the numerical
parameters [8]. Both nuclear, En,

(2)
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Figure 2: Sequence of nuclear shapes during the process.

and Coulomb, E
c,

( )

(with ri2 = | rj — r~2 I) energies are expressed as a sum of three shape dependent terms: the
self-energies of the fragments (Bni, B&, i=l,2), plus the interaction energy (Bnl2, Bci2):

En/E°n = (cal/ca)Bnl + [(calca2)^
2/cs]Bnl2 + (ca2/cs)Bn2 (4)

Ec/E°c = (pU/p0e)2Bcl + (PleP2e/p2
0e)Bcl2 + (p2e/' POefBc2 (5)

where E® and E° correspond to the spherical shapes, pie are charge densities and

cai = aa{l-Ka{Ni-Zi)
2IA}} (6)

pie = 3eZi/(4irr3
0Ai) (7)

with the parameters: a8 = 21.13 MeV, KS = 2.3, a = 0.68 fm, av = 15.9937 MeV,
KV = 1.927. The quantities Bni and Bd in the above equations are dependent on nuclear
shape; their expressions containing two- and threefold integrals are evaluated by numerical
quadrature.

Further more, the contribution of the volume energy is added

Ey = Ey\ + Ey2 — Eyo (8)

where

EVi = -av[l - KV(Ni - Zi)2/A2} (9)

The interaction energy of two spherical nuclei may be found by using analytical relation-
ships. So, the total deformation macroscopic energy becomes:

#LDM = En + Ec + Ev-E0 (10)

The microscopic energy must be added to this macroscopic potential.



II.3. Level scheme

The energetic levels are obtained with an improved version of the superasymmetric
two-center shell model (STCM) [9, 10].

For the nuclear shape parametrisation presented above, the microscopic potential (in
cylindrical coordinates) is split into several parts which are treated separately:

V(p, z, if) = V0(p, z) + Vas(p, z) + Vn{p, z) + VLs(p, *, <p) + VL2(p, z, <p) - Vc

(11)

where Vb(/>, z) represents the two-center harmonic potential whose eigenvectors can be
analytically obtained by solving the Schrodinger's equation. It is given by the relation:

{z - z2f + \m^y, z > 0

where mo is the nucleon mass, z\, z% (reals, positives) represent the distances between the
centers of the spheroids and their intersection plane and a;; is the oscillator stiffness.

The role played by the other terms in the total potential, i.e., Vas, Vn, Vu, Vp, Vc

is related to the mass-asymmetry, to the necking, to the spin orbit coupling, to the I2

correction and to the depth of the potential, respectively and are defined as in Ref. [9].
The mass-asymmetry term is the same as that used in Ref. [10].

Due to the cylindric symmetry of the system, the quantum numbers along the p-axis
(np) and ^-coordinates (m) are constants of the motion.

The spin orbit and I2 coefficients are obtained from Ref. [12] by interpolating the
published values as funtion of their mass.

II.4. Shell effects

The shell effects are computed using the well known Strutinsky procedure [11]. The
total energy is the sum of the liquid drop energy and the shell and pairing effects due to
the protonic and neutronic level schemes.

The shell correction is:

where ev are the single-particle energies, A is the smoothed Fermi energy,

- ^ ' (14)
7 J-°° 7

is the mean density of single particle levels, 7 is an interval around the Fermi energy which
is taken 1.15 (in hw units) times the value of the mean distance between the major shells
of the light fragment, while

2m

Jk=0,2



is the well known Strutinsky smoothing function with Hermite polynomials. The sum over
v means for all the levels with energies below the Fermi value. The smooth value of the
Fermi energy A is obtained as usual from the condition of number conservation. For odd
nuclei the procedure becomes a little more complicated. We perform the estimation for the
even neighbouring system and we compute the difference given by relation (13) only for
the odd nucleon. This latter value is added to the shell correction.

The pairing correction is for [protons - indice p and for neutrons - indice n]:

8Ppin) = P- 2 (15)

where P is the value obtained directely from the level sheme while the smoothed distribution
gap parameter A is deduced from the BCS equation on the form:

2__ /•*+«
G~h-a fCe-A

gde 20
(16)

and fi is an energetic interval of the order of 7 and G represents the pairing strenght.
For odd filled level we appealed to the blocking effect in computing this correction.
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Figure 3: Potential energy in the ground state (b) and in the excited state (a) at an
excitation energy of 100 MeV during the disintegration of the 238U with heavy fragment
136Xe.



We use the Franck-Condon principle in a sense similar to that presented in Ref. [14]
where it is evidenced that in an ideal colective model, the excitation process takes place in
such a way that the positions and velocities coordinates of the heavy part of the system
remains unchanged. At a fixed value of the deformation coordinates we assume the system
shifts from one potential to another.

The excitation energy will damp the shell effects. For simplicity, we assume an expo-
nential decay [13]

Utot = ELDM + SU(T = 0) exP(-r 2 /T 0
2) (17)

where £t,DM is the liquid drop potential along the trajectory path and SU = SVP + SVn +
SPP + SPn is the sum of shell and pairing corrections (for both neutronic and protonic
scheme) calculated for the ground state. The nuclear temperature T is connected with the
excitation energy

E* = A0T
2/(10 MeV) (18)

where the value To=1.5 MeV allows the shell corrections vanish if E* > 60 MeV. A com-
parison between the nuclear shape of the barrier in the ground state and at an excitation
energy of 100 MeV is displayed in figure 3. So, when the nucleus is excited, according
to the Franck-Condon effect, the system will skip from ground state potential energy to
another one characterized by its nuclear temperature.

II.5. Penetrabilities

The multidimensional fission penetrability P is calculated in the semi-classical Wentzel-
Kramers-Brillouin (WKB) method. The region of interest is classical forbidden. The
integral is computed for a given energy which connects one point in the ground state and
the exit point from the barrier, called end or turning points, along a classical trajectory in
the configuration space.

The action integral during the disintegration can be written:

n
J2BE(R,C,R2)dR (19)

where Ra and Rb are the turning points, B is the reduced mass of the system B = A1A2/A0
and E — Utot — Es.a. — Ev — Emac is the high of the forbidden barrier. Utot is defined by Rel.
(17), i£g.s. is the lower state of the whole system at a given temperature (it corresponds to
the ground state energy at T=0), Ev = 0.5 MeV is the zero point vibration energy and
Emstc = 1.5 MeV is the macroscopic kinetic energy.

The purpose of calculations dealing with minimal action principle is to obtain the lower
value of this integral by finding a least action trajectory between the end points determined
by the given value of the energy and also for any variation of the initial conditions in the
turning points. It is considered that the path for the minimal action is the same for all
the channels as discussed in section II. 1. Our goal is to deduce for a given excitation
energy the two or four (if the second minima of the barrier is below the energy of the first
turning point) turning points which determine the value of the action integral and after
that to compute the penetrabilities of a given channel. Afterwards, for a given excitation
energy it is assumed that the the yield of a given nuclide formation is proportional to the
penetrability. In this way, relative yields can be obtained.



III. RESULTS AND DISCUSSION

The channel preformation fulfills two requirements. First of all, the blocking effect is
computed taking into account the fact that unpaired nucleons of the two nascent fragments
preserve their spin projection fl during the decay and after the separation. In other words,
the excitation of the parent nucleus 239U from its ground state is realised in such a manner
that the unpaired nucleons have the same values of its spin projection Q and of the quantum
numbers np and m as those in the ground state of the final fragments. Secondly, the light
fragment maintains its radius during all the process.
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Figure 4: Filled squares: the experimental yields obtained in Ref. [1] for 90~92Kr and
139Xe; empty squares: the theoretical values of 87~95Kr and 133~146Xe normalised to the
91 Kr experimental value; empty circles: theoretical values belonging to 9°-92Br and 139-142I;
stars: hypothetic values for 147-148Xe. E*= 10 MeV

A serie of parameters can be taken into consideration in order to fit with experimental
data [15]: on one hand, the macroscopic kinetic energy EmaiC which is distributed among the
generalized coordinates of the system and it is lost surpassing the barrier, and on the other
hand some parameters of the model as the surface diffusivity entering in the calculation of
the macroscopic potential barrier computed with the Yukawa-plus-exponential formula or
the value of the /2-coupling coefficient belonging to the two-center microscopic model [16].
We choosed to try a fit by variations of the last two parameters entering in the potential
end keeping the macroscopic kinetic energy non-perturbed (fixed at 1.5 MeV). This choice
is justified by Ref. [16] where it is affirmed that for nuclei advancing towards the neutron
drip line the £2-coupling coefficient dumps and the microscopic potential becomes similar
to a simple oscillator. In the same time, the diffusivity of the surface term increases.
Comparisons with yields available for 238U fission [15] for even-even fragments show that if
the coefficient aa is increased with 0.0005 MeV with the addition of one neutron when the
nucleus has more than 4 neutrons in excess relatively to the stable isotope, the theoretical
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Figure 5: The logarithmic yields in arbitrary units of Kr (squares) and Xe (circles) versus
the difference between neutrons and protons at different excitation energies E* for the
fission of 239U. For the normalisation, the logarithm of the maximum yield is 0 in each plot.

results are in good agreement with the experiment. The tests realised by vanishing the
Z2-coupling term destroyed the agreement previously obtained with the experimental data
by varying only aa.

This version of the STCM constructed for large mass-asymmetries is unable to compute
the splitting in two fragment with approximatively equal masses without appreciable errors.
In this work, it is the reason for a lack of information for nuclei with masses near 120.

Anyhow, information about the dependence of the variations of the yields for different
nuclides in different areas of the nuclear chart versus the excitation energy of the parent
nucleus are provided. In this work, the attention is focussed on the Z=36 (Kr) and Z=54
(Xe) isotopes since an experiment has been performed in the frame of our project [1] in
order to estimate the noble gases neutron rich nuclei production. Results obtained for
prompt fission Kr and Xe products are presented in figure 4 for a wide range of masses and
for E*=1Q MeV. The theoretic yields are normalized to the experimental value obtained
for 91Kr. The experimental data from Ref. [1] are plotted with filled symbols. Also, the
theoretical value determined for 139I prompt fission relative yield is plotted and it is very
close to the experimental 139Xe value. It is known [17] that 139I (T1/2=2.3 s) decays by
/^-emission in 139Xe and contributes to the yield of this isotope and, in figure 4, matches
the experimental value, if the yields are considered to be provided only by binary prompt
fission products. Because precise data for the 7-rays of 139I are not available, we may
study its production in a future experiment of our project once a on-line mass-separator
becomes available. Also theoretical expectations for 90~92Br and 139~140I axe plotted. The
90-92gr yjei^g aje ^o o \OVf to infer the values measured for Kr while the 139~142I yields
compete with the final productions of 139>140Xe. In figure 4, two stars indicate theoretical
results for 147>148Xe isotopes which are unstable prompt fragments and therefore are not
good candidates for radioactive beams. In consequence, these two isotopes are not very



interesting in the context of our experiment but their representation indicates that Xe
theoretic yields begin to decrease near the neutron drip line. If we consider that 2 or 3
neutrons are emitted in each fission event, once again, the theoretical values agree with the
experimental ones as it will be discussed below.

In figure 5, the relative Kr and Xe yields (Y) obtained from our code are displayed in
a logarithmic scale for a set of excitation energies versus the isospin N — Z.
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Figure 6: Comparison between experimental and theoretical values obtained after the evap-
oration of one nucleon.

Let us note, as displayed in figure 5, that the slope of the decrease of the Kr neutron rich
isotope production becomes more accentuated as the excitation energy is increased. Thus,
for the production of Kr neutron rich isotopes lower excitation energies must be preferred.
The production of neutron rich Xe isotopes is always close to the maximum value obtained
for Kr.

In the case of fission, it is expected that the intrinsec excitation energies will be shared
between the two nascent fragments proportionally to their masses. As an example, for
a hypothetic total excitation energy of 100 MeV, about 60 MeV will be taken by the
heavy fragment (Xe in our case). This energy will be lost by nucleon evaporation and the
prompt products formed will be shifted towards the stability. It could be expected from
the trends displayed that the neutron rich heavy fragments will not survive the evaporation
process whereas for excitation energies below 20 MeV, the neutron rich heavy fragments
are more likely to be observed. At low excitation energies, in average 2.5 nucleons are
emitted per fission event in a channel with masses 90 and 140 for the light and the heavy
fragment, respectively. It can be deduced that these nucleons are almost equally distributed
between fragments [18, 19]. In figure 6, the experimental Kr and Xe (unpublished values
belonging to 140Xe and 89Kr are added) values are compared with the theoretical yields for
Kr and I extracted from figure 4. Here, the theoretical yields are shifted with the release
of one neutron to simulate the evaporation (for example, the theoretical yield belonging
to 91Kr is now plotted in the location of 90Kr). The similitude between experimental and
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theoretical relative trends is remarkable (remember that the model provides only relative
values between the yields). In these circumstances, it is tempting to assume that the
/3-decay of the 140I (Ti/2=0.86 s) and 141I (7\/2=0.43 s) primary fission products widely
participate to the observed yields of 139Xe and 140Xe, respectively. This discussion and this
simple interpretation of our results favor an excitation energy for the production of neutron
rich nuclei which can be choosed below 20 MeV. The same trends can be deduced from
Ref. [15] where almost all the fission products for 238U projectile were measured.

Finally, this code provides estimations of the relative probabilities of different binary
fission channels for a parent nucleus (Ao, ZQ) split into two spherical fragments [A\, Z\) and
(A2,Zi), At this stage, the prompt neutron emission and evaporation are not accounted
for, but latter simulation of one neutron evaporation can provide reasonable understandings
of the experimental results. The probability of a binary channel characterized by a given
mass asymmetry is proportional to the simple WKB penetrability formula for penetration
through the barrier between the turning points. The only required parameters are the
mass number, the atomic number and the excitation energy of the parent nucleus, the mass
numbers and the atomic numbers of the nascent fragments, the remaining parameters being
deduced by a fitting procedure.
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