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Abstract
Testing two or more data sets for the hypothesis that they are sampled from the same population
is often required in environmental data analysis. Typically the available samples have a small
number of data and often then assumption of normal distributions is not realistic. On the other
hand the diffusion of our days powerful Personal Computers opens new possible opportunities
based on a massive use of the CPU resources. The paper reviews the problem introducing the
feasibility of two non parametric approaches based on intrinsic equiprobability properties of the
data samples. The first one is based on a full resampling while the second is based on a bootstrap
approach. A easy to use program is presented. A case study is given based on the Chernobyl
children contamination data.

[NON PARAMETRIC TEST, BOOTSTRAP, STATISTICAL SOFTWARE]

Riassunto
Nell'analisi di dati ambientali ricorre spesso il caso di dover sottoporre a test l'ipotesi di
provenienza di due, o piu, insiemi di dati dalla stessa popolazione. Tipicamente i dati
disponibili sono pochi e spesso l'ipotesi di provenienza da distribuzioni normali non e
sostenibile. D'altra parte la diffusione odierna di Personal Computer fornisce nuove possibili
soluzioni basate sull'uso intensivo delle risorse della CPU. II rapporto analizza il problema e
presenta la possibility di utilizzo di due test non parametrici basati sulle proprieta intrinseche
di equiprobabilita dei campioni. II primo e basato su una tecnica di ricampionamento
esaustivo mentre il secondo su un approccio di tipo bootstrap. E' presentato un programma di
semplice utilizzo e un caso di studio basato su dati di contaminazione di bambini a
Chernobyl.



Index
1.Foreword 3
2.Parametric vs. non parametric tests 4
3.The permutation test basic approach 5
4.Normality assumption and tests 6
5.Software implementation generic overview 8

5.1 Full combinations 8
5.2 The Bootstrap option 10

6.A case study, the Chernobyl children contamination 11
7.Conclusions 13
8. Acknowledgments 14



Basic distribution free identification tests for small size samples of environmental data"

l.Foreword
When analyzing environmental data the identification is usually defined as the problem to find a
statistically based answer to the assignability of (at least) two samples to the same population. This
may be the case of a pattern recognition of environmental events, the study of the effects of a
treatment in agriculture or in medicine or the acknowledgment of a sustainable trend in an
ecosystem with respect to a model. The problem class is not particularly sophisticated but
sometimes a wrong approach may be totally misleading due to the data scarcity or to trivial errors in
the statistical hypotheses. The theory of identification tests and the generic decision theory is very
well stated in the bayesian approach even for multivariate data1 but a number of items must be
verified to assure the computability of the decision statistic and of the related questions. First of all
the joint normality of the variables is requested for the more widespread identification tests statistics
but unfortunately the assessment of this hypothesis remains very cumbersome. Even the marginal
normality, a non-sufficient condition for the global property, is frequently not checked with
accuracy, or the data are not enough to reach a believable conclusion. Furthermore in several cases
neither the so called well behavior of the data is so certain, that is to say that strange and subjective
property of the data that comforts everyone in assuming the data to be normally distributed even if
there is not any experimental evidence for it nor there is any normality test overcome or even some
non successful trial exists. But we are intended to face the case where the data are so few that no
serious distribution test is allowed and cues exist of ill data behavior, like a pronounced asymmetry
or a neat data clamping like the data being positive with an average value very close to zero with
respect to the sample variance. In these situation, due to the ignorance of the probability density
functions, any variable transformation to achieve better distributions may be hazardous.
Nevertheless much people refers to tests as Student-t, Chi square or Fisher that not only requires
normality but are demonstrated to have poor robustness against these kinds of data failures.

In the sequel the following notations will be adopted:

The data are assumed to be multivariate and multigrouped in the sense that any item, belonging to a
pre defined group, is measured by a set of determinations or variables. Therefore any sample, Xk,
k=l, ...K, is defined in K nkX m matrices with entries x j,j,k where m is the dimensionality of the
data vector and n^ the k-th group dimension. We have the row index i=l, ... n^, the column index
j=l, ... m and k the group index with n = 2k n^. The Centroid K x m matrix C is given by the
expected values of the data in the k-th group and its best estimate is the average K x m matrix X ,
computed by the averaging of the row entries with respect to k in Xk. The covariance matrices Zk
(m x m) are the expected values of the group normalized sum of cross products of the deviations
from the means. The sample covariance matrices Wk (m x m) are estimated averaging these
products over k and normalizing to nk -1 . The normalization of the sample covariance matrices with
respect to the product of the row/column elements of the diagonal gives the sample correlation
matrices Pk, with ones on the diagonal.

The commonest hypotheses are the independence of the data samples; the omoschedasticy of the
samples i.e. the uniqueness of the covariance, that allows to get a better estimate of E, W , by the so
called pooling, i.e. the weighted average over the groups of the cross products and the multivariate
normality of the data. The latter assumption, even if it should be carefully justified and tested as
possible, gives a strong advantage in the mathematical normalization of the probability functions
and of the test statistics. One further assumption, especially useful in absence of prior knowledge of



the probability functions is the absence of correlation between the variables. This is almost always a
very weak hypothesis and may bring to erroneous conclusions.

A statistical distribution regulates the between groups relationships. The sample statistic is defined
by the m-dimensional mean of the means vector X and by the means covariance matrix <J> (mxm)
estimated by the between groups sample covariance matrix B (m x m) computed from the averaged
(to K) sum of cross products of deviation of the means normalized to K-l.

2.Parametric vs. non parametric tests

Here is the case only to recall that the parametric approach to a statistical test, or to a generic
statistical problem, requires the definition of the probability density functions under the form f(x 9)
being x a data vector of dimensions m and 6 a higher dimension vector of the parameters that define
completely the probability functions that must have predefined functional forms. In the bayesian
approach both the vectors can be considered random variables. When a data sample X is collected
the Bayes theorem gives the opportunity to compute the a posteriori density function of the
parameters, given the data, g(9 X ), as a function of the before available distribution, the a priori
density g(9). The conditioning operator is the likelihood of the data that is, in force of data
independence, the composition, i.e. the product of the probabilities of the data given the
parameters L(X | 9) = Oi f(xj 19). L of course is not a probability because does not meet the axioms
not summing to 1 in mutual exclusive events nor diverging to infinity because the limitation of the
alternatives.

The more widespread statistical tests may be defined in relation to the expected value of 9, in many
cases the hypothesis E(9)=9o must be simply tested against the alternative E(9)=9i. Composite
hypotheses tests may always be redirected to the former and simpler case but their properties must
be restated. The test algorithm is developed in a way to partition the event space of x in two
complementary regions, the acceptance A and the rejection area R so that the test decision will be
assumed depending on the occurrence of x in one of the two regions. For each observed sample, or
for any sample sufficient statistic, two related probabilities are computed :

. The false rejection probability Pf.rj = a = P(x s R | E(9)=9o), called the type I error probability
being 1-ct the confidence level of the test;

. The false acceptance probability Pf,d = p = P(x s A \ E(9)=9i), called the type II error probability,
being 1-P the power of the test.

The region R is chosen in the way that minimizes, given A, the false rejection probability Pf ld, or,
that is the same, to maximize the power of the test p. It is intuitive that the power of the test p must
be a non decreasing function of the sample dimension n and that a, P are in countertendency. The
sampling theory of the identification tests relies on the Neyman-Pearson lemma that states that the
most powerful choice of the region R is the one that satisfies the condition that the likelihood ratio
be:

L(X| E(9)=90) / L(X | E(9)=9,) < b(a)

being b a positive number determined by a. But the bayesian approach valorizes the knowledge of
the a priori information about the distribution of the random variable 9, so that the optimum region
is no more determined by the likelihoods only, but by the a posteriori probabilities in the sense of
Bayes theorem, g(9 IX ). Whichever probability is prevailing, either for E(9)=9o or for E(9)=9i, it
determines if the sample x is in the acceptance or in the rejection region by means of suitable cost



functions that must be integrated over the parameter space with the a posteriori densities. It can be
shown that the Bayesian decision gives a test algorithm that is the most powerful2 as those that are
implemented in the sampling approach following the Neyman-Pearson lemma.

We say that a test is correct if its power 1-p >a , so assuring that the probability to reject the
identification E(9)=9o is greater when E(0)=0i. The test is consistent if the power 1—(3 tends to 1 as
n increases. The relative efficiency of two tests is assessed by comparing the numbers of samples ni,
n2, that assure the same power in the consistency hypothesis.

If the form of probability densities are not known nor any suitable hypothesis on it is acceptable, the
parametric approach fails because the likelihoods and the priors are no more computable. We fall in
the domain of non parametric approaches or, more correctly, of distribution free statistic. In this
domain all the algorithmic development of a test may be questioned and a test statistic may be very
difficult to define. Several times suitable functional transformations are applied to the data to try to
have some practicable hypotesis on the probabilities at hand. Sometimes logarithmic
transformations that transform multiplicative in additive random contributions may, even
intuitively, better approximate the condition of the central limit theorem and then the normality. A
special case is when we have very small sized samples without any knowledge on the distributions.
May be that in these situations the only sufficient statistic are the data themselves and we have to
refer to their basic properties to develop a test. One of these items will be discussed next.

3.The permutation test basic approach
One interesting property of independent data constituting a sample from the k-th population in a
given experiment is that being k the number of data in the k-th group we can resample to create a
lower size group with k'<k data in q=k!/[k'!(k-k')!] different ways. Each new sample is
equiprobable with probability 1/q. This assumpion is by no means restrictive.

Suppose we have two data sets (k=2) with ni and n2 data and that the question is to test if they
belong to the same population. If the assumption is true we can imagine a unique sample with
n=ni+n2 data that we can resample attributing to group 1 or 2 the n data in

n!/(m!n2!)

possible ways with equal probability. If what we are interested to test is the position of the sample,
that is to say that we assume equal moments for the unknown distributions for all the moment
orders >1 and we try to check the identification of the group means xi and :x_2, and if we want a
confidence level 1-a for the identification test, we can assume the test statistic as:

d = I x i - ^ l

and reject the identification only if the resampled groups fraction with d'> I xi - x_21 are less than or
equal to a. For the multivariate case, assumed the absence of correlation among the variables, to
avoid the lack of scale homogeneity it is advisable to normalize the variables with respect to their
standard deviations or to assume instead of d a statistic based on the well known Mahalanobis
distance DJ. Alternatively the test may be decomposed in a sequential test with the same confidence
level a, each for every variable, so that the overall test power is given by the complement to one of
a Pf id obtained as a compound multiplicative probability pi P2 •••Pm- The latter option is unavoidable
if the data matrix is sparse, that is to say if some variable measures are missing.



This kind of tests is called traditionally "permutation test" and is only based onto a very basic
symmetry property of the data consisting in the equal probability of each combination of the
available data from group 1 and2 that, supposed the population to be the same, can be rearranged in
two groups of dimensions ni and n2=n-ni inn!/ (ni!n2!) equal probability combinations. The reader
must consider that no assumption was done on the form of probability distributions of the data,
therefore the permutation tests are certainly distribution free (non parametric as someone says) and
have a largely wider field of application with respect to the tests (Student-t, Fisher, Chi-square) that
require normality. Unfortunately the computer enumeration of the permutations becomes very soon
unpracticable as n increases (cfr. § 7). In some cases, for higher values of n, a bootstrap resampling
method may be adopted to approximate the test statistics and to reduce the computation time.

But there is another topic advantage when using this test: it is possible to evaluate the power |3 and
then the false identification probability Pf id . This allows the evaluation of the efficiency of the test.
Take the case of mean position test where we can assume that the null hypothesis is d=0 to be tested
against the alternative d= D, being the same the variance and the higher order moments. Assuming
that the alternative hypothesis is true translate the group 1 exactly of D in a way that the modified
data centroid 1 is exactly positioned on centroid 2. This way we will achieve a new n=(ni+n?)
dimensional group of population 2 data. The power of test,p , is the fraction of the n!/ n^m!
combinations of the n available data in a ni dimensional subgroup that, falling in the previously
defined acceptance region of the test, give rise to a false identification. It was demonstrated2 that the
efficiency of the permutation test is asymptotically the same as the efficiency of the Student-t test on
the means of normal variables. The same work shows that as ni increases the probability to accept
the alternative hypothesis, whichever may be, reduces to zero. Therefore the test is consistent.

There is a class of non parametric test that are of widespread application in literature and are based
on the variable ranking. Even if they are less efficient than those based on the permutations of the
original data, they are much less time consuming on the computer. Therefore we can consider that
the application domain of the tests here presented should be restricted only to the case of very low
size of the sample and very clear rejection of their normality.

4.Normality assumption and tests

This item is indeed a very delicate one. Many authors have shown that the identification tests based
on the normality assumption are not enough robust against the probability density alterations. On
the other side the normality assumption is fundamental to have a good heritage of algorithmic
developments, of test statistics and of mathematical options. In the multivariate statistic any non
normal approach is almost impracticable. These considerations lead to an often too simplistic
assumption of normality and to a relatively too strong confidence on the central limit theorem
implications about statistically complex processes that however, several times, do not meet the
normality conditions, mainly when the samples are few. There are cases, like those of signed
variables, in which the symmetry violation should advise the experimenter to not risk the normality,
or there may be that the data scarcity and the process ignorance do not allow to verify firmly the
normality. Furthermore we do not have any test for the joint normality of multivariate data and the
normality assumption on the marginal probability density functions is merely a necessary, non
sufficient condition for the global normality. The only theorem we can trust on states that to have
multivariate joint normality all the linear transformations of the data, ideally all the projections on
an arbitrary axis in the event space , must be normal. To verify this property of the data samples is
computationally unfeasible.



There are many sound non parametric methods to get good estimates of unknown probability
density functions, in recent years, in particular, good fortune arose to the multinormal
approximation to an unknown function inspired by the good mathematical quality of the gaussian
functions. The algorithmic and the multivariate extensions remain however quite cumbersome.

What to do? The normality test on the marginal distribution is essential. We know that the random
residuals of any functional approximation must be in turn normal with zero mean and equal
variance so that their sum of squares may be distributed as a chi-square with as many degrees of
freedom as the histogram boxes are. After this very popular test some good non parametric tests are
available, mainly the Kolmogorov-Smirnov test that is based4 on the observation that, as the number
of observation increases, the absolute value of the maximal deviation of the sample value of the
distribution function from the model value, multiplied by Vn, has a (limit) Kolmogorov distribution.
The test on the upper deviation may be managed in the usual way by the definition of a suitable
confidence level 1-oc.

However the most practical procedure for testing the identity of the two population means is to use
sequentially the normal approach (the t-test), given a and then, if the sample dimensions are not too
high, the permutation test with the same choice for a. The subordinate probabilities of false
identification and the power of the test should be computed in both the approaches. The results
comparison may evidence substantial differences in the test parameters. The main cue for the
contradiction may not be else than an hypothesis violation on the probability functions assumptions.
Therefore the two test do not reinforce each other and the permutation test results must be assumed
as correct against the normal tests, because of the distribution free nature of the former. That will be
the sustainable conclusion. As a matter of fact, even if expensive, the method of confrontation
between the results of a normal approach to a distribution free counterpart, if it exists, is the best
evidentiation of the lack of robustness of the normal tests and therefore of the non normality of the
data and may be advantageously substituted to the normality tests.

Suppose we have two small samples drawn from an exponential distribution that is strongly skewed.
We want to test if the difference of the sample means is significant at 95% confidence level, that is
to say if the two samples are coming from the same population against the hypothesis that they
belong to two moved away distributions. Sample #1 will be extracted from a distribution that has
the test acceptance region, at 95% confidence level, defined for X2<0. This will be accomplished
simply assigning ni high enough to assume a normal distribution for the mean and solving the
Student t-test inequality to find xj. Suppose n2=l to have the density function of the mean still
exponential. The analytical form of the density function is very simple, i.e. Xe"*1 for x>0 and 0
elsewhere, with mean X'1 and variance X1. We can assume X=\ without loss of generality.
Immediately follows P=0. Suppose now the two samples coming from normal distributions with
unit mean and variance (the same parameters of the given exponential distributions). It readily
follows p-15,9%, being (3 the erf(-l). An experimental test using the permutations with the
following parameters:

Probability density functions: exponential with unit variance.
Sample #1: ni=10, mean = -.86
Sample #2: nj- 1, mean = 1;

the data are :
Sample #1: (-1.5, -1.2, -1.3, -.6, -.7, -1.6, 2.4, -1.6, -1.7, -1.5)
Sample #2: (1);



the results are:
% of resampled means differences exceeding | xj - xj. I = 9% (this results depends from the low
number of permutations available. Repeating the sample generation this value converges to 2%);
sampleP=0

that, following the above calculations, strongly confirm the non applicability of the normal
hypothesis.

S.Software implementation generic overview
Because analysis of small data sets is often the case in the environmental data analysis, a ready-to-
use computer program was developed for applying the introduced tests which are not commonly
available to researchers in typical statistical packages. The software compares the means of two
groups of observations of several variables, hypothesizing the coincidence of the higher moments,
to test if they are belonging to the same population. To partially overcome the effects of the
combinatorial explosion as the sample sizes increase, two options are available: full combinations
or bootstrap resampling. Using the first option the comparison of the means is repeated among all
the possible n!/(ni!n2!) combinations. The original difference is then compared with the distribution
of the values obtained with the generated samples. With the bootstrap approach only a given
number (5000 in this program version) of random resampling is made of ni and n2 sets out of the
original set of nl+n2 observations. Then the comparison is again carried out. Instead of the
implemented differences between means any different statistic could be computed with simple
modifications of the software. The program prompts the user to select two files with data sets 1 and
2. Data should be available in ASCII format organized by observations (rows) and variables
(columns).
The software is written using Visual Basic version 4 for a Windows 95 environment and it is
available for download from the ENEA Environment Department WEB site at:
http://wwwamb.casaccia.enea.it./anvas

5.1 Full combinations
The kernel for the "full combinations" option is an algorithm for generating all the possible
combinations of ni and n2 data out of a set of n = ni+n2 observations. The idea is to use a binary n
digit number as a string of flags to indicate if an observation should be temporary regarded as drawn
from the first or from the second set. The following example is drawn from two sets of ni=3 (2.2;
2.1; 2.4; mean=2.3) and n2=2 (1.3; 1.5; mean=l,4). The original sample corresponds to the string
11100, a general binary string like 11010 reassigns observations 1,2,4 to set 1 while observations
number 3 and 5 to set 2. In this case 11010 the means would be 1.87 for set 1 and 1.3 for set 2
(difference 0.57). For ni=3 and n2=2 there is a total of 5!/(2!3!)= 10 possible different equiprobable
resampled sets.
The algorithm works on the flags generating all the combinations with ni " l ' s and n2 0's. The
following table contains the whole sequence:

FLAGS Notes
11100 The first 3 observations are from set 1, the last two from set 2 (orginal sets)
11010 Digit #3 was moved
10110 Digit #2 was moved (it had a 0 on the right position)
01110 Digit # 1 was moved
11001 Digit #4 was moved and the other two 1 's are collapsed to the first positions
10101



01101
10011 Digit #3 was moved and the 1 on position 2 was collapsed to the first position
01011
00111 The first 2 observations are from set 2, the last three from set 1

The program flowchart is extended hereafter in nine steps:
1) Allocate n= nj+n2 flags;
2) Initialize the fist ni flags to 1 and the remaining n2 to 0;
3) Assign x_2 the expected mean value of the alternative population; compute statistics (means,

differences, statistics and probabilities ) for the two initial sets;
4) Being i the position of the least significant flag 1 with a 0 on its right set i-th digit to 0 and i+1-

th digit to 1. If such position is not found then exit the procedure;
5) Set j to the count of flags 1 found on the left of the moved flag;
6) Set the first j flags to 1 and the remaining i-j to 0;
7) Compute statistics (means, differences, error probabilities etc.) for the temporary sets counting

the samples with statistic values higher than the initial sets;
8) Repeat from step 4. At the loop end compute and display test results and general statistics;
9) Run again the loop to compute the power of the test p.

The time required for the algorithm to run became prohibitive as n!/ ni!n2! (the number of
executions of the loop) increases. Given n, the worst case is for nj=n2., with (2n])!/ni!2 loops
needed. This number grows exponentially as function of n as n became large. This could be shown
using the Stirling's formula for the factorial:
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Fig. 5.1: Number of loops as function of m (n/2)
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The time in seconds required for a typical 100 Mhz Pentium CPU (Compaq XL 5100) to execute
the "full combinations'''' is shown in Fig 5.2 as a function of the number of the loops needed.
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Fig 5.2: CPU time (typical) as function of the number of loops

Typically 5 sec. CPU time is required for each 10000 loops execution. With ni=n2=9 (48620 loops)
the required time is 23 sec. For the same value of n and different ni,n2 the CPU time decays
similarly to the binomial coefficients and is inversely proportional to the computer clock rate. An
approximation can be given for the CPU time requested, in seconds, as function of the sample sizes
n,,n2 and of S (the CPU clock in Mhz).

Time = 0.05 (n]+n2)!/(n1!n2!) / S - 0.3.

After each step the program computes the statistics, multivariate or sequential, i.e. a Pj for each
variable, cumulating the fraction of temporary group 1 samples with a statistic greater than that of
the original sample. At the loops conclusion this fraction will be a* and can be suitably compared
with a, being the identification rejected if a*<oc. If at least one of the variables generates rejection,
the identification hypothesis is discarded.

If the identification is assumed, cc*>a, the probability of false identification must be computed.
Assumed xj to be the mean value of the alternative population, a new sample is generated summing
x? to the temporary group 1 sample and running again the program. (3j is accumulated for each
variable as the fraction of temporary ni-dimensional samples, derived by the resampling of the
cluster of the group 2 and of the modified group 1 data, that will be erroneously identified with
group 1. The power of the multivariate test will be :

1-p =1- (3, p2 - pj...pm

being p the overall probability of false identification.

5.2 The Bootstrap option
The bootstrap approach merely limits the number of combinations selecting randomly from the
whole equiprobable combinations allowed the two sample of ni and n2 observations. Then the
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statistics of interest are computed. The process is repeated L times (L=5000 for this program
version). It is clear that some of the configurations of the flags of the "full combinations" may be
drawn more than once and that many other are fully neglected . Nevertheless it is empirically
demonstrated that, if L is large enough, the final results will not be very different5. The idea of flags
indicating the membership to set 1 or set 2 is retained also for the bootstrap approach. To select the
temporary sample the algorithm works selecting ni positions in a string of length n=ni+n2. All the
positions are set in a array (urn) and a drawing without replacement is curried out. As a position is
drawn, the corresponding flag is set to 1 and the selected position is taken out from the possible next
extraction.

Allocate n= ni+n2 flags(j)
Allocate n= ni+n2 positions(j)
set all flags to 0
set positions(j)=j
repeat for i = 1 To ni
k = Int(RND * (n - i + l) + i)
SWAP position(i), position(k)
flags(position(i)) = 1

Next i

here:
RND is a uniform random number generator (0,1)
INT(x) is the integer part of x
SWAP a,b is the exchange between the value of "a" and "b"

The above algorithm produces random numbers with ni 1 's and n2 0's. With ni =n2 =9 the bootstrap
algorithm takes about 10 seconds to execute 5000 resamples on a 100 Mhz CPU. This means that
with ni >9 the bootstrap approach is faster and should be used for ni>10 if a quick computation is
required.

6.A case study, the Chernobyl children contamination
It is based on the work done by ENEA Environment Department on the genetic effects of the
Ucrainian children exposed to the Chernobyl accident6'7. In this study an analysis of chromosomal
aberrations (Acentric fragments, Dicentrics and Translocations counting ) was carried out on the
populations and a statistic test is needed to check if the increase in aberrations of the exposed
population is statistically significative. The aberration variables are counts with low probabilities to
be nonzero, therefore their statistical distributions are something of very different from the normals.
Therefore the Student-t test may be suspected to give rise to errors. The data are few but their sizes
are probably not so small that we are not allowed to invoke the beneficial effects of the central limit
theorem.

The children were divided into 3 groups:

• CONTROL GROUP A (Control): 11 subjects coming from the Smolensk region (WBC < 70
Bq). It is the regional reference group that can be assumed as a welfare level group.

• GROUP B (Evacuated): 7 subjects from the uncontaminated area of Smolensk (Russian
Federation) but living in Pripjat (Ukraine) at the moment of the accident and thus exposed to the
initial "acute" dose (in comparison to the exposure of non-evacuated people) of ionizing
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radiation; these children, evacuated to Smolensk 36 hours after the accident, showed an internal
contamination in the range 0-128 Bq.

• GROUP C (Contaminated): 24 subjects from Novosybkov in the Brianskya region of the Russian
Federation (ground contamination 148x1010 Bq/km2 as reported by IAEA maps), who exhibited
an internal contamination in the range 780-30,000 Bq.

Supposing that the aberration background of the russian population is higher no control population
group coming from abroad, let say Europe, is introduced in the test. We gained the following
results:

Group C',

Observations
11
7

23

Mean 1
2.38
3.14
3.52

Mean 2
0.47
1.00
0.87

Mean 3
0.61
1.17
1.55

Tab 6.1: Number of observations and mean values for group A,B,C
and var #1-.acentric; var#2:dicentric; var#3:translation chromosomal aberrations

Acentrics

Control
Evacuated

Contaminated

Dicentrics

Control Evacuated Contaminated
0

0.76
1.14

-0.76
0

0.38

-1.14
-0.38

0

Control
Evacuated

Contaminated

Traslocations

Control Evacuated Contaminated
0

0.53
0.40

-0.53
0

-0.13

-0.40
0.13

0

Control
Evacuated

Contaminated

Control Evacuated Contaminated
0

0.56
0.94

-0.56
0

0.38

-0.94
-0.38

0

Tab 6.2: Differences among the means of the variables

% exceeded
Acentrics

Control
Evacuated

Contaminated

Dicentrics
Control

Evacuated
Contaminated

Traslocations

PERMUTATIONS (Bootstrap)
Control

Control

Control

Evacuated
18.3

Evacuated
19.1

Evacuated

Contaminated
12.4
39.4

Contaminated
19.0
34.5

Contaminated

Control

Control

Control

Evacuated
18.0

Evacuated
16.7

Evacuated

STUDENT-t
Contaminated

12.0
37.1

Contaminated
15.9
40.0

Contaminated
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Control 26.1 6.1 22.0 6.8
Evacuated 29.3 29.9

Contaminated

Tab. 6.3 Tests results compared with canonical normal Student-t test

To estimate the multivariate power of the test we have first of all to define the alternative hypothesis
that may be assumed with the worst case approach that gives rise to the theoretically lower value of
the power. We assume therefore the alternative hypothesis to have a multivariate population exactly
at the upper limits of the critical acceptance region, and we assume the variables correlation to be
zero. Being in this case the mono-dimensional ps asymptotically 0.5, the multivariate expected
value of p is 0.125 and the test power is 87.5%. Running the permutation test the sample values
obtained are Pi=48.7; p2=49.3 and p3= 48.5. It follows p=l 1.6 and the sample power is 88.4% that
is really a good approximation. Summing up the results of the case study, even if there are
significative differences in the numerical values, they do not question the identification of all the
three groups suggested by the authors working with the normal hypothesis. The sample sizes
involved are at the limit under that the applicability of the asymptotic t-Student test is no longer
justified.

7.Conclusions

The work further improves the caution due to the normality assumption when nothing is known
about distributions of the samples, especially when the data size is small or very small and there are
good reasons of deviation from normality of the data probability distributions. The Chernobyl case
study first of all confirms that the exposure to the accident radiations of the children were not
sufficient for a diagnosis of statistical significance in chromosomal aberrations with respect to the
basic population of the former USSR. From the statistical point of view it shows that the
convergence to the asymptotic normal properties of the equal mean tests is quite rapid, so that we
can consider that sample sizes of the order of 10, those of the case test, are already enough to
assume convergence and then the practicability of the classical parametric approach like in6'7. For
very small sample sizes the paper offers a straightforward distribution-free approach that works only
on the basic statistical properties of the data and is computationally advantageous. The permutation
method offers at the same time the possibility to compute the power of the test and the probabilities
of false identification with respect to any alternative hypothesis, (normally the worst case
alternative), simply by resampling of the native data without any complicated integration of badly
known density functions. The multidimensional problem is also approached and a procedure to
compute the multivariate test power is given and the related multivariate false identification error.
With reference to different tests, i.e. on variances, correlations, data independence or probability
density, the permutation test remains a chance even if it has no normal asymptotic parametric
counterpart as sample sizes increases. In these cases, being the computation time an increasing
function of the sizes, the parametric tests must be implemented resorting to the bootstrap approach
before stepping to the classical non-parametric methods (Kolmogorov-Smirnov, Wilcoxon, etc.)
that, working on the ranks of the data, as it is very well known, are prone to lose information
(entropy) carried by the data.

To face correctly a new problem of statistical testing for poor data samples of unknown distributions
the final suggestion is to run both the tests, either the parametric or the permutation one. If
differences are evidenced in the test parameters refer to the results of the permutation test only and
discard the parametric approach. In both cases valorize the feature of the permutation test that
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allows to get a sample value of the test power and of the false identification probability avoiding
any futher analytical complication.
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