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Abstract

We study level spacing distributions of finite-sized one-dimensional disordered systems. As

the system evolves from a quasi-ballistic to a strongly localized regime, the system crosses

over from a strongly non-Wigner-Dyson type level spacing distribution to a universal Poisson

distribution in the thermodynamic (L —• oo) limit. In between it goes through regimes where

the distribution seems to be a mixture of Wigner-Dyson type and Poisson type distributions,

thus indicating existence of pre-localized states before the thermodynamic limit sets in.
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In a disordered chain with random but real-valued site-potentials, almost all the states are

exponentially localized and hence an incident wave (~ eikx) propagating in the positive x-

direction is completely backscattered due to the well-known localization effects [1]. Because the

hamiltonian is random, its eigenvalues (energy levels) are also random. There have been a lot of

works [2] on the level spacing distribution (LSD) as well in such random disordered systems. The

motivation for such studies come from the original works of Wigner [3], Dyson [4], and of Mehta

[5] on the nuclear level spectra of heavy elements, where the number of levels are so large that

they warrant a statistical description. But, for disordered systems, whose hamiltonian may be

represented by a random matrix, randomness in the spectra and consequently the randomness

in the level spacings come in a natural way. It was known for a long time that in the disordered

metallic regime, the LSD becomes one of the three Wigner-Dysonian (depending upon the three

possible symmetry classes), whereas in the insulating regime the LSD assumes a Poissonian

form. These are the only four universal behaviors in the large length (thermodynamic) limit.

More recent works [6] indicate that very near the critical disorder strength for the Anderson's

metal-insulator (M-I) transition (which occurs only above 2D if there is no magnetic field), the

LSD is neither Wigner-Dysonian on the metallic side, nor Poissonian in the insulating (localized)

side, but it takes one of the universal forms as one renormalizes to large length limit. Further,

the behaviour at the transition with a critical disorder, is non-universal (i.e., none of the above

four) even in the thermodynamic limit.

One of the characteristic features of disordered mesoscopic systems is the statistics of its

anomalously large conductance fluctuations and its universality in the diffusive regime. A lot

of works [7] have been done in this area starting with the numerical work of Stone and Lee and

the analytical work of Altshuler and others [8], to demonstrate that in the diffusive (disordered

but metal-like) regime the sample-to-sample fluctuations of the two-probe conductance or the

transmittance becomes universal. This is called the universal conductance fluctuations (UCF).

Our recent works on mesoscopic conductance fluctuations indicate that the universality exists

even in one dimension [9, 10]. The universality relates to the fact that the fluctuation (say

the standard deviation) is independent of the size of the system, the strength of disorder, the

Fermi energy of the charge carriers, or the type of hamiltonian (say, Schrodinger with Kronig-

Penney model, or the nearest neighbour tight binding one). Hence the UCF is expected to be

independent of the specific material parameters, but does depend on the dimensionality of the

system. Until recently, it was believed that strictly speaking, UCF cannot occur in ID. But,

in a series of recent works (starting with the ref.[9]), we have shown that an almost diffusive

regime does occur even in ID (where £ = 4/e) and hence UCF is achieved in ID as well starting

from a length of about 2le and persisting upto a length slightly larger than £. To put things

in perspective, we just quote the UCF values (in the unit of e2/h) for electrons of one spin

variety: they are 0.544, 0.431, 0.365 [8] and 0.30 [9] in three, two, quasi-one, and one dimensions

respectively.



More recently, we have demonstrated [10, 11] the inadequacy of the one parameter scaling

[12] in ID from the quasi-ballistic upto some mildly localized regime (i.e., in finite-sized samples

upto about 2 times the localization length). In our previous work [11] (referred to as I from now

on), we had reported that there are at least two relevant parameters in this regime in the sense

that the mean and the variance of the variable u = ln(l + R4) increase as a function of the length

L with two different and independent power-law exponents. In this regime < u >~ L for any

Fermi-energy (EF), but var(u) ~ LK, where K depends on the Ep and is always greater than 1.

Beyond this length scale, the behaviour slowly crosses over towards the one parameter scaling

behaviour in the thermodynamic limit in the sense that both < u > and var(u) diverge with

the same exponent 1, irrespective of the EF- In I, we had presented a typical case of W/V = 1.0

and EpjV = 1.6 where V is the hopping term and found that K = 1.57. We give here the values

of K for some other Fermi energies (but the same W): (i) for Ep/V = 0.1, K = 1.54, (ii) for

Ep/V = 0.5, K = 1.68, and (iii) for EF/V = 1.9, K = 1.39. Thus, it appears that from the

quasi-ballistic to the mildly localized regime, the var(u) increases in an independent and faster

power law fashion than < u > does and that other than the disorder strength (or, equivalently,

the Thouless energy) there is another relevant energy scale, namely the Fermi energy itself. We

reiterate that our main focus is on the finite-size effects on the scaling and the level spacing

distributions.

Next, one observes that conductance as a probe samples local LSD in the vicinity of the

Fermi-energy. This is explicitly seen in the Kubo formula for conductivity which connects the

properties of an open quantum system (conductance or reflectance) to those of a closed quantum

system (energy level spectra). For transport to take place in a Fermi system, a particle from a

state below the EF, must be excited to a state above it, thereby creating a particle-hole pair.

The steady-state dynamics of such pairs is responsible for the conduction in the sample. Since

conductance in finite-sized systems is non-universal (beyond one-parameter scaling theory), we

had conjectured in I that the LSD for finite-size systems should also be non-universal upto

about that length scale (i.e., about 2£) for the state with the largest £ (usually the band centre

E = 0 of a pure system obeying a tight binding hamiltonian). Thus, we focus on presenting the

LSD of finite and closed quantum chains. The results presented below should amply support

our conjecture in I. The other reason for focussing on finite chains is that many of the current

experiments on mesoscopic fluctuations and quantum chaos are indeed done on low-dimensional

and small-sized systems (even zero-dimensional, for a quantum dot).

We consider a quantum chain of N lattice points (lattice constant unity), represented by the

standard single band, tight binding equation:

( S - e n ) c n = F(c n _i+c n + i ) . (1)

Here E is the fermionic energy, V is the constant nearest neighbour hopping term, en is the

random site-energy, and Cn is the site amplitude at the n-th site. Without any loss of generality,



we choose V — 1 to set the energy scale. Further, we choose en randomly from an uniform dis-

tribution with P(en) = 1/W only inside the real, symmetric interval [-W/2, W/2]. The NxN

tridiagonal matrix (random in the diagonal entry) represented by the above equation is diago-

nalized using the standard procedures to obtain the N energy levels for various configurations

with the same W. Since we are dealing with disorder, we have not used any periodic boundary

condition and kept it free. The set of levels (En;n = 1,2, ...,N) for each configuration is then

sorted in an increasing order. Thus we obtain N — 1 level spacings s = En+i — En for each con-

figuration. Next we obtain the normalized histogram P{x) representing the LSD with the scaled

level spacing x = s/ < s >, where < s > is the average level spacing. The more the number of

configurations we choose, the smoother is the LSD. We would like to present our results in two

different ways. In the former, keeping the length L = N — 1 fixed, we will keep on changing the

disorder W from very small to quite large values. In the latter presentation we will do just the

opposite, namely, that we will hold the disorder W fixed and change L from very small to fairly

large values. As we find out, both the ways of presentation has some complementary aspects to

display.

In the Figs.l(a)-l(j), we present the LSD for a system of size N — 51 and for various W

starting from an almost pure sample with W = 10~5 to a strongly disordered system with

W = 10.0. In the case of the Fig.l(a), the system is almost periodic and the P(x) has a highly

peaked structure with large gaps for small x. The gaps tend to disappear only near large x. All

the peaks have the same height equal to 100, except a smaller single one in the middle reminding

us that there is a minute disorder in the system. In the Fig.l(b) where W = 10~3, the gaps are

almost as before, but the maximum peak height is smaller (about 80), and hence the peaks have

become broader (indeed at large x some of them have even merged together). Further, peak

heights have become more random in response to the stronger disorder than in Fig.l(a). In the

next Fig.l(c) for W = 10~2, the peak heights become even smaller but wider, with the largest

peak very close to the upper bound of x, where P(x) drops down to zero with a very sharp band-

edge like discontinuity. It may be noted that the fragmented structure of P(x) still remains.

The gaps are the signatures of an almost ballistic regime, which implies that the localization

lengths of almost all the states are larger than the system size chosen (L = 50). In Fig.l(d) for

W = 0.05, the gaps between the peaks have completely disappeared, and the distribution at low

x has a very interesting oscillatory form, but for a strong repulsion (gap) upto x < XQ ~ 0.06.

This seems to be the typical behaviour of P(x) in the quasi-ballistic regime. In this regime,

the band-edge like behaviour (at large x) beyond the largest peak has transformed into a less

sharp decay. In Fig.l(e) for W — 0.1, the oscillatory pattern of P(x) has completely vanished,

indicating that the localization effects have started becoming prominent. But, the behaviour

is still metal-like in the sense that P(x = 0) = 0 (level-repulsion). Yet the LSD is far from a

Wigner-Dyson (WD) type first because P(x) — 0 upto XQ = 0.03 (even though it is smaller than

the same for W = 0.05) and next because a small hump appears near x = 0.2 followed by a flat



region and a much larger second peak (at x ~ 1.5) which finally decays very sharply quite close

to zero near x ~ 1.7. Thus this case still indicates a much stronger level repulsion than in the

case of a Wigner-Dyson distribution, particularly because P(x) has an interesting double-peaked

structure. This double peaked structure is more prominent in Fig.l(f) for W = 0.5. But, the

peaks have come closer together with the smaller one at x ~ 0.5 and the larger one at x ~ 1.2.

Further the decay beyond the larger peak is slower than before (P(x > 2.4) ~ 0), and while

P(x = 0) = 0, P(x > 0) > 0. Clearly, this LSD is approaching a WD distribution, even though

it is qualitatively very different from a WD form. For a mild disorder W = 1.0 as in Fig.l(g), the

double-peaked structure has disappeared (the two peaks merge), and the LSD is qualitatively

quite similar to a WD type. In the case of both the Fig.l(h) and Fig.l(i) for W = 2.5 and 5.0

respectively, again we have something very different from a WD in the sense that P(x = 0) > 0

(level repulsion has disappeared), but on the other hand there is a single, broad peak at a finite

x > 0, indicating the presence of some remnants of metal-like correlations. Thus these two

P(x)'s seem to be a combination of a WD distribution and a Poisson distribution. Physically,

this seems to indicate that some of the states are localized and others are extended for this finite

sized sample. It is reminiscent of the existence of pre-localized states [13]. Finally, for a large

disorder (W = 10.0) as shown in Fig.l(j), even the largest localization length at E = 0 is much

smaller than the system size (L = 50). Hence all the states are strongly localized, and we get

back the universal (Poisson) distribution in ID in the thermodynamic (N —y oo) limit.

Next, we would like to show pictorially in the Fig.2, the evolution of the LSD as a function

of the system size N, for a fixed, mild disorder strength W/V = 1.0(V = 1.0as stated before).

Note that for this disorder, £ ~ 100. In contrast with Fig.l, all the LSD's are continuous here

because we are probing the quasi-ballistic regime not with an extremely small disorder, but

with a mild disorder and very small length of, say N = 3, as in Fig.2(a). The LSD shows no

fragmentation or any oscillatory behaviour and is rather narrow with a single global peak at

x ~ 1.0 and a fast decay practically to zero beyond x — Xo — 1.4. Thus there is no sign of

quasi-ballisticity and the effect of disorder is felt even at this small length. But the P{x) shows

a much stronger level repulsion than in the WD case in the sense that P(x) — 0 upto a xo — 0.7

[compare with the cases of Fig.l(d) and Fig.l(e)]. Almost similar is the case of Fig.2 (b) for

N = 11, where the very strong level repulsion is somewhat reduced in the sense that the initial

gap in P(x) extends only upto an XQ ~ 0.075 (this is not so clear from the figure, but becomes

evident on a log-log plot, which gives a power-law behaviour for small x: P(x) ~ (x — 0.075)^

with P ~ 2.2). The cases of Figs.2(c-f) for N = 21, 31, 41 and 51 respectively, looks qualitatively

like WD, but the exponent f3 keeps decreasing from about 2 to 0.58 for these cases. While a

/3 < 1 indicates a weaker level repulsion than in WD and hence seems surprising, one may find

its origin in the Figs.l(e-g), where the weaker peak at small x slowly comes closer to the stronger

peak and gives the LSD a convex shape upto the single global peak (implying a f3 < 1). For still

larger sizes of N = 101, 201, and 501 as shown in the Figs.2(g-i) respectively, the LSD seems to



be a mixture of WD and Poisson type distributions and hence seems to indicate the existence

of pre-localized states [13] as in the cases of Figs.l(h) and l(i). Finally, in the case of Fig.2(j)

for N = 1001, L ~ 10£(E = 0), but the LSD does not yet seem to have reached the universal

Poisson form (consistent with I). In contrast, for the case of Fig.l(j), L ~ 20£(JE? = 0) and hence

in conformity with our work in I, shows a Poisson distribution.

To summarise and to draw some conclusions, we hope to have shown that finite-sized 1-D

disordered systems do possess interesting properties in the mesoscopic regime (either for L —> oo

at a temperature T —> 0+ , or L < 1$, where 1$ is the inelastic scattering length or the phase

decoherence length due to scatterings with phonons at a T > 0. For example, we had already

shown that a UCF of about 0.3e2//i does occur in the 1-D system [9] around the quasi-diffusive

to the weakly localized regime (L ~ £/2 to about £). Further, from the ballistic to the mildly

localized regime (~ 2£, independent of the Fermi energy Ep), we observe a two-parameter

scaling [11], in the sense that the average < u > ~ L almost right from the quasi-ballistic

regime onwards. But, as we show in I as well as with additional work here, var(u) ~ LK where

K = K(EF) > 1 is an independent exponent in the regime L = 0 to L ~ 2£. Of course, in the

asymptotic limit L —• oo (indeed for L > 20£), the behaviour crosses over to K —• 1 + , which is

consistent with the one-parameter scaling [12]. The reason for the above behaviour for finite size

open quantum systems was found to be that the phase (coherent wave nature) <f> of the electron's

reflection co-efficient follows a distribution JPL(^) which is most of the times far from uniform,

and continues evolving as a function of L towards its stationary form Poo{4>) only for L >> 2£.

In the case of a finite, closed quantum system, we did look at the finite number of random

energy eigenstates and the corresponding finite number of random nearest level spacings (s).

Kubo formula indicates that the PL(S) (random LSD) should also be unusual in the same regime

in which the mesoscopic conductance fluctuation is so, i.e., in the two-parameter scaling regime.

Indeed, one observes a very strong level-repulsion (much stronger than in the case of Wigner-

Dyson) in the quasi-ballistic regime. Typically, the exponent j3 in the power-law prefactor of

Pl(x) where x = sf < s > is the scaled level spacing, as obtained from small x is significantly

larger than unity. As the system crosses over through the diffusive regime, (5 seems to decrease

to values less than unity. In the mildly localized regime (L ~ 2£), there seems to be a non-zero

probability of having x = 0, and yet there is a Wigner-Dyson-like peak before the eventual

decay of the PL{X) for large x. This is certainly quite unusual and seems to indicate that there

are small clusters of pre-localized states [13] in some energy regime and some infinite clusters

of extended states in another energy regime. Finally, in the large length/ disorder limit, the

extended states vanish, and one gets back the universal Poissonian behaviour for PL->O0(X).
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Figure Captions:

Fig.l Normalized level spacing distributions P(x) (as the function of a dimensionless level

spacing x = sf < s > where < s > is the average level spacing for a particular case) of a 1-D

disordered system of a fixed size N = 51 and varying disorder strengths (W/V) equal to (a)

0.00001, (b) 0.001, (c) 0.01, (d) 0.05, (e) 0.1, (f) 0.5, (g) 1.0, (h) 2.5, (i) 5.0, and (j) 10.0.

Fig.2 Normalized level spacing distributions (as in Fig.l) of a 1-D disordered system for a

fixed and small disorder W/V = 1.0 and varying sizes (N) equal to (a) 3, (b) 11, (c) 21, (d) 31,

(e) 41, (f) 51, (g) 101, (h) 201, (i) 501, and (j) 1001.
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